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Abstract. An inverse geometric problem for two-dimensional Helmholtz-type equations

arising in corrosion detection is considered. This problem involves determining an un-

known corroded portion of the boundary of a two-dimensional domain and possibly its

surface heat transfer (impedance) Robin coefficient from one or two pairs of boundary

Cauchy data (boundary temperature and heat flux), and is solved numerically using the

meshless method of fundamental solutions. A nonlinear unconstrained minimisation of

the objective function is regularised when noise is added into the input boundary data.

The stability of the numerical results is investigated for several test examples, with re-

spect to noise in the input data and various values of the regularisation parameters.
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1. Introduction

Inverse geometric problems arise in analysing various imaging and tomography tech-

niques such as electrical impedance tomography (EIT), gamma ray emission tomography

(GRET), magneto-resonance imaging (MRI), etc. In this study, we consider the application

of the method of fundamental solutions (MFS) to solve numerically the inverse geometric

problem, which consists of determining an unknown part of the boundary Γ2 ⊂ ∂Ω as-

suming that the dependent variable u satisfies the Helmholtz (or the modified Helmholtz)

equation in a simply-connected bounded domain Ω ⊂ R2 — viz.

∇2u± k2u= 0 in Ω (1.1)
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where k > 0, from the knowledge of the Dirichlet boundary data u|Γ1
and the Neumann

flux data ∂ u/∂ n — i.e. Cauchy data, on the known part of the boundary Γ1 = ∂Ω \ Γ2

where n is the outward unit normal to the boundary, together with a boundary condi-

tion (Dirichlet, Neumann or Robin) on the unknown part of the boundary Γ2. Eq. (1.1)

with minus sign is the modified Helmholtz equation that models the heat conduction in

a fin (e.g. [22]), whilst equation (1.1) with plus sign is the Helmholtz equation that

models wave propagation in acoustics. The inverse, nonlinear and ill-posed problem of

determining the unknown (inaccessible) corroded portion of the boundary Γ2 and pos-

sibly its surface heat transfer coefficient, if a Robin condition is prescribed on Γ2, is ap-

proached using an MFS regularised minimisation procedure. This study is general and

builds upon previous recent applications of the MFS to solve similar boundary determina-

tion corrosion problems for the isotropic, anisotropic and functionally graded Laplace equa-

tion [20, 24, 26, 27, 32], Helmholtz-type equations [23], the biharmonic equation [33],

the Lamé system in elasticity [21], and the heat equation [10]. For more details about

the MFS, as applied to inverse problems in general, see the recent review by Karageorghis

et al. [15]. We finally mention that there also exists an extensive literature on using the

boundary element method (BEM) instead of the MFS for the corrosion boundary iden-

tification — e.g. see [17] for the Laplace equation in EIT, [25] for the Lamé system in

elasticity, and [19] for Helmholtz-type equations. However, there are clear methodologi-

cal differences between the MFS and the BEM — e.g. see [1] for a comparison between

the two methods. In summary, although the MFS formulation may introduce some extra

ill-conditioning, by avoiding the numerical integration it is considerably easier to use, es-

pecially in higher dimensional problems.

The outline of this paper is as follows. In Section 2 we introduce and discuss the

mathematical formulation, whilst in Section 3 we present the MFS for the Helmholtz-type

equations. In Section 4 we present and discuss the numerically obtained results, and in

Section 5 we give some conclusions and suggest possible future work.

2. Mathematical Formulation

We consider a simply-connected solution domain Ω bounded by a smooth or piecewise

smooth curve ∂Ω = Γ1∪Γ2, where Γ1∩Γ2 = ; and both Γ1 and Γ2 are of positive measure.

The function u satisfies the Helmholtz (or the modified Helmholtz) equation (1.1) subject

to the boundary conditions

u= f on Γ1 (2.1)

and
∂ u

∂ n
+αu = h on Γ2 , (2.2)

where f ∈ H1/2(∂Ω) non-constant and h ∈ H−1/2(∂Ω) are given functions, and α ∈
L∞(Γ2) is the non-negative impedance (surface heat transfer) Robin coefficient. Here
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H1/2(∂Ω) denotes the space of traces of functions u ∈ H1(Ω) restricted to the boundary

∂Ω, and H−1/2(∂Ω) denotes the dual space of H1/2(∂Ω). In Eq. (2.2), h is usually zero,

in which case (2.2) represents a homogeneous Robin boundary condition. In the case of

the Helmholtz equation we also assume that k2 is not an eigenvalue for the negative of

the Laplacian −∇2 in the domain Ω with the homogeneous form of the mixed boundary

conditions (2.1) and (2.2) on ∂Ω. It is well-known that the direct Robin problem given

by Eqs. (1.1), (2.1) and (2.2) has a unique solution u ∈ H1(Ω) when Γ2 is known. We

can then define a nonlinear operator F f (Γ2), which maps the set of admissible Lipschitz

boundaries Γ2 to the data space of Neumann flux data in H−1/2(Γ1), as follows:

F f (Γ2) :=
∂ u

∂ n

���
Γ1

= g ∈ H−1/2(Γ1) . (2.3)

The inverse problem under consideration then consists of extracting some information

about the boundary Γ2 from the data g = F f (Γ2). The data (2.3) may also only be partial

— i.e. the flux being measured on a non-zero measure portion Γ ⊂ Γ1, instead of the whole

boundary Γ1. It is well-known that this inverse problem is nonlinear and ill-posed, as op-

posed to the direct problem that is linear and well-posed. The Robin boundary condition

(2.2) models Newton’s law of cooling, which gives a linear relationship between the heat

flux and the surface temperature through a surface heat transfer (impedance) coefficient

of proportionality α.

