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Abstract. Minimisation of the total variation regularisation for linear operators under

ℓ1-constraints applied to image restoration is considered, and relationships between the

Lagrange multiplier for a constrained model and the regularisation parameter in an un-

constrained model are established. A constrained ℓ1-problem reformulated as a sepa-

rable convex problem is solved by the alternating direction method of multipliers that

includes two sequences, converging to a restored image and the “optimal" regularisation

parameter. This allows blurry images to be recovered, with a simultaneous estimation

of the regularisation parameter. The noise level parameter is estimated, and numerical

experiments illustrate the efficiency of the new approach.
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1. Introduction

The restoration of images is a challenging problem, and here images x̄ ∈ Rn corrupted

by impulse noise and blurring effects are discussed. Blurring issues are almost unavoidable

in contemporary imaging systems, and corruption by impulse noise emerges from bit errors

in transmission, wrong pixels and faulty memory locations in hardware [1, 6, 12, 23]. In

the model, an observed image f is represented by the equation

f = N (K x̄) , (1.1)

where N and K denote the impulse noise and blurring effect, respectively. In applications,

there are two main impulse noise sources — viz. salt-and-pepper and random-valued im-

pulse noise [9]. Image restoration problems are usually ill conditioned and the direct solu-

tion of the system (1.1) rarely produces satisfactory results. To address this problem, one

can use a regularisation procedure — e.g. the total variational (TV) regularisation [35], a
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wavelet transform [8], or a nonlocal regularisation [21]. The corresponding unconstrained

model for the image deblurring can be written in the form

min
x∈Rn
{‖Dx‖+λΦfit(x , f )} , (1.2)

where D is a linear operator and Φfit(x , f ) is the data-fitting term. In particular, if D is the

discrete gradient operator ∇, then this model (1.2) represents the TV regularisation where

the parameter λ balances the data fidelity with the regularity. The constrained counterpart

of the model (1.2) is

minx∈Rn ‖Dx‖
s.t. Φfit(x , f ) ≤ τ

(1.3)

with τ representing the noise level, and constrained models have been also used in image

recovery [32, 41, 45]. For the impulse noise, one sets Φfit(x , f ) = ‖K x − f ‖1 in either of

(1.2) or (1.3), which are respectively called unconstrained and constrained ℓ1-models.

Numerical methods have been used to solve the unconstrained model (1.2) under

the TV regularisation [17, 40, 45], a wavelet regulariser [14], and a nonlocal regularisa-

tion [15]. The associated minimiser x̂ = x̂(λ), and hence the recovered image, depends

on the choice of λ. Usually, the parameter λ is determined manually by a trial-and-error

method, but several techniques have been developed to detect the best parameter λ auto-

matically — e.g. the L-curve criterion [24], the generalised cross-validation (GCV) [19,20],

the normalised cumulative or residual periodogram approach [25,36], variational Bayes ap-

proaches [2, 3, 34], and Morozov’s discrepancy principle (MDP) [31]. On the other hand,

constrained ℓ1-models have only recently been considered, and if a priori information about

noise is available then the constrained model is more attractive [41,47].

To solve unconstrained ℓ1-models, various algorithms have been developed recently.

In particular, a fast TV deblurring algorithm (FTVd) combines the variable splitting and

quadratic penalised technique [40]. Each subproblem can be solved by either shrinkage

or the fast Fourier transform (FFT), so the FTVd method performs much better than many

other methods [17, 42]. An incremental version of the FTVd approach involving the al-

ternating direction method of multipliers (ADMM) can be used to solve an unconstrained

TV-ℓ1-model. Wu et al. [44] developed the inexact augmented Lagrangian method equiva-

lent to the ADMM. All of these approaches assume that a suitable regularisation parameter

in the unconstrained model is known — and it can be determined manually by a trial-and-

error method, but this procedure is often very slow, so one may prefer to restore images

corrupted by impulse noise via the constrained TV-ℓ1-model. Weiss et al. [45] used Nes-

terov’s first-order scheme to do so, and this approach was improved by Ng et al. [33], but

it requires inner iterations to describe projections onto an ℓ1-ball.

