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Abstract. In this article, we discuss the generalised coupled Lane-Emden system u′′+

H(v)=0 , v′′+G(u)=0 that applies to several physical phenomena. The Lie group clas-

sification of the underlying system shows that it admits a ten-dimensional equivalence

Lie algebra. We also show that the principal Lie algebra in one dimension has several

possible extensions, and obtain an exact solution for an interesting particular case via

Noether integrals.
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1. Introduction

For various forms of the function f (y) and different values of the integer n, the gener-

alised Lane-Emden equation

d2 y

d x2
+

n

x

d y

d x
+ f (y) = 0 (1.1)

has been used to model many phenomena in mathematical physics. When n= 2 and f (y) =

y r where r is a constant, Eq. (1.1) models the thermal behaviour of a spherical cloud of

gas acting under the mutual attraction of its molecules and subject to the classical laws of

thermodynamics [1–3]. Methods such as Adomian decomposition, numerical, perturbation

and homotopy analysis, power series and a variational approach have been used to obtain

solutions for this generalised equation — e.g. see [4] and references therein.

Leach [5] studied a modified Emden equation, which led to the symmetry based ap-

proach to equations of Lane-Emden-Fowler type. Recently, Lane-Emden systems have been
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used by various researchers to model other physical phenomena, including inter alia pattern

formation, population evolution and chemical reactions. Existence and uniqueness results

have been presented for Lane-Emden systems [7,8], and for other related systems [9–11].

Lie point symmetries of the Lane-Emden system were presented in Ref. [12], where it

was shown that a Lie point symmetry of the radial Lane-Emden system

d2u

d x2
+

�

n− 1

x

�

du

d x
+ vq = 0 ,

d2v

d x2
+

�

n− 1

x

�

dv

d x
+ up = 0

is a Noether symmetry if and only if its parameters belong to the critical hyperbola

n

p+ 1
+

n

q+ 1
= n− 2 .

A complete group classification of the nonlinear Lane-Emden system in dimension one

−
d2u

d x2
= vq , −

d2v

d x2
= up (1.2)

determined its Lie point symmetries, Noether symmetries and corresponding first inte-

grals [13].

In this article, we discuss a generalisation of the system (1.2) where more general func-

tions replace the power functions vq and up, respectively. Thus we consider the generalised

Lane-Emden system

d2u

d x2
+H(v) = 0,

d2v

d x2
+ G(u) = 0 , (1.3)

where H(v) and G(u) are arbitrary functions of v and u, respectively. Our main objective

is to perform Lie group classification of the system (1.3). Group classification was first

discussed by Lie [17], and many researchers have since applied Lie’s methods to a wide

range of problems. The group classification of the system (1.3) involves finding the Lie point

symmetries of this system with arbitrary functions H(v) and G(u), and then determining

all possible forms of H(v) and G(u) for which the symmetry group can be extended — cf.

Ref. [18], and for applications of Lie group analysis to differential equations see Refs. [19–

21] for example.

Although the group classification of the generalised Lane-Emden system

d2u

d x2
+

n

x

du

d x
+H(v) = 0 ,

d2v

d x2
+

n

x

dv

d x
+ G(u) = 0 (1.4)

was performed in Ref. [14], and this system (1.3) can formally be viewed as a particular

case (by setting n= 0) of the generalised Lane-Emden system (1.4), the group classification

of (1.4) was found with the restriction n 6= 0. Our discussion of the system (1.3) here

is thus complementary to the previous discussion of the generalised Lane-Emden system

(1.4), and it emerges that the principal Lie algebra for (1.3) is one-dimensional whereas it

is trivial for (1.4). For completeness, we also present results on the Noether cases, which
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have been obtained before [15,16]. In addition, in the present article we use first integrals

to obtain an exact solution of a special case of the system (1.3) — which is new for such

systems, as far as we know. The equivalence transformations of the Lane-Emden system

(1.3) are calculated in Section 2, and the principal Lie algebra and the group classification

of the system (1.3) are discussed in Section 3. Results concerning Noether symmetries and

first integrals are recalled in Section 4, and an exact solution of (1.3) for the special case

H(v) = 1/v, G(u) = 1/u using first integrals is presented in Section 5.