We briefly note that the situation regarding the solution uniqueness or non-uniqueness

is much more settled in the case of the inverse shape boundary determination of Γ2 when α

is known [4–6,12,13], or in the case of the inverse impedance determination of α when Γ2

is known [7,11,14]. However, in corrosion problems it is not always physically realistic to

assume that the boundary condition on the corroded boundary is known, in which case the

coefficient α in (2.2) together with the obstacle Γ2 are to be determined simultaneously.

Clearly, one set of Cauchy boundary measurements (2.1) and (2.3) is then insufficient to

recover Γ2 and α simultaneously. However, it turns out that two linearly independent

boundary data f1 and f2, one of which is positive and inducing two corresponding flux

measurements g1 and g2 via (2.3), are sufficient to provide a unique solution for the pair

(Γ2,α) [2, 28, 29]. Recently, the stability issue has also been addressed [31]. Finally, we

note that the case when Ω is a doubly-connected annular domain with outer boundary Γ1

and inner unknown boundary Γ2 has also recently been investigated by the present au-

thors [18].

Even when α is known, one set of Cauchy data (2.1) and (2.3) may not be enough to

determine uniquely the corroded boundary Γ2, as the following counterexample shows:

Counterexample.

We extend the analysis of Ref. [5] for the Laplace equation (i.e. when k = 0), and likewise

consider the geometrical configuration for the solution domain Ω sketched in Fig. 1 where
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Figure 1: Geometry for the ounterexample.
a > 0 is a constant parameter. Thus let the solution domain be

Ω = {(x , y) ∈ R2| x2+ y2 < 1, y > 0} ∪ {(x , y) ∈ R2| x ∈ (−1,1), y ∈ (−a, 0)} , (2.4)

consisting of a semicircle and a rectangle. Consider the function

u(x , y) =
p

2eγy sin

�π
4
(β x + β + 1)

�
, (x , y) ∈ Ω , (2.5)

where β and γ are some constants to be prescribed.

(a) The modified Helmholtz equation

Let us first consider the case of the modified Helmholtz equation

∇2u− k2u = 0 in Ω . (2.6)

It can be seen that (2.5) satisfies the modified Helmholtz equation (2.6) if γ2 = k2 +

β2π2/16. Let us now try to satisfy the homogeneous form of the Robin boundary condition

(2.2) on Γ2. On the left vertical boundary of Γ2 we have

u(−1, y) = eγy ,

∂ u

∂ n
(−1, y) = − ∂ u

∂ x
(−1, y) = −πβ

4
eγy , y ∈ (−a, 0) ,

and we can take

α(−1, y) =
βπ

4
, y ∈ (−a, 0) (2.7)
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that we can make non-negative by requiring β ≥ 0. On the right vertical boundary of Γ2

we have

u(1, y) =
p

2eγy sin

�
π(2β + 1)

4

�
,

∂ u

∂ n
(1, y) =

∂ u

∂ x
(1, y) =

πβ
p

2

4
eγy cos

�
π(2β + 1)

4

�
, y ∈ (−a, 0) ,

and we can take

α(1, y) = −βπ
4

cot

�
π(2β + 1)

4

�
=
βπ

4
tan

�
π(2β − 1)

4

�
, y ∈ (−a, 0) (2.8)

that we can make non-negative by requiring that

β ∈
�

1

2
,
3

2

�
∪
�

5

2
,
7

2

�
. (2.9)

Finally, on the horizontal boundary of Γ2 we have

u(x ,−a) =
p

2e−aγ sin

�π
4
(β x + β + 1)

�
,

∂ u

∂ n
(x ,−a) = − ∂ u

∂ y
(x ,−a) = −γp2e−aγ sin

�π
4
(β x +β + 1)

�
, x ∈ (−1,1) ,

and we can take

α(x ,−a) = γ, x ∈ (−1,1) (2.10)

that we can make non-negative by taking

γ=

r
k2 +

β2π2

16
. (2.11)

To summarize, one can observe that by taking γ given by (2.11) and β in the inter-

vals given in (2.9), we can satisfy the homogeneous form of the Robin boundary condition

(2.2) on Γ2, independent of the constant positive parameter a. In addition, the solu-

tion (2.5) does not depend on a and so it will be the Cauchy data (2.1) and (2.3) on

Γ1 = {(x , y) ∈ R2| x2 + y2 = 1, y ≥ 0}. In conclusion, a > 0 cannot be identified from

equations (2.1)-(2.3) and (2.6) only, and therefore this is a counterexample to the unique-

ness of solution.