The parameter λ in the unconstrained model (1.2) can also be determined by some clas-

sical methods — e.g. if the regularisation term has a quadratic form the GCV evaluation

formula may be employed. However, this formula cannot be used directly in the seminorm-

based model (1.2) due to the non-linearity of the seminorms ‖D · ‖2. The regularisation

parameter can be estimated by quadratic approximation of the seminorm term [30], or by
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using an extra quadratic penalty term instead of the non-smooth term, but the resulting

model involves an additional parameter, under-smoothes the solution and can lead to mul-

tiple minimisers for the GCV function [28]; and the L-curve method [24, 29] for finding

the regularisation parameter is expensive and the location of the L-curves is difficult. An-

other popular method to evaluate the regularisation parameter is the MDP, which selects

the optimal regularisation parameter λ by matching the norm of the residual (the violation

of the data-fitting term) to an upper bound. This means that the solution x(λ̂) satisfies the

discrepancy equation

Φfit( x̂(λ), f ) = τ . (1.4)

Recall that x̂(λ) is the minimiser of (1.2), and note that parameter-selection methods for

Gaussian noise [47] and Poisson data [8, 41] based on the MDP allow the discrepancy

equation to be solved iteratively. These approaches cannot be used for the evaluation of

the regularisation parameter in unconstrained ℓ1-models, however.

The goal of this work is to provide a fast scheme for simultaneous solution of constrained

ℓ1-models, and to propose a method for the evaluation of the regularisation parameter in

the unconstrained model (1.2). The TV regulariser ‖∇x‖ in the model (1.2) is isotropic if

the l2-norm is used, and anisotropic for the l1-norm. Our approach is applicable in both

isotropic and anisotropic TV regulariser. Here the TV regulariser for the models (1.2) and

(1.3) in the isotropic case ‖ · ‖ := ‖ · ‖2 is considered, for the treatment of the anisotropic

case is similar. Moreover, our approach also works for tight frames and nonlocal regu-

larisers, and allows for more general data-fitting terms — e.g. for the ℓ∞-norm, suitable

for uniform noise [46], and the norm ‖SK x − f ‖1 where S is a mask matrix used in im-

age inpainting. Let us reformulate (1.3) as a separable convex problem, and apply the

alternating direction method of multiplier method (ADMM) [18,22]. This differs from re-

formulations in Refs. [33, 45], and provides a closed-form solution to each subproblem,

simultaneously introducing a scalar sequence converging to the “optimal" regularisation

parameter λ in (1.2). The recovered quality of the unconstrained model with such an “op-

timal" λ is comparable to the constrained model. Moreover, the ADMM can be replaced

by other first-order algorithms. Theoretical analysis based on Lagrange dual theory shows

the interconnection between the constrained and unconstrained models, and the high effi-

ciency of our approach. A new method to evaluate the parameter τ in the model (1.3) is

now proposed.

Throughout, the following notation is used. Let x = (x1, x2, · · · , xn)
⊤ be extended by

periodic boundary conditions. Only square images such that n= m2, m ∈ N are considered.

The operator ∇i x ∈ R
2 represents the first-order finite difference of x at the pixel i in each

of the horizontal and vertical directions — i.e.

∇i x := ((∇(1)x)i, (∇
(2)x)i)

⊤ ∈ R2, i = 1, · · · , n ,
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where

(∇(1)x)i :=

�

x i+m− x i if 1≤ i ≤ m(m− 1) ,

xmod(i,m)− x i otherwise ;
(1.5)

(∇(2)x)i :=

�

x i+1 − x i if mod(i, m) 6= 0 ,

x i−m+1− x i otherwise .
(1.6)

The discrete gradient operators ∇(1) and ∇(2) are n × n matrices, where the i-th rows of

∇(1) and∇(2) respectively correspond to the first and second rows of∇i. The discrete total

variation seminorm is ‖∇x‖=
∑n

i=1 ‖∇i x‖2, where the quantity ‖∇i x‖2 measures the total

variation of x at the pixel i. The resulting total variation is called isotropic. (On the other

hand, the corresponding total variation is referred to as anisotropic when the l1-norm is

used, but here the symbol ‖ · ‖ is reserved for the l2-norm.) We also let ∇ ≡ (∇(1);∇(2)) ∈
R2n×n be the global first-order finite-difference operator such that ∇⊤∇ =

∑n

i=1
∇⊤

i
∇i,

and denote the range and null spaces of an operator A by R(A) and N (A), respectively. A

diagonal matrix S is called a mask matrix if its diagonal entries are 1 or 0, where the values

1 and 0 correspond to sampled and missing pixels, respectively. Given a vector x and an

index set Ω ⊆ {1, · · · , n}, the symbol ΩC denotes the complement of Ω in {1, · · · , n}, xΩ

denotes the entries of the vector x restricted on the set Ω, and
◦
D the relative interior of the

set D [4].