2. Equivalence Transformations

An equivalence transformation of the system (1.3) is an invertible transformation of

the variables x , u and v that maps system (1.3) into a system of the same form, where the

form of the transformed functions can differ from the form of the original functions H(v)

and G(u) [22]. We rewrite the system (1.3) as

d2u

d x2
+H(v) = 0 ,

d2v

d x2
+ G(u) = 0 ,

Hx = 0 , Hu = 0 , Gx = 0 , Gv = 0 , (2.1)

where u and v are differentiable with respect to an independent variable x , H is differ-

entiable in x and v, and G is differentiable in x and u. The generators of the required

continuous group of equivalence transformations are

Y =ξ(x ,u, v)
∂

∂ x
+η1(x ,u, v)

∂

∂ u
+η2(x ,u, v)

∂

∂ v

+µ1(x ,u, v, H, G)
∂

∂ H
+µ2(x ,u, v, H, G)

∂

∂ G
. (2.2)

We apply Lie’s infinitesimal technique, using the prolongation of Y to the derivatives in-

volved in the system (2.1) as follows (e.g. see [19]):

Ỹ = Y + ζ1
x

∂

∂ u′
+ ζ2

x

∂

∂ v′
+ ζ1

x x

∂

∂ u′′
+ ζ2

x x

∂

∂ v′′
+µ1

x

∂

∂ Hx

+µ1
u

∂

∂ Hu

+µ2
x

∂

∂ Gx

+µ2
v

∂

∂ Gv

,

where ζ1
x ,ζ2

x ,ζ1
x x and ζ2

x x are given by the usual prolongation formulas, and

µ1
x = D̃x(µ

1)−Hx D̃x(ξ)−HuD̃x(η
1) ,

µ1
u = D̃u(µ

1)−Hx D̃u(ξ)−HuD̃u(η
1) ,

µ2
x = D̃x(µ

2)− Gx D̃x(ξ)− Gv D̃x(η
2) ,

µ2
v
= D̃v(µ

2)− Gx D̃v(ξ)− Gv D̃v(η
2) ,
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with

D̃x =
∂

∂ x
+Hx

∂

∂ H
+ Gx

∂

∂ G
+ · · · ,

D̃u =
∂

∂ u
+Hu

∂

∂ H
+ Gu

∂

∂ G
+ · · · ,

D̃v =
∂

∂ v
+ Gv

∂

∂ G
+Hv

∂

∂ H
+ · · · .

The invariance test for the system (2.1) yields

Ỹ

�

d2u

d x2
+H(v)

�

�

�

�

�

(2.1)

= 0 , Ỹ

�

d2v

d x2
+ G(u)

�

�

�

�

�

(2.1)

= 0 ,

Ỹ (Hx )

�

�

�

�

(2.1)

= 0 , Ỹ (Hu)

�

�

�

�

(2.1)

= 0 , Ỹ (Gx )

�

�

�

�

(2.1)

= 0 , Ỹ (Gv)

�

�

�

�

(2.1)

= 0 , (2.3)

and on solving these equations we conclude that the system (2.1) has the ten-dimensional

equivalence Lie algebra spanned by the equivalence generators

X1 =
∂

∂ x
, X2 = x

∂

∂ x
− 2H

∂

∂ H
− 2G

∂

∂ G
, X3 = u

∂

∂ u
+H

∂

∂ H
,

X4 = v
∂

∂ v
+ G

∂

∂ G
, X5 =

∂

∂ u
, X6 =

∂

∂ v
, X7 = x

∂

∂ u
, X8 = x

∂

∂ v
,

X9 = x2 ∂

∂ u
− 2

∂

∂H
, X10 = x2 ∂

∂ v
− 2

∂

∂ G
.

Thus the ten-parameter equivalence group is given by

X1 : x̄ = x + a1 , ū = u , v̄ = v , H̄ = H , Ḡ = G ,

X2 : x̄ = ea2 x , ū= u , v̄ = v , H̄ = e−2a2 H , Ḡ = e−2a2 G ,

X3 : x̄ = x , ū = ea3u , v̄ = v , H̄ = ea3 H , Ḡ = G ,

X4 : x̄ = x , ū = u , v̄ = ea4 v , H̄ = H , Ḡ = ea4 G ,

X5 : x̄ = x , ū = u+ a5 , v̄ = v , H̄ = H , Ḡ = G ,

X6 : x̄ = x , ū = u , v̄ = v + a6 , H̄ = H , Ḡ = G ,

X7 : x̄ = x , ū = u+ a7 x , v̄ = v , H̄ = H , Ḡ = G ,

X8 : x̄ = x , ū = u , v̄ = v + a8 x , H̄ = H , Ḡ = G ,

X9 : x̄ = x , ū = u+ a9 x2 , v̄ = v , H̄ = H − 2a9 , Ḡ = G ,

X10 : x̄ = x , ū = u , v̄ = v + a10 x2 , H̄ = H , Ḡ = G − 2a10 ,
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and the composition of the above transformations gives

x̄ = ea2(x + a1) ,

ū= ea3(u+ a9 x2 + a7 x + a5) ,

v̄ = ea4(v + a10 x2 + a8 x + a6) ,

H̄ = ea3−2a2(H − 2a9) ,

Ḡ = ea4−2a2(G − 2a10) . (2.4)

3. Principal Lie Algebra and Lie Group Classification

The generalised Lane-Emden system (1.3) admits a Lie point symmetry

X = ξ(x ,u, v)
∂

∂ x
+η1(x ,u, v)

∂

∂ u
+η2(x ,u, v)

∂

∂ v

if

X [2]
�

d2u

d x2
+H(v)

�

�

�

�

�

(1.3)

= 0 , X [2]
�

d2v

d x2
+ G(u)

�

�

�

�

�

(1.3)

= 0 . (3.1)

Then expanding (3.1) and separating the resulting PDE system with respect to the deriva-

tives of u and v, we obtain an overdetermined system of fifteen PDE — viz.