We now perform a similar analysis for the Helmholtz equation.

(b) The Helmholtz equation

Let us next consider the Helmholtz equation

∇2u+ k2u = 0 in Ω . (2.12)
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It can be seen that (2.5) satisfies the Helmholtz equation (2.12) if γ2 = β2π2/16− k2, and

we immediately require that β2 ≥ 16k2/π2. Then on trying to satisfy the homogeneous

form of the Robin boundary condition (2.2) on Γ2 as before, one obtains

α(−1, y) =
βπ

4
,

α(1, y) =
βπ

4
tan

�
π(2β − 1)

4

�
, y ∈ (−a, 0),

α(x ,−a) = γ.

Consequently, if for example we take β to be an odd integer greater or equal than 4k/π

and γ =
p
β2π2/16− k2, then α(1, y) = βπ/4 and we satisfy α ≥ 0 everywhere on Γ2.

The solution is again not unique, because a > 0 cannot be determined.

3. The Method of Fundamental Solutions (MFS)

In the MFS for the Helmholtz (or modified Helmholtz) elliptic equation, we can ap-

proximate the solution of equation (1.1) by a linear combination of fundamental solutions

with respect to source points placed outside the solution domain — viz.

u(X ) =

N∑

j=1

a jG(X ,ξ j) , X ∈ Ω , (3.1)

where the N vectors (ξ j) j=1,N are distinct source points located outside the domain Ω and

G is the fundamental solutions of Helmholtz (or modified Helmholtz) equation (1.1). The

fundamental solutions of the Helmholtz and the modified Helmholtz in two dimensions

are

GH(X , Y ) = H
(1)
0 (kr) (3.2)

and

GMH(X , Y ) = K0(kr) (3.3)

respectively, where r = ‖X − Y ‖, i =
p−1 and H

(1)
0 = J0 + iY0 is the Hankel function of

the first kind of order zero, J0 is the Bessel function of the first kind of order zero, Y0 is the

Bessel function of the second kind of order zero, and K0 is the modified Bessel function of

the second kind of order zero. For simplicity, the constants i/4 and 1/(2π), which do not

appear in (3.2) and (3.3) respectively, have been embedded in the unknown coefficients

(a j) j=1,N in (3.1). These coefficients are real for the modified Helmholtz equation and

complex for the Helmholtz equation. The Bessel functions J0, Y0 and K0 can be computed

using the NAG routines S17AEF, S17ACF and S18ACF, respectively.

Assume for simplicity that Γ1 = {(r,θ)| r = 1, θ ∈ [0,π]} is the upper-half of the unit

circle, and consider the boundary collocation points

X i = (cos(θ̃i), sin(θ̃i)) , i = 1, M + 1 , (3.4)



132 B. Bin-Mohsin and D. Lesnic

uniformly distributed on the known boundary Γ1 where θ̃i = π(i − 1)/M for i = 1, M + 1.

Assume also that the corroded solution domain Ω is star-shaped with respect to the origin,

such that Γ2 can be parametrised by

Γ2 = {(r(θ) cos(θ), r(θ) sin(θ))| θ ∈ (π, 2π), r(θ)> 0} . (3.5)

Let

X i = (ri−M cos(θ̃i), ri−M sin(θ̃i)) , i = M + 2,2M , (3.6)

be boundary collocation points on the unknown boundary Γ2, where ri−M = r(θ̃i) and

θ̃i = π(i− 1)/M for i = M + 2,2M . The source points (ξ j) j=1,N in R2 \Ω are taken to be

ξ j =
�

R cos(θ̂ j),R sin(θ̂ j)
�

, j = 1, N , (3.7)

where R > 1 and θ̂ j = 2π( j − 1)/N for j = 1, N . Typical distributions of the boundary

collocation points (3.4) and (3.6), and of the source points (3.7), are schematically shown

in Fig. 2.

When α is known, the MFS coefficient vector a = (a j) j=1,N and the radii vector r =

(ri)i=2,M characterising the star-shaped unknown boundary Γ2 can be determined by im-

posing the boundary conditions (2.1)-(2.3) in a least-squares sense, which recasts into

minimising the nonlinear objective function

T (a, r) :=

u− f


2

L2(Γ1)
+


∂ u

∂ n
− g


2

L2(Γ1)
+


�
∂ u

∂ n
+αu

�
− h


2

L2(Γ2)

+λ1‖a‖2 +λ2‖r ′‖2 (3.8)

where λ1,λ2 ≥ 0 are regularisation parameters introduced in order to stabilise the numer-

ical solution. The last term in Eq. (3.8) contains a C1-smoothing constraint on the sought

shape Γ2. Introducing the MFS approximation (3.1) into Eq. (3.8) yields

T (a, r) =

M+1∑

i=1

�����

N∑

j=1

a jG(X i ,ξ
j)− f (X i)