In Section 2, MDP-based approaches for parameter selection are discussed, but shown to

be inapplicable in ℓ1-models. Section 3 establishes relationships between the constrained

and unconstrained models. In Section 4, an ADMM-based approach is used to solve the

constrained ℓ1-type model (1.3), and a sequence of the Lagrange multipliers is shown to

converge to the “optimal" regularisation parameter. The numerical results presented in Sec-

tion 6 confirm the validity of the theoretical analysis. Concluding remarks are in Section 7,

and the Appendix contains the solution of an image inpainting problem.

2. Parameter Selection by MDP-based methods

In order to find the parameter λ by an MDP-based method, one has to find the solution of

the discrepancy equation (1.4). Wen & Chan [47] developed a proximal point method using

a representation of the TV term in the dual formulation, and similar MDP-based approaches

for Poisson noise and multiplicative Gamma noise have been used [8,41] where first-order

primal-dual algorithms to solve the constrained model have been considered. One of the

least squares constrained problems studied is

min
x∈Rn

1

2
‖x − q‖2 subject to Φfit(x , f )≤ τ ,

where q ∈ Rn is a given vector. The corresponding unconstrained problem

min
x∈Rn

§

1

2
‖x − q‖2 +λΦfit(x , f )

ª

(2.1)
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has an analytical solution for the Gaussian noise data-fitting term Φfit(x , f ) = ‖K x − f ‖2,

and for the Kullback-Leibler divergence distance

Φfit(x , f ) =

�

〈1, f log( f )− f log(K x) + K x − f 〉 if (K x) > 0 ,

∞ otherwise ,

in the case of Poisson or multiplicative Gamma noise. If x̂(q,λ) is the corresponding solu-

tion of (2.1), then the discrepancy equation

Φfit

�

x̂(q,λ), f
�

= τ

has a unique solution since the function Φfit( x̂(q,λ), f ) is strictly monotone with respect

to λ. Thus such methods produce two sequences x̂(q,λ) and λ, where the first converges

to the solution of the constrained model and the second to the regularisation parameter of

the unconstrained model. It is notable that the applicability of the above approach depends

on both the exact analytical solution of the problem (2.1) and the strict monotonicity of

the function Φfit( x̂(q,λ), f )— and these two conditions are satisfied for Gaussian, Poisson

and multiplicative Gamma noise. For unconstrained ℓ1-models, the first condition can be

satisfied by replacing the term K x with a new variable such that the problem (2.1) still

has a closed-form solution [8, 41]. On the other hand, the function Φfit( x̂(q,λ), f ) is not

strict monotone with respect to λ and the discrepancy equation can have multiple solutions.

Thus these approaches in Refs. [8, 41, 47] are not applicable to unconstrained ℓ1-models,

and one has to find another way to find a suitable parameter λ.

3. Unconstrained and Constrained Convex Problems

For a convex function F : Rn→ R and a proper convex lower semi-continuous function

G : Rn→ R∪ {+∞}, let us consider the minimisation problems

min
x∈Rn

�

G(x) +λF(x)
	

, λ > 0 , (3.1)

min
x∈Rn

G(x) subject to F(x) ≤ τ . (3.2)

The Lagrange function of the constrained problem (3.2) is defined as

L(x , p) = G(x) + p
�

F(x)−τ
�

, (3.3)

where p ≥ 0 is the Lagrange multiplier. Recall ( x̂ , p̂) ∈ Rn ×R+ (R+ := {x ∈ R : x ≥ 0}) is

a saddle point of the Lagrangian function (3.3) if and only if

L( x̂ , p) ≤ L( x̂ , p̂)≤ L(x , p̂) , (3.4)

for all p ≥ 0 and for all x ∈ Rn. If the function (3.3) has a saddle point ( x̂ , p̂), then x̂

is a solution of the problem (3.2). To obtain the reverse conclusion, let us recall Slater’s
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constraint qualification (SCQ):









If F(x) is a nonlinear function,

then there is x0 ∈ dom(G)
⋂

dom(F)
⋂ ◦

D where D = {x | F(x) ≤ τ};

If F(x) is a linear function, then there is x0 ∈ dom(G)
⋂

dom(F)
⋂

D .