ξuu = 0 , (3.2)

ξvu = 0 , (3.3)

ξvv = 0 , (3.4)

η1
uv − ξvx = 0 , (3.5)

η1
uu − 2ξux = 0 , (3.6)

η1
vv = 0 , (3.7)

2η1
ux + 3Hξu − ξx x + Gξv = 0 , (3.8)

η1
xv +Hξv = 0 , (3.9)

H ′η2 +η1
x x − Hη1

u − Gη1
v + 2Hξx = 0 , (3.10)

η2
uv − ξux = 0 , (3.11)

η2
vv − 2ξvx = 0 , (3.12)

η2
uu = 0 , (3.13)

2η2
vx + 3Gξv − ξx x +Hξu = 0 , (3.14)

η2
ux + Gξu = 0 , (3.15)

G′η1 +η2
x x
−Hη2

u
− Gη2

v
+ 2Gξx = 0 . (3.16)
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Solving Eqs. (3.2)-(3.4), we have

ξ = a(x)u+ b(x)v + e(x) ; (3.17)

and from Eqs. (3.5)-(3.7)

η1 = a′(x)u2 + b′(x)vu+ k(x)u+m(x)v + l(x) . (3.18)

Inserting ξ and η1 from Eqs. (3.17) and (3.18) into Eqs. (3.8)-(3.9) and solving the result-

ing equations yields

ξ= e(x) , (3.19)

η1 = c1v + k(x)u+ l(x) , (3.20)

2k′(x)− e′′(x) = 0 , (3.21)

where c1 is an arbitrary constant, and from Eqs. (3.11)-(3.13) we obtain

η2 = E(x)u+ c(x)v + d(x) . (3.22)

On substituting ξ from Eq. (3.19) and η2 from Eq. (3.22) into Eqs. (3.14)-(3.15), we then

have

η2 = c2u+ c(x)v + d(x), (3.23)

2c′(x)− e′′(x) = 0 , (3.24)

where c2 is an arbitrary constant. Finally, from Eq. (3.10) and Eq. (3.16) we obtain c1 =

c2 = 0 and

(ku+ l)G′(u) + (2e′ − c)G(u) + d ′′ = 0 ,

(cv + d)H ′(v) + (2e′ − k)H(v) + l′′ = 0 . (3.25)

Thus in summary we have

ξ= e(x) ,

η1 = k(x)u+ l(x) ,

η2 = c(x)v + d(x) ,

e′′(x)− 2k′(x) = 0 ,

e′′(x)− 2c′(x) = 0 ,

and

(ku+ l)G′(u) + (2e′ − c)G(u) + d ′′ = 0 ,

(cv + d)H ′(v) + (2e′ − k)H(v) + l′′ = 0 . (3.26)
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Consequently, we conclude that the principal Lie algebra of the system (1.3) is

X =
∂

∂ x
,

and the classifying relations are given by

(αu+ β)G′(u) + γG(u) +δ = 0 ,

(θ v +λ)H ′(v) +ϕH(v) +ω= 0 , (3.27)

where α, β , γ, δ, θ , λ, ϕ and ω are all constants.

The above classifying relations are invariant under the equivalence transformation (2.4)

provided

ᾱ = α ,

β̄ = α(a9 x2 + a7 x + a5) + βe−a3 ,

γ̄ = γ ,

δ̄ = δe2a2−a4 − 2γa10 ,

θ̄ = θ ,

λ̄= θ(a10 x2 + a8 x + a6) + λe−a4 ,

ϕ̄ = ϕ ,

ω̄ =ωe2a2−a3 − 2ϕa9 .

Using the above relations, one can find the non-equivalent forms of the functions H(v) and

G(u), prompting the seven cases presented in Table 1.

Remark 3.1. We note that all cases where the function forms of the arbitrary elements do

not extend the principal Lie algebra are excluded in the preceding classification — including

inter alia the logarithmic case. The linear case has been excluded, since one then obtains

the 1-dimensional form of the biharmonic equation with known symmetries [23], and cases

where the functions are constants are also excluded.

4. Noether Symmetries and First Integrals

For completeness, we now present results concerning Noether symmetries and first in-

tegrals for the system (1.3) found earlier— cf. Refs. [15,16].