�����

2

+

2M+2∑

i=M+2

�����

N∑

j=1

a j

∂ G

∂ n
(X i−M−1,ξ j)− g(X i−M−1)

�����

2

+

3M+1∑

i=2M+3

�����

N∑

j=1

a j

�∂ G

∂ n
(X i−M−1,ξ j) +α(X i−M−1)G(X i−M−1,ξ j)

�
− h(X i−M−1)

�����

2

+λ1

N∑

j=1

|a j|2+λ2

M−1∑

j=2

(r j+1 − r j)
2 . (3.9)

In the real case, for the modified Helmholtz equation (2.6) the minimisation of (3.9) im-

poses 3M + 1 nonlinear equations in the N + M − 1 unknowns (a, r), so for a unique

solution it is necessary that 2M ≥ N − 2. In the complex case, for the Helmholtz equation

(2.12) the minimisation of (3.9) imposes 6M + 2 nonlinear equations in the 2N + M − 1

unknowns (a, r), so for a unique solution it is necessary that 5M ≥ 2N − 3.
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If there is noise in the measured data (2.3), we replace g in (3.9) by

gε(X i) = g(X i) + εi , i = 1, M + 1 , (3.10)

where εi are random variables generated by the NAG routine D05DDF from a Gaussian

normal distribution with zero mean and standard deviation

σ = p×max
Γ1

|g| , (3.11)

where p represents the noise percentage.

In Eq. (3.9), the normal derivatives of the fundamental solution G obtained via (3.2)

and (3.3) are
∂ GH

∂ n
(X ,ξ) = −k

(X − ξ) · n
‖X − ξ‖ H

(1)
1

�
k‖X −ξ‖
�

(3.12)

and
∂ GMH

∂ n
(X ,ξ) = −k

(X − ξ) · n
‖X − ξ‖ K1

�
k‖X − ξ‖
�

. (3.13)

Here H
(1)
1 = J1 + iY1 is the Hankel function of the first kind of order one, J1 is the Bessel

function of the first kind of order one, Y1 is the Bessel function of the second kind of order

one, K1 is the modified Bessel function of second kind of order one, and

n(X ) =





cos(θ)i + sin(θ) j, if X ∈ Γ1,

1p
r2(θ )+r′2(θ )

h
(r ′(θ) sin(θ) + r(θ) cos(θ))i + (−r ′(θ) cos(θ) + r(θ) sin(θ)) j

i
,

if X ∈ Γ2 ,

(3.14)

where i = (1,0) and j = (0,1). The Bessel functions J1, Y1 and K1 can be computed using

the NAG routines S17AFF, S17ADF and S18ADF, respectively. In Eq. (3.14), the derivative

r ′ may be approximated using backward finite differences as

r ′(eθi+M )≈
ri − ri−1

π/M
, i = 2, M , (3.15)

with the convention that r1 = 1.

The minimisation of the objective function (3.9) is accomplished computationally using

the NAG routine E04FCF, which is a comprehensive algorithm for minimising an uncon-

strained sum of squares of nonlinear functions. Furthermore, this routine does not require

the user to supply the gradient of (3.9), as this is calculated internally using finite differ-

ences. If required, the constraints ri > 0 for i = 2, M can be imposed manually during

the iterative procedure by adjustment at each iteration. The minimisation process usually

terminates when either a user-specified tolerance is achieved, or when a user-specified
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maximum number of iterations is reached.

Finally, we observe that the form of the functional (3.8) contains a single measurement

of the Neumann flux g for prescribed Dirichlet boundary data f , via the operational re-

lation (2.3). However, in some cases, one may need to use two measured fluxes g1 and

g2 for two prescribed linearly independent boundary data f1 and f2, via the operational

relation (2.3). This means that we double up the number of equations in (3.8), which now

reads

T (a(1), a(2), r) :=

u1 − f1


2

L2(Γ1)
+

u2 − f2


2

L2(Γ1)
+


∂ u1

∂ n
− g1


2

L2(Γ1)
+


∂ u2

∂ n
− g2


2

L2(Γ1)

+


�∂ u1

∂ n
+αu1

�
− h


2

L2(Γ2)
+


�∂ u2

∂ n
+αu2

�
− h


2

L2(Γ2)

+λ1

�
‖a(1)‖2 + ‖a(2)‖2

�
+λ2‖r ′‖2 , (3.16)

where a(1) and a(2) are the corresponding unknown coefficients in the MFS expansion (3.1)

for approximating the solutions of the inverse problems with the Dirichlet data f1 and f2,

respectively.