(3.5)

Consequently, if the problem (3.2) has a solution x̂ and the SCQ is fulfilled, then ( x̂ , p̂) is a

saddle point of (3.3) for some p̂ ≥ 0.

The following theorem shows the relationship between constrained and unconstrained

problems.

Theorem 3.1. Assume that F : Rn→ R is convex and G : Rn→ R∪{+∞} is proper, convex,

and lower semi-continuous. If the minima

τL := min
x∈Rn

F(x) and τU := min
x∈arg min

x∈Rn
G(x)

F(x)

exist, then τL < τU ⇔ argminx∈Rn F(x)∩ argminx∈Rn G(x) = ; .

Let τL < τ < τU . (3.6)

i) If x̂ is a solution of (3.2), then F( x̂) = τ .

ii) Assume that the SCQ (3.5) is satisfied. If x̂ is a solution of (3.2) and ( x̂ , p̂) is a saddle

point of the Lagrangian (3.4), then p̂ > 0 . Moreover, x̂ is a solution of (3.1) with λ= p̂

— i.e.

x̂ ∈ argmin
x∈Rn

�

G(x) + p̂F(x)
	

.

Proof. It follows from the definition of τL and τU that τL ≤ τU . Moreover,

τL = τU ⇔ arg min
x∈Rn

F(x) ∩ arg min
x∈Rn

G(x) 6= ; , hence τL < τU .

i) Let τL < τ < τU , to proceed to show that any solution x̂ of (3.2) satisfies the equation

F(x) = τ. First, it is notable that x̂ is not a minimiser of F(x) because τ > τL. Assume

that x̂ is a minimiser of G(x). Then

F( x̂)≤ τ < τU = min
x∈arg min G(x)

F(x) ≤ F( x̂) ,

which is a contradiction. Finally, the assumption F( x̂)< τ implies the false conclusion that

x̂ is a minimiser of G(x), hence our assumption is wrong and F( x̂) = τ.

ii) Let x̂ be a solution of (3.2) and ( x̂ , p̂) be a saddle point of the Lagrangian. Assuming

that p̂ = 0, one obtains

x̂ ∈ arg min
x∈Rn

L(x , p̂) = arg min
x∈Rn

G(x) ,
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so that x̂ is a minimiser of G(x) and this contradicts the condition τ < τU . Hence, p̂ > 0.

Finally, from the saddle point definition one has

x̂ ∈ arg min
x∈Rn

L(x , p̂) = arg min
x∈Rn

�

G(x) + p̂(F(x)−τ)
	

= arg min
x∈Rn

�

G(x) + p̂F(x)
	

,

so x̂ is a solution of (3.1), which completes the proof.

Let us now consider the models

min
x∈Rn

�

‖Dx‖+λ‖K x − f ‖1
	

, λ > 0 , (3.7)

min
x∈Rn
‖Dx‖ subject to ‖K x − f ‖1 ≤ τ , τ > 0 , (3.8)

where K ∈ Rs,n, D ∈ Rt,n, f ∈ Rs and ‖ · ‖ is a norm on Rs. Let us also assume that

N (K)∩N (D) = {0} . (3.9)

The function ‖K x− f ‖1 is coercive on any nontrivial subspace Y ofRn withN (K)∩Y = {0},
hence the minima

τL := min
x∈Rn
‖K x − f ‖1, τU := min

x∈N (D)
‖K x − f ‖1 (3.10)

exist. Recalling that the zero space of the operator D := ∇ is N (∇) = {α1n : α ∈ R} and

the blur operator K usually possesses the property K1n = 1n, one has

τU :=min
α∈R
‖α1n − f ‖1 ,

which is just the median of f — cf. Ref. [37]. Let us now assume that τL < τU . The

following theorem provides solvability conditions for the models (3.7) and (3.8).