Case 1. H(v), G(u) arbitrary.

This case provides us with a single Noether symmetry X = ∂x , and the associated first

integral is I = u′v′ +
∫

H(v)dv +
∫

G(u)du.

Case 2. H(v) = bv + a, G(u) = du+ c.

In this case, we obtain five Noether symmetries with corresponding first integrals —

cf. Ref. [15].
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Table 1: Classi�ation results: b, d, m, n, p, q are onstants, with m, n, p, q 6= 0.

H(v) G(u) Condition Symmetry operator(s)

on const.

H(v) arbitrary G(u) arbitrary X1 = ∂x .

H(v) = bv−q G(u) = du−p b, d 6= 0 X1 = ∂x ,

X2 = (1− qp)x∂x + 2u(1− q)∂u + 2v(1− p)∂v .

We recover the results obtained in Ref. [13].

H(v) = bv−1 G(u) = du−1 b = d X1 = ∂x , X2 = u∂u − v∂v , X3 = x∂x + 2u∂u .

We recover the results obtained in Ref. [13].

H(v) = bv−3 G(u) = du−3 b = d X1 = ∂x , X2 = 2x∂x + u∂u + v∂v ,

X3 = x2∂x + ux∂u + vx∂v .

We recover the results obtained in Ref. [13].

H(v) = bv−q G(u) = de−nu b, d 6= 0 X1 = ∂x , X2 = qnx∂x + 2(q− 1)∂u + 2nv∂v .

H(v) = be−mv G(u) = du−p b, d 6= 0 X1 = ∂x , X2 = mpx∂x + 2mu∂u + 2(p − 1)∂v .

H(v) = be−mv G(u) = de−nu b, d 6= 0 X1 = ∂x , X2 = mnx∂x + 2m∂u + 2n∂v .

Case 3. H(v) = bv−q, G(u) = du−p.

3.1 p,q 6= 1 with 2(p+ q)− pq− 3= 0.

In this case, we have a single Noether symmetry

X = (1− pq)x∂x + 2(1− q)u∂x + 2(1− p)v∂v ;

and the associated first integral is

I = (1− pq)xu′v′ +
1− pq

1− p
d xu1−p +

1− pq

1− q
bx v1−q +

1− pq

1− p
uv′ +

1− pq

1− q
vu′

— cf. Case 5.1 in Ref. [15]. (For the special case b = d = 1, this result was also

obtained in Ref. [13].)

3.2 p,q = 1 and b = d .

This case corresponds to two Noether symmetries — viz.

X1 = ∂x , X2 = u∂u − v∂v;

and the corresponding first integrals

I1 = u′v − uv′, I2 = u′v′ + b lnu+ b ln v

[15]. (For the special case b = d = 1, this result was also obtained in Ref. [13].)
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3.3 p,q = 3.

In this case, we obtain a single Noether symmetry — viz.

X = x2∂x + xu∂u + x v∂v;

and the corresponding Noether first integral is

I = x2u′v′ − x(uv′ + vu′)−
x2

2
(du−2 + bv−2) + uv

— cf. Ref. [16]. (For the special case b = d = 1, this result was also obtained

in Ref. [13].)

Case 4. H(v) = be−mv, G(u) = de−nu.

This reduces to Case 1.

Case 5. H(v) = a+ b ln v, G(u) = c + d ln u.

This also reduces to Case 1.

5. Exact Solution of (1.3) for a Special Case

Making use of first integrals, we can obtain an exact solution for a special case of the

system (1.3) — viz. Case 3.2 of Section 4, with H(v) = v−1 and G(u) = u−1. There are

then two Noether point symmetries and consequently two Noetherian integrals —

I1 = u′v − uv′ , I2 = u′v′ + lnu+ ln v .

Thus the corresponding reduced equations are

u′v − uv′ = A , (5.1)

u′v′ + lnu+ ln v = B , (5.2)

where A and B are arbitrary constants. If we set A = B = 0 for example, integration of

Eqs. (5.1) and (5.2) yields the exact solution

u(x) =
1
p

C1

exp

§

−erf−1

�√

√ 2

π
(x + iC2)

�

2

ª

,

v(x) =
p

C1 exp

§

−erf−1

�√

√ 2

π
(x + iC2)

�

2

ª

for the system (1.3), where C1 and C2 are arbitrary constants and erf−1 is the inverse error

function [24].

6. Concluding Remarks

In this work we performed the Lie group classification of the generalised coupled Lane-

Emden system (1.3). This system admitted ten-dimensional equivalence Lie algebra. The

principal Lie algebra was also obtained and several possible extensions of the principal Lie

algebra were presented. Finally an exact solution for a special case of the system (1.3) was

obtained.
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