4. Numerical Results and Discussion

Numerical results are now presented for R= 2 for Examples 4.1 and 4.2, and for R= 3

for Examples 4.3− 4.5, with M = 14 and N = 28. The use of higher MFS parameters M
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and N did not affect significantly the accuracy of the numerical results, but it may become

prohibitive. Moreover, the initial guess for the vector a is 1.0, and the initial guess for

the unknown part of the boundary Γ2 is taken as the lower-half of the circle located at

the origin with radius 0.5. In all numerical experiments, as required by the NAG routine

E04FCF used, the tolerance X Tol was set to 10−6, and the maximum number of func-

tion evaluations MAX CAL was set to 400(N + M − 1) for the first four examples and to

800(N + M − 1) for the fifth example. In all examples, the corroded boundary Γ2 is un-

known. Also, in the first four examples the Robin coefficient α is known, whilst in the

fifth example α is unknown. In comparison with the numerical MFS investigations con-

cerning sound-soft (Dirichlet boundary condition applies on Γ2) or sound-hard (Neumann

boundary condition applies on Γ2) boundary identification of Ref. [23], the novelty here

is solving different inverse problems to determine an unknown absorbing boundary Γ2 on

which the Robin boundary condition (2.2) applies. In addition, the Robin surface coeffi-

cient α can also be considered unknown — cf. Example 4.5. For the Helmholtz equation

(2.12), the main difficulty in solving either the direct or inverse problem is the case when

k is large. Nevertheless, there are studies (e.g. [8]) that deal with this high frequency case,

but this issue will not be pursued here. Indeed, for simplicity we only illustrate numeri-

cal results for the modified Helmholtz equation (2.6) free of any such difficulty for large

wavenumbers.

Example 4.1. We consider the unit disc domain Ω = {(x , y) ∈ R2| x2 + y2 < r = 1}, with

boundary divided into two parts — viz.

Γ1 = {(x , y) ∈ R2| x = cos(θ); y = sin(θ); θ ∈ [0,π]} (4.1)

and

Γ2 = {(x , y) ∈ R2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ (π, 2π), r(θ) = 1} . (4.2)

We take the Dirichlet data (2.1) on Γ1 given by

u(1,θ) = f (θ) = ecos(θ )+sin(θ ), θ ∈ [0,π] , (4.3)

the Neumann data (2.3) on Γ1 given by

∂ u

∂ n
(1,θ) = g(θ) = (cos(θ) + sin(θ))ecos(θ )+sin(θ ), θ ∈ [0,π] , (4.4)

and the inhomogeneous Robin boundary condition (2.2) on Γ2 given by

∂ u

∂ n
(r(θ),θ) +α(θ)u(r(θ),θ) = h(θ) = (cos(θ) + sin(θ) +α(θ))ecos(θ )+sin(θ ) ,

θ ∈ (π, 2π) , (4.5)

where α(θ) is a given non-negative function.
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In Example 4.1, assuming that α is known the analytical solution for the modified Helmholtz

equation (2.6) for k =
p

2 satisfying (4.3)-(4.5) is given by

u(x , y) = ex+y , (x , y) ∈ Ω , (4.6)

and Γ2 given by expression (4.2).

Example 4.2. We also consider a more complicated geometric shape with boundary di-

vided into two parts — viz. Γ1 is the upper-half of the circle given by expression (4.1), and

Γ2 is the lower-half of a peanut shape parametrised by

Γ2 =

�
(x , y) ∈ R2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ (π, 2π),

r(θ) =

r
cos2(θ) +

1

4
sin2(θ)

�
. (4.7)

The Dirichlet data (2.1) on Γ1 is given by (4.3), the Neumann data (2.3) on Γ1 is given by

(4.4) and the inhomogeneous Robin boundary condition on Γ2 is given by

∂ u

∂ n
(r(θ),θ) +α(θ)u(r(θ),θ) = h(θ) = er(θ )(cos(θ )+sin(θ ))

�
α(θ) + (1,1) · n(θ)

�
,

θ ∈ (π, 2π) , (4.8)

where n is given by the second branch of expression (3.14), r(θ) is given by (4.7) and

r ′(θ) = −3 sin(2θ)/(8r(θ)). Assuming that α is known, the analytical solution for the

modified Helmholtz equation (2.6) for k =
p

2 satisfying (4.3), (4.4) and (4.8) is given by

(4.6) and Γ2 is given by expression (4.7).

(a) Case I (Dirichlet boundary condition)

We first consider the case when the Dirichlet boundary condition applies on Γ2, such that

the first term in equation (2.2) is ignored (∂ u/∂ n = 0 and we take α = 1). Thus we

consider the Dirichlet boundary condition on Γ2 given by

u(1,θ) = h(θ) = ecos(θ )+sin(θ ), θ ∈ (π, 2π) . (4.9)

No noise. We now consider the case when there is no noise (i.e. p = 0) in the input flux

data (4.4). Figs. 3(a) and 4(a) show the objective function (3.9) without regularisation

— i.e. λ1 = λ2 = 0 as a function of the number of iterations, for Examples 4.1 and 4.2

respectively. It can be seen that the objective function decreases rapidly to a very low sta-

tionary level O(10−15), in about 26 and 31 iterations respectively. The corresponding exact

and reconstructed shapes of the boundary Γ2 are presented in Figs. 3(b) and 4(b). From

these figures, it can clearly be seen that the numerically reconstructed shapes are stable

and accurate in comparison with the exact shapes (4.2) and (4.7).

Adding noise. We consider now the case when there is p = {1%,3%,5%} noise in the

input flux data (4.4), added as in (3.10). Although not illustrated, the numerical results
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(b)Figure 3: (a) The objetive funtion and (b) Initial guess, exat and numerially reonstruted shapes ofthe boundary Γ2 for Example 4.1, Case I when there is no noise in the data (4.4) and no regularisation.
with no regularisation imposed in the nonlinear least-squares functional (3.9) were found

to be unstable and highly inaccurate. This is to be expected, since the inverse problem

under investigation is ill-posed and therefore regularisation is needed in order to obtain

stable solutions.

Figs. 5 and 6 show the regularised objective function and the retrieved boundary Γ2,

obtained with the regularisation parameters λ1 = 10−5,λ2 = 10−1 for Example 4.1 and

λ1 = λ2 = 10−2 for Example 4.2. From the computational experiments, it is notable that if

the regularisation parameters λ1 and λ2 are too small then oscillating unstable solutions

are obtained. However, from Figs. 5(b) and 6(b) it is seen that reasonably stable numerical

solutions can be obtained if the regularisation parameters λ1 and λ2 are properly tuned.

In our work, we chose these parameters by trial and error, although one can also try the

L-surface framework proposed by Belge et al. [3]. From these figures, it can also be seen

that the numerical solutions become more accurate as the amount of noise p in the input

data decreases.

(b) Case II (Neumann boundary condition)

We consider a second case when the Neumann boundary condition (α = 0) applies on Γ2,

such that the second term in equation (2.2) is ignored (αu = 0). Thus we consider the

Neumann boundary condition on Γ2 given by

∂ u

∂ n
(1,θ) = h(θ) = (cos(θ) + sin(θ)) ecos(θ )+sin(θ ) , θ ∈ (π, 2π) . (4.10)

The numerical results for Example 4.1 obtained for Case II, illustrated in Figs. 7 and 8, are

similar to those obtained in Figs. 3 and 5 for Case I. We finally report that the accuracy and
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(b)Figure 4: (a) The objetive funtion and (b) Initial guess, exat and numerially reonstruted shapes ofthe boundary Γ2 for Example 4.2, Case I when there is no noise in the data (4.4) and no regularisation.
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(b)Figure 5: (a) The regularised objetive funtion and (b) Initial guess, exat and numerially reonstrutedshapes of the boundary Γ2 for Example 4.1, Case I when there is p = {0, 1%, 3%, 5%} noise in the data
(4.4) and λ1 = 10−5,λ2 = 10−1.
stability numerical results presented in Figs. 3-8 for the Cases I and II are similar to those

obtained in Ref. [23]. However, in that reference a different NAG routine was used and

some computational details are different.
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(b)Figure 6: (a) The regularised objetive funtion and (b) Initial guess, exat and numerially reonstrutedshapes of the boundary Γ2 for Example 4.2, Case I when there is p = {0, 1%, 3%, 5%} noise in the data
(4.4) and λ1 = λ2 = 10−2.
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(b)Figure 7: (a) The objetive funtion and (b) Initial guess, exat and numerially reonstruted shapes ofthe boundary Γ2 for Example 4.1, Case II when there is no noise in the data (4.4) and no regularisation.
In the remainder of this section, the numerical investigation departs from the analysis

of Ref. [23]. For the sake of our preliminary investigation into an ill-posed problem, which

may lack a unique solution (cf. the discussion in Section 2), we consider only the determi-
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(b)Figure 8: (a) The regularised objetive funtion and (b) Initial guess, exat and numerially reonstrutedshapes of the boundary Γ2 for Example 4.1, Case II when there is p = {0, 1%, 3%, 5%} noise in the data
(4.4) and λ1 = 10−3, λ2 = 10−1.
nation of the semicircular boundary (4.2). The retrieval of more complicated shapes, such

as the lower-half of the peanut shape (4.7) under the Robin boundary condition (2.2), is

deferred to a future investigation.

(c) Case III (Robin boundary condition)

The third case involves the Robin boundary condition (4.5) with α = 1 applied on Γ2.

Unlike in Figs. 3 and 7 for the previous Dirichlet and Neumann cases (Cases I and II),

Fig. 9 shows that in the Robin Case III the numerical results appear unstable even for

exact data (p = 0) if no regularisation is imposed on (3.9). Indeed, a slight amount of

regularisation is needed in order to obtain stable solutions and the stable and accurate

numerical results also illustrated in Fig. 9. For noisy data, the numerical results obtained

for Case III in Fig. 10 are similar to those obtained in Fig. 5 for Case I and in Fig. 8 for Case

II.

In the previous two examples we have considered non-homogeneous boundary condi-

tions (4.5) or (4.8) on the unknown corroded boundary Γ2. In the next examples, we con-

sider the more physical homogeneous Robin boundary condition — i.e. h = 0 in Eq. (2.2)

on Γ2.

Example 4.3. The unit disk domain Ω = B(0; 1) is considered as in Example 4.1, and the

boundary is divided into two parts as in (4.1) and (4.2). We take the Dirichlet data (2.1)

on Γ1 given by

u(1,θ) = f (θ) =
p

2eγ sin(θ ) sin

�π
4
(β cos(θ) + β + 1)

�
, θ ∈ [0,π] , (4.11)
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(b)Figure 9: (a) The objetive and regularised objetive funtions and (b) Initial guess, exat and numeri-ally reonstruted shapes of the boundary Γ2 for Example 4.1, Case III when there is no noise in thedata (4.4), and with regularisation λ1 = 0,λ2 = 10−9 and without regularisation λ1 = λ2 = 0.

0 5 10 15
10

−2

10
0

10
2

10
4

Number of iterations

R
e

g
u

la
ri
s
e

d
 o

b
je

c
ti
v
e

 f
u

n
c
ti
o

n

λ
1
=10−3, λ

2
=10−1

 

 

p=0
p=1%
p=3%
p=5%

(a)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

x

y

λ
1
=10−3, λ

2
=10−1

 

 

Exact
Initial guess
Final iteration 9, (p=0)
Final iteration 10, (p=1%)
Final iteration 11, (p=3%)
Final iteration 14, (p=5%)

(b)Figure 10: (a) The regularised objetive funtion and (b) Initial guess, exat and numerially reon-struted shapes of the boundary Γ2 for Example 4.1, Case III when there is p = {0, 1%, 3%, 5%} noise inthe data (4.4) and λ1 = 10−3, λ2 = 10−1.
where γ=
p
β2π2/16+ k2 and the Neumann data (2.3) on Γ1 given by

∂ u

∂ n
(1,θ) =

∂ u

∂ r
(1,θ) = g(θ) =

p
2eγ sin(θ )
�
γ sin(θ) sin

�π
4
(β cos(θ) + β + 1)

�

+
βπ cos(θ)

4
cos

�π
4
(β cos(θ) + β + 1)

��
, θ ∈ [0,π]. (4.12)
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(b)Figure 11: (a) The Dirihlet boundary data (4.11); and (b) the Robin oe�ient (4.14) for β = 1,
k =
p

2, γ=pπ2/16+ 2.
We also take the homogeneous Robin boundary condition (2.2) on Γ2 (i.e. h≡ 0),

∂ u

∂ n
(1,θ) +α(θ)u(1,θ) = 0, θ ∈ (π, 2π) , (4.13)

where α is the positive Robin coefficient given by

α(θ) = −γ sin(θ)− βπ
4

cos(θ) cot

�π
4

�
β cos(θ) + β + 1

��
, θ ∈ (π, 2π) . (4.14)

Graphs of the Dirichlet data (4.11) and the Robin coefficient (4.14) for β = 1, k =
p

2 and

γ =
p
π2/16+ 2 are presented in Figs. 11(a) and 11(b) respectively, showing that they

are positive.

In this example, assuming that α is known and given by expression (4.14), the ana-

lytical solution for the modified Helmholtz equation (2.6) satisfying (4.11)-(4.14) is given

by equation (2.5) and Γ2 is given by expression (4.2). As in Example 4.1, the numeri-

cal results obtained using regularisation with and without noise in the input data (4.12)

illustrated in Figs. 12 and 13 show that the numerical solutions are accurate and stable.

For all the examples considered so far an analytical solution is available, but not in the

next example.

Example 4.4. Here we change the Dirichlet data (4.11) on Γ1 to

u(1,θ) = f (θ) = sin(θ)− sin2(θ) , θ ∈ [0,π] , (4.15)
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(b)Figure 12: (a) The regularised objetive funtion; and (b) Initial guess, exat and numerially reon-struted shapes of the boundary Γ2 for Example 4.3, when there is no noise in the data (4.12) and
λ1 = 0, λ2 = 10−9.
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(b)Figure 13: (a) The regularised objetive funtion; and (b) Initial guess, exat and numerially reon-struted shapes of the boundary Γ2 for Example 4.3, when there is p = {0, 1%, 3%, 5%} noise in the data
(4.12) and λ1 = 10−9,λ2 = 10−1.
but we keep the same homogeneous Robin boundary condition (4.13) with the Robin

coefficient given by (4.14) and β = 1, k =
p

2, γ=
p
π2/16+ 2.
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(b)Figure 14: (a) Distribution of soure (◦) and boundary olloation (•) points; and (b) the numerialsolutions for the normal derivative g(θ ) obtained by solving the diret mixed problem with variousregularisation parameters λ ∈ {0, 10−6, 10−4, 10−2}, for Example 4.4.
Direct Problem

Since in this case no analytical solution is available, the Neumann data (2.3) on Γ1 is simu-

lated numerically by using the MFS to solve the direct mixed problem given by the modified

Helmholtz equation (2.6), the homogeneous Robin boundary condition (4.13) on Γ2, and

the Dirichlet boundary condition (4.15) on Γ1, when Γ2 is known and given by the semi-

circle (4.2). The arrangement of the source and boundary collocation points are shown

in Fig. 14(a). The numerical solutions for the normal derivative g(θ) = ∂ u/∂ n(1,θ) on

Γ1, obtained with R = 2.5 for various regularisation parameters λ ∈ {0,10−6, 10−4, 10−2}
and M = 14, N = 28 are shown in Fig. 14(b). The curve obtained for λ = 10−4 in

Fig. 14(b) is chosen as the most accurate representation of the unavailable exact solu-

tion, because it at least satisfies the continuity of the flux at the end points x = ±1

where the Dirichlet and Robin boundary conditions meet. Indeed, from (4.15) we have

that u(1,0) = u(1,π) = 0, and the homogeneous Robin condition (4.13) then also yields

∂ u/∂ r(1,0) = ∂ u/∂ r(1,π) = 0. Next, this curve corresponding to λ = 10−4 in Fig. 14(b)

is used as the input flux data (2.3) in the inverse problem.

Inverse Problem

Assuming now that Γ2 is unknown, in order to avoid committing an inverse crime the

inverse MFS is applied with a different R than 2.5, say R = 3. The input Neumann data

(2.3) is chosen from the curve λ = 10−4 of Fig. 14(b), the Dirichlet data (2.2) is given by

(4.15), and the homogeneous Robin boundary condition (4.13) on Γ2 is considered.

The numerical results illustrated in Fig. 15, obtained using regularisation with and
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(b)Figure 15: (a) The regularised objetive funtion and (b) Initial guess, exat and numerially reon-struted shapes of the boundary Γ2 for Example 4.4, when there is p = {0, 1%, 3%, 5%} noise in the data
(2.3) and λ1 = 10−8,λ2 = 1.
without noise in the input data, show that the numerical solutions are accurate and stable

even for a large amount of noise (up to p = 20%).

The examples analysed so far considered the inverse problem where the Robin coef-

ficient α was assumed known. The next and final example considers the case when this

coefficient is unknown.

Example 4.5. We assume now that both Γ2 and α are unknown. In order to ensure a

unique solution, we combine the Dirichlet data (4.11) and (4.15) on Γ1 as

u1(1,θ) = f1(θ) =
p

2eγ sin(θ ) sin
�π

4
(β cos(θ) + β + 1)

�
,

u2(1,θ) = f2(θ) = sin(θ)− sin2(θ), θ ∈ [0,π] , (4.16)

with k =
p

2, β = 1, γ =
p
π2/16+ 2. These Dirichlet boundary data are linearly in-

dependent with at least one positive (cf. Fig. 11(a)), and they induce the fluxes g1 and

g2 via the operational relation (2.3). Since the Robin coefficient α is now also unknown

— i.e. the functional T appearing in the left-hand side of (3.16) also depends on α, as

T (a(1), a(2), r ,α) — we add in either the zeroth-order regularisation term λ3‖α‖2 or the

first-order regularisation term λ3‖α
′‖2. We also add noise in the flux g2. The numeri-

cal results obtained for various amounts of noise are shown in Figs. 16-18, where it can

be seen that the numerical solutions are stable with respect to the noise included in the

input data. Moreover, the first-order regularisation in α improves the accuracy of the re-

sults over the zeroth-order regularisation. Finally, we remark that the reconstruction of the
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(b)Figure 16: (a) The regularised objetive funtion; and (b) Initial guess, exat and numerially zeroth-order regularisation (in α) reonstruted shapes of the boundary Γ2 for Example 4.5, when there is
p = {0, 1%, 3%, 5%} noise in the data (2.3) and λ1 = 10−8,λ2 = 2× 10−1, λ3 = 5× 10−5.
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(b)Figure 17: (a) The regularised objetive funtion; and (b) Initial guess, exat and numerially �rst-order regularisation (in α) reonstruted shapes of the boundary Γ2 for Example 4.5, when there is
p = {0, 1%, 3%, 5%} noise in the data (2.3) and λ1 = 10−8,λ2 = 9× 10−1, λ3 = 10−3.
Robin coefficient α proves more difficult than the reconstruction of the corroded boundary

Γ2.
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Figure 18: The numerial zeroth-order (-◦-), �rst-order (-•-) and exat (��) solutions for the Robinoe�ient α for Example 4.5, when there is no noise in the data (2.3).
5. Conclusions

Two-dimensional Helmholtz-type inverse geometric problems, which involve determin-

ing an unknown portion of the boundary Γ2 and its Robin coefficient from one or two

linearly independent pairs of Cauchy data on the known boundary Γ1 = ∂Ω \ Γ2, have

been investigated using the MFS. More precisely, a nonlinear regularized MFS is used, in

order to obtain stable and accurate numerical results for the ill-posed inverse problem in

question. Several examples have been investigated, showing that the numerical results

are satisfactory reconstructions for the corroded boundary and its Robin coefficient, with

reasonable stability against noisy data.

Future work will consider extending the numerical method developed in this study

to solve for the shape and impedance in inverse scattering, governed by the Helmholtz

equation in exterior unbounded domains [9,16,30].
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