Theorem 3.2. If N (K)∩N (D) = {0}, then:

i) the problem (3.7) has a minimiser ;

ii) and if in addition τ ≥ τL, the problem (3.8) has a minimiser.

Proof. Since all norms on Rn are equivalent, the theorem is valid for any norm used in

the data and regularity terms. The proof follows standard arguments.

i) It suffices to show that the objective function E(x) := ‖Dx‖+λ‖K x − f ‖1 is coercive —

i.e. that E(x) → +∞ as ‖x‖ → +∞. Assume this is not true. Then there is a sequence

{x k} ∈ Rn such that limk→∞ ‖x
k‖=∞ but

‖Dx k‖+λ‖K x k − f ‖1 ≤ C ,

and consequently

‖Dx k‖ ≤ C , ‖K x k − f ‖1 ≤ C , (3.11)

for any k ∈ N. Let N (D) ⊕R(D⊤) be the orthogonal decomposition of Rn and let x k =

x k
0
+ x k

1
be the corresponding representation of an element x k. The operator D considered
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on the space R(D⊤) is injective. Hence for the element Dx k = yk one has x k
1 = D† yk,

where D† is a Moore-Penrose inverse of D [5]; and using (3.11) one obtains

‖x k
1‖ = ‖x

k − x k
0‖= ‖D

† yk‖ ≤ ‖D†‖‖yk‖ = ‖D†‖‖Dx k‖ ≤ C2 . (3.12)

Moreover, the triangle inequality and (3.11) imply that

‖K x k
0‖1 ≤


K(x k − x k
0)




1
+ ‖ f ‖1 + ‖K x k − f ‖1

≤ C3‖x
k − x k

0‖+ ‖ f ‖1 + ‖K x k − f ‖1 ≤ C4 . (3.13)

Let us assume there is a subsequence x
k j

0
of x k

0
such that ‖x

k j

0
‖ → ∞ as j →∞. Since

N (K) ∩ N (D) = {0}, the operator K is injective on N (D) such that the norms ‖K x
k j

0
‖1

tend to∞, which contradicts the inequality (3.13). Thus ‖x k
0‖ ≤ C5 for all k — and from

(3.12) the sequence {x k} is bounded, contrary to our assumption.

ii) Since τ ≥ τL, the set

X :=
�

x ∈ Rn : ‖K x − f ‖1 ≤ τ
	

is nonempty. Moreover, it is closed and convex. The directions of the recession of X and the

objective function in (3.8) are respectively N (K) and N (D). Since N (K) ∩N (D) = {0},
it follows from Proposition 2.3.2 in Ref. [4] that the solution set of (3.8) is nonempty and

compact.

Corollary 3.1. If N (K) ∩N (D) = {0} and τL < τ < τU , the problem (3.8) has a positive

Lagrange multiplier.

The proof of this result follows from the fact that the Slater condition for the problem (3.8)

is fulfilled if τ≥ τL.

4. ADMM Approach to Constrained ℓ1-Models

In this section, the constrained problem (3.8) is solved with the simultaneous evaluation

of the regularisation parameter of the unconstrained model (3.7). More precisely, consider

the model (3.8) with the TV regularisation — i.e. when ‖Dx‖ =
∑

i ‖∇i x‖ and the blur

operator K ∈ Rn×n. The resulting models (3.7) and (3.8) are called unconstrained and

constrained TV-ℓ1-models, respectively. In passing, it is notable that our approach is also

applicable to other regularisations.

The choice of the parameter τ in the constrained model (3.8) satisfies the condition

(3.6). From Theorem 3.1(i), the constraint in (3.8) is tight. Assuming that the parameter

τ satisfies the condition (3.6), one can rewrite the constrained TV-ℓ1-model as

min
x ,zi

n
∑

i=1

‖zi‖

s.t. ∇i x = zi : µi

‖K x − f ‖1 = τ : κ (4.1)
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where zi ∈ R
2 is an auxiliary vector, and µi ∈ R

2 and κ ∈ R are the Lagrange multipliers of

the first and second equalities in the model (4.1).

Moreover, since the equation

‖K x − f ‖1 = τ

can be rewritten as

−y ≤ K x − f ≤ y , e⊤ y = τ ,

where e = (1,1, · · · , 1) ∈ Rn, the model (4.1) is equivalent to the minimisation problem

min
x ,y,zi ,w1,w2

n
∑

i=1

‖zi‖

s.t. ∇i x = zi : µi

K x − f − y +w1 = 0 : ν

K x − f + y −w2 = 0 : δ

e⊤ y = τ : κ

w1, w2 ≥ 0 (4.2)

with the Lagrange multipliers µi ∈ R
2, ν ∈ Rn, δ ∈ Rn and κ ∈ R. Similar to the definitions

of (∇(1)x)i and (∇(2)x)i in Eqs. (1.5) and (1.6), consider a vector

z :=

�

z(1)

z(2)

�

∈ R2n2

, zi :=

�

(z(1))i
(z(2))i

�

∈ R2, i = 1, · · · , n2 .

Then the augmented Lagrangian function of the problem (4.2) is

LA (x , y, z, w1, w2;µ,ν,δ,κ)

=

n
∑

i=1

‖zi‖+ 〈ν, K x − y − f +w1〉+
β1

2
‖K x − y − f +w1‖

2

+ 〈δ, K x + y − f −w2〉+
β1

2
‖K x + y − f −w2‖

2 + 〈κ, e⊤ y −τ〉

+
β2

2
‖e⊤ y −τ‖2 +

n
∑

i=1

〈µi,∇i x − zi〉+
β3

2

n
∑

i=1

‖∇i x − zi‖
2 ,

where β1, β2, β3 > 0. Using the ADMM described in Refs. [18, 22] starting at x = x k,
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y = yk, µ = µk, ν= νk, δ = δk and κ = κk, one arrives at the following iterative scheme:





wk+1
1

wk+1
2

zk+1



 ← arg min
w1∈R

n
+,w2∈R

n
+,z

LA (x
k, yk, z, w1, w2;µk,νk,δk,κk) , (4.3)

�

x k+1

yk+1

�

← arg min
x ,y
LA (x , y, zk+1, wk+1

1 , wk+1
2 ;µk,νk,δk,κk) , (4.4)









µk+1
i

νk+1

δk+1

κk+1








←









µk
i
+ β3(∇i x

k+1− zk+1
i
)

νk + β1(K x k+1− f − yk+1 +wk+1
1
)

δk + β1(K x k+1− f + yk+1 −wk+1
2
)

κk + β2(e
⊤ yk+1 −τ)








. (4.5)

This method converges for any positive numbers β1,β2,β3 [7,27].

Now let us split the minimisation procedure (4.3) into three independent subproblems

with respect to w1, w2, and z. The algorithms for w1 and w2 are obtained by projecting the

corresponding terms on the space Rn
+ — viz.

wk+1
1
=PRn

+

�

yk + f −
νk

β1

− K x k

�

, (4.6)

wk+1
2 =PRn

+

�

yk − f +
δk

β1

+ K x k

�

. (4.7)

The third subproblem is equivalent to n two-dimensional problems of the form

min
zi∈R2

¨

‖zi‖+
β3

2








zi −
�

∇i x
k +

1

β3

(µk)i

�








2
«

, i = 1,2, · · · , n ,

and it has the analytical solution

zk+1
i =max

�






∇i x

k +
1

β3

(µk)i








−

1

β3

, 0

� ∇i x
k + 1

β3
(µk)i

‖∇i x
k + 1

β3
(µk)i‖

, i = 1,2, · · · , n , (4.8)

presented in Refs. [39, 43]. The computational cost in solving (4.8) grows linearly with

respect to n.

The minimisation problem (4.4) can also be simplified by splitting it into two indepen-

dent subproblems, one with respect to x and another with respect to y. The x subproblem

is just a least squares problem with the normal equation

�

∇⊤∇+2
β1

β3

K⊤K

�

x k+1=∇⊤
�

zk+1−
µk

β3

�

+
β1

β3

K⊤
�

2 f −wk+1
1
+wk+1

2
−
νk + δk

β1

�

. (4.9)

If the condition (3.9) holds, the coefficient matrix in Eq. (4.9) is nonsingular. Moreover,

for boundary conditions periodic in x , the matrices ∇⊤∇ and K⊤K are block circulant
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[10, 23], so they are diagonalisable via the two-dimensional discrete Fourier transform

(FFT) at O(n log n) cost. For a symmetric blur and Neumann boundary conditions, the

coefficient matrix can be diagonalised by the discrete cosine transform (DCT) at the same

cost — cf. Ref. [32]. The y subproblem is likewise a least squares problem with the normal

equation

�

2I +
β2

β1

ee⊤
�

yk+1 =
β2

β1

τe+
�

wk+1
1 +wk+1

2

�

+
νk −δk − κke

β1

. (4.10)

According to the Sherman-Morrison-Woodburg theorem,

�

2I +
β2

β1

ee⊤
�−1

=
1

2
I −

β2

β1

4+ 2
β2

β1
· n

ee⊤,

and the cost of solving of the y-subproblem is O(n). Finally, the update of (4.5) for µi,

ν, δ, and κ is straightforward and requires O(n) operations. Each subproblem preserves

a closed-form solution, the corresponding regularisation parameter can be obtained as the

limit of the sequence κk, and the per-iteration cost for the scheme (4.3)-(4.5) dominated

by two FFT or two DCT operations is O(n log n).

Algorithm 4.1 ADMM approach for the constrained TV-ℓ1-model (4.1).

Input f , K, τ > 0, β1, β2, β3 > 0, and µ0, ν0, δ0, κ0. Initialise x = f , y = f and µ = µ0,

ν = ν0, δ = δ0, and κ = κ0.

Output x̂, κ̂.

While “a stopping criterion is not satisfied”, Do

1) Compute wk+1
1

according to (4.6).

2) Compute wk+1
2

according to (4.7).

3) Compute zk+1 according to (4.8).

4) Compute x k+1 by solving (4.9).

5) Compute yk+1 by solving (4.10).

6) Update µk+1, νk+1, δk+1, and κk+1 via (4.5).

End Do

This algorithm is just an application of the ADMM in nonsmooth settings with different

scaling parameters. Mota et al. [27] established the global convergence of the method when

the scaling parameters are equal to each other, but their proof can readily be extended to

different scalings to produce the following theorem.

Theorem 4.1. Assume that f ∈ Rn, the matrices ∇ ∈ R2n×n, K ∈ Rn×n satisfy the con-

dition (3.9), and µL and µU are defined by (3.10). If µL < τ < µU , then the sequence

{(x k, yk, zk, wk
1, wk

2; µk,νk,δk,κk)} generated by Algorithm 4.1 converges to ( x̂ , ŷ , ẑ, ŵ1, ŵ2;

µ̂, ν̂, δ̂, κ̂) , where x̂ is a solution of the problem (3.8). Moreover, x̂ is also a solution of the

problem (3.7) with λ = κ̂.
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Remark 4.1. The equations in (4.2) can be written as
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Under the assumption (3.9), the coefficient matrices in (4.11) have full column rank,

and all the corresponding constraints are polyhedral sets, hence the constrained model

(4.2) is satisfied under the conditions of Theorem 1 in Ref. [27].

5. Finding the Parameter τ

When using the constrained model (3.8) for the image recovery, one has to evaluate

the parameter τ, which can be done as follows:

• apply a filter [16, 26] to locate the set ΩC with pixel values corrupted by impulsive

noise;

• obtain the estimate û for K x̄ by solving the model

min
u
‖∇u‖

s.t. uΩ = fΩ ; (5.1)

• compute the estimate for τ from the formula

τ := ‖û− f ‖1 . (5.2)

The main idea in this scheme is to use the solution of the model (5.1) as a replacement for

K x̄ , in order to estimate τ.

6. Numerical Results

Several constrained TV-ℓ1-problems were explored numerically, for two different data-

fidelity terms — viz. Φfit = ‖K x − f ‖1 and Φfit = ‖S · K x − f ‖1. The code is written in

MATLAB 7.12 (R2011a), and all the numerical experiments were conducted on a ThinkPad

notebook with Intel Core i5-2140M CPU, a 2.3-GHz processor, and 4 GB of memory. The

quality of the restoration was evaluated by considering the signal-to-noise ratio (SNR),

measured in decibels (dB) defined by

SNR(x) ¬ 10 ∗ log10

‖ x̄ − x̃‖2

‖ x̄ − x‖2
,

where x̄ denotes the original image and x̃ the mean intensity value of x̄ . The recovered

image quality was measured by the mean-square error (MSE). In all of the calculations, the

algorithms were terminated if

Res < 5× 10−3 . (6.1)
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Figure 1: (a) Cameraman.tif, 256× 256; (b) Lena.jpg, 512× 512.

For the Algorithm 4.1, the residual Res is defined as

Res(1) :=max{rx ,z , rx ,y,w1
, rx ,y,w2

, ry} ,

rx ,z :=∇x − z ,

rx ,y,w1
:= K x − f − y +w1 ,

rx ,y,w2
:= K x − f + y −w2 ,

ry := e⊤ y −τ .

The FTVd solves the unconstrained TV-ℓ1-model minx

∑

i ‖∇i x‖+µ‖K x− f ‖1 rewritten as

min
x ,zi ,y

∑

i

‖zi‖+µ‖y‖1

s.t. ∇i x = zi

K x − f = y

by the ADMM, so the residual of the FTVd is defined by Res(2) :=max{rx ,z , rx ,y} and

rx ,z :=∇x − z , rx ,y := K x − f − y .

In the simulations, both salt-and-pepper and random-valued impulse noise were considered,

in seeking to establish the following:

• the scheme of Section 5 produces good estimates of τ in constrained models;

• Theorem 3.1(ii) is valid for TV-ℓ1-models — i.e. the quality of the images restored

by unconstrained models, with λ determined in Theorem 4.1, is comparable with

constrained models; and

• the regularisation parameter is on par with one determined by the trial-and-error

method.

The tested images are shown in Fig. 1.
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6.1. Deblurring from impulsive noise

The first focus was on models with the data-fidelity term Φfit = ‖K x − f ‖1. Three sets

of tests were used to verify the above three considerations to: (1) show the efficiency of

the method (5.1)-(5.2) in the selection of a suitable parameter τ; 2) compare the SNR of

the images restored by the constrained and unconstrained models and (3) compare the

“optimal" regularisation parameter of the unconstrained model determined by the trial-

and-error method and Algorithm 4.1.

The vector f was generated in three steps: (1) all pixel values were scaled to the interval

[0,1]; (2) the test images were blurred with the blurring (I)–fspeial (`average',9)

and (II)–fspeial (`gaussian',[9 9℄,3); and (3) the resulting images were cor-

rupted by impulse noise at different levels. All algorithms used such blurred images initially.

The first set of tests dealt with blurred and noisy images degraded under periodic boundary

conditions, with the impulse noise at the level 30%, 40%, 50% or 60% added. For the salt-

and-pepper noise, the noise candidate set ΩC was detected by the AMF algorithm [26]. The

maximum window size in the AMF algorithm was set to 19, as suggested in Ref. [26]. For

the random-value impulsive noise, the set ΩC was identified by the statistical method with

a default setting [16]. The model (5.1) with the obtained Ω was then solved by applying

the ADMM, reformulated as follows:

min
u,z,y
‖y‖

s.t. ∇u= y

u = z

zΩ = fΩ. (6.2)

The penalty parameters β1 and β2 in the ADMM method related to the first and second

equations in the model (6.2) were set to 10 and 20, respectively. The solution û of (6.2)

was used to calculate τ2 by the formula (5.2). Table 1 shows τ1 := ‖K x̄ − f ‖1, τ2 and the

relative error |τ1−τ2|/τ1 for each case considered. The computed value τ2 is comparable

with the true value τ1 used in the constrained models.

The Algorithm 4.1 and the FTVd of Ref. [40] were used to solve the constrained and

unconstrained TV-ℓ1-models, respectively. In the second set of tests, blurred and noisy

images were degraded under periodic boundary conditions, and impulse noise at the level

30%, 40%, 50% and 60% was added. The parameters β1 = 200, β2 = 10, and β3 = 200

in Algorithm 4.1 produce satisfactory results for all tests. In the FTVd, