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AMS subject classifications: 15A09, 65F20

Key words: Bauer-Fike theorem, diagonalizable matrix, group inverse, Jordan canonical form.

1. Introduction

For A∈ Cn×n, the smallest nonnegative integer k satisfying the rank equation,

rank(Ak) = rank(Ak+1)

is called the index of the matrix A [1, 9]. If X ∈ Cn×n is the unique solution of the three

matrix equations

Ak+1X = Ak, XAX = X , AX = XA ,

we call X the Drazin inverse AD. If index(A) = 1, then the Drazin inverse is reduced to the

group inverse denoted by A♯ [1,9].

Let us now recall the classical Bauer-Fike theorem of 1960 and its version from 1999.

Theorem 1.1. (Bauer-Fike Theorem [2, 4]) Let A be diagonalizable — i.e. A = XΛX−1,

where the diagonal matrix Λ = diag(λ1,λ2, · · · ,λn), λi is the eigenvalue of A. Let E be the

perturbation of A and µ the eigenvalue of A+ E. Then

min
i

�

�λi −µ
�

�≤ κ2(X )‖E‖2 . (1.1)
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If A is invertible, then

min
i

�

�

�

�

λi −µ

λi

�

�

�

�

≤ κ2(X )




A−1E






2
, (1.2)

where κ2(X ) = ‖X
−1‖2‖X‖2 is the condition number of X with respect to the 2-norm.

Wei et al. [7, 8] explored how to extend the classical Bauer-Fike theorem to include

the singular case, with the help of the group inverse. Later, Eisenstat [3] gave a different

version as follows:

Theorem 1.2. Suppose that A is singular diagonalizable —

i.e. A = X

�

Λ1

0

�

X−1, where Λ1 = diag(λ1,λ2, · · · ,λr), λi (i = 1,2, · · · , r) is the

nonzero eigenvalue of A. Let E be the perturbation of A, and µ the eigenvalue of A+ E. If

|µ|> κ2(X )‖E‖2, then

min
i

�

�

�

�

λi −µ

λi

�

�

�

�

≤
p

1+α2κ2(X )




A♯E






2
, (1.3)

where α = κ2(X )‖E‖2/
p

|µ|2− (κ2(X )‖E‖2)2 .

2. Main Results

In this section, we present our main result that improves the upper bound of Ref. [3].

Theorem 2.1. Assume that A is singular diagonalizable and E is the perturbation of A, and

µ is the eigenvalue of A+ E. If |µ|> ‖X−1(I − AA♯)EX‖2. Then

min
i

�

�

�

�

λi −µ

λi

�

�

�

�

≤
p

1+ β2




X−1A♯EX






2
, (2.1)

where β = ‖X−1(I − AA♯)EX‖2/
p

| µ |2 −‖X−1(I − AA♯)EX‖22 .

Proof. Let A = X

�

Λ1

0

�

X−1, where Λ1 = diag(λ1,λ2, · · · ,λr) is a nonsingular

diagonal matrix. Let x be an eigenvector of A+ E associated with µ, and denote

X−1EX =

�

E11 E12

E21 E22

�

and X−1 x =

�

x1

x2

�

.

Since µx = (A+ E)x ,

µ

�

x1

x2

�

= µX−1 x = X−1(A+ E)X X−1 x =

�

E11 +Λ1 E12

E21 E22

��

x1

x2

�

,
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so that

µx2 =
�

0 I
�

�

0 0

E21 E22

��

x1

x2

�

.

After a little algebra, we have

A♯ = X

�

Λ−1
1

0

�

X−1, AA♯ = X

�

I

0

�

X−1, I − AA♯ = X

�

0

I

�

X−1

and

X−1(I − AA♯)EX = X−1(I − AA♯)X X−1EX =

�

0 0

E21 E22

�

,

so

µx2 =
�

0 I
�

X−1(I − AA♯)EX

�

x1

x2

�

.

On taking the 2-norm of both sides we have

|µ|‖x2‖2 ≤




( E21 E22 )






2

Æ

‖x1‖
2
2 + ‖x2‖

2
2

=




X−1(I − AA♯)EX






2

Æ

‖x1‖
2
2 + ‖x2‖

2
2

— i.e. ‖x2‖
2
2 ≤ β

2‖x1‖
2
2. It is easy to verify that





X−1(I − AA♯)EX






2
=
















�

0 0

E21 E22

�
















2

≤
















�

E11 E12

E21 E22

�
















2

=




X−1EX






2
≤ κ2(X )‖E‖2.

Since

α =
κ2(X )‖E‖2
Æ

| µ |2 −
�

κ2(X )‖E‖2
�2
=

1
Æ

| µ |2 /
�

κ2(X )‖E‖2
�2 − 1

,

β =





X−1(I − AA♯)EX






2
q

| µ |2 −




X−1(I −AA♯)EX






2

2

=
1

q

| µ |2 /
�



X−1(I −AA♯)EX






2

�2
− 1

,

it is obvious that β ≤ α. On the other hand, we have

�

I −µΛ−1
1

0

��

x1

x2

�

= X−1A♯(A−µI)X X−1 x = −X−1A♯E x
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and

(I −µΛ−1
1 )x =−
�

I 0
�

X−1A♯EX

�

x1

x2

�

=
�

I 0
�

�

Λ−1

0

��

E11 E12

E21 E22

��

x1

x2

�

=
�

I 0
�

�

Λ−1
1 E11 Λ−1

1 E12

0 0

��

x1

x2

�

.

Taking the 2-norm of both sides and noting that ‖x2‖2 ≤ β‖x1‖2, we therefore obtain

min
λi 6=0

�

�

�

�

λi −µ

λi

�

�

�

�

‖x1‖2 ≤
















�

I 0
�

�

Λ−1
1 E11 Λ−1

1 E12

0 0

�
















2

q





x1







2

2
+




x2







2

2

=
















�

Λ−1
1 E11 Λ−1

1 E12

0 0

�
















2

q





x1







2

2
+




x2







2

2

≤
p

1+ β2
















�

Λ−1
1 E11 Λ−1

1 E12

0 0

�
















2





x1







2

≤
p

1+ β2




X−1A♯EX






2





x1







2
,

which completes the proof.

Remark 2.1. If |µ|> κ2(X )‖(I − AA♯)E‖2, then we take

β =
κ2(X )‖(I − AA♯)E‖2
p

| µ |2 −(κ2(X )‖(I − AA♯)E‖2)2

so that

min
i

�

�

�

�

λi −µ

λi

�

�

�

�

≤
p

1+ β2κ2(X )




A♯E






2
.

3. Examples

We now discuss two examples illustrating the improvement over the bound in Ref. [3].

Consider the matrix A∈ R3×3 given by

A=







−0.25 0.5× 1010 1.25× 1010

−0.5× 10−10 1 1.5

−1.25× 10−10 1.5 1.75







with the three eigenvalues

λ1 = 1 , λ2 = 2 , λ3 = 0 such that A= X diag(1,2,0)X−1,
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where

X =







3 2 1

2× 10−10 2× 10−10 2× 10−10

1× 10−10 2× 10−10 −1× 10−10






,

X−1 =







0.75 −0.5× 1010 −0.25× 1010

−0.5 0.5× 1010 0.5× 1010

−0.25 0.5× 1010 −0.25× 1010






.

We choose the perturbation matrix E such that |E| ≤ 10−6 × |A|, where |E| is the absolute

matrix of

E = 10−16× X







105 −1× 1010 0

1 105 0

0 0 1






X−1,

We compute

X−1AA♯EX = 10−16×







105 −1× 1010 0

1 105 0

0 0 0






,

X−1(I − AA♯)EX = 10−16× diag(0,0,1) and Λ−1
1 = diag(1,0.5) .

The matrix A+ E has the three eigenvalues

µ1 = 1+ 0.9976× 10−11, µ2 = 2+ 1.0006× 10−11, µ3 = 0.6067× 10−17.

Let us now compare the two assumptions in Refs. [3,8], respectively — viz.

κ2(X )‖E‖2 = 7.4246× 1014≫ µi , (i = 1,2)

and




X−1(I − AA♯)EX






2
= 1.0000× 10−16≪ µi , (i = 1,2) .

It is easy to see that our assumption is weaker than that of Ref. [3] so we cannot apply

Theorem 1.2, but our bound holds — i.e.

p

1+ β2




X−1A♯EX






2
= 1.0000× 10−6.

Let us now consider another matrix A∈ R3×3 given by

A=







1.75 0.5× 10−5 2.75× 10−5

−0.5× 105 2 3.5

−2.75× 105 3.5 4.25







with the three eigenvalues

λ1 = 3 , λ2 = 5 , λ3 = 0 such that A= X diag(3,5,0)X−1 ,
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where

X =







3 2 1

2× 105 2× 105 2× 105

105 2× 105 −1× 105






,

X−1 =







0.75 −0.5× 10−5 −0.25× 10−5

−0.5 0.5× 10−5 0.5× 10−5

−0.25 0.5× 10−5 −0.25× 10−5






.

We select the perturbation matrix E satisfying |E| ≤ 10−10× |A|— viz.

E = 10−11× X







10−5 −1× 10−10 0

1 10−5 0

0 0 1






X−1 .

Then

X−1AA♯EX =







10−16 −1× 10−21 0

1× 10−11 10−16 0

0 0 0






,

and

X−1(I − AA♯)EX = 10−11× diag(0,0,1) , Λ−1
1 = diag(0.3333,0.2000) ,

and A+ E has the three eigenvalues

µ1 = 3+ 6.217248937900877× 10−15, µ2 = 5− 7.105427357601002× 10−15,

µ3 = 1× 10−11.

Now we can compare with the relative error bounds of Refs. [3,8], with

κ2(X )‖E‖2 = 0.70544766163927< µi , (i = 1,2) ,

and




X−1(I −AA♯)EX






2
= 1× 10−11≪ µi , (i = 1,2) .

The bound in Ref. [3] is
p

1+α2κ2(X )




A♯E






2
= 0.15277727491342 ,

whereas our new bound is
p

1+ β2




X−1A♯EX






2
= 2.000000000377778× 10−12.

The relative error bounds for λ1 and λ2 are
�

�

�

�

λ1 −µ1

λ1

�

�

�

�

= 1.998401444325282× 10−15,

�

�

�

�

λ2 −µ2

λ2

�

�

�

�

= 1.443289932012704× 10−15.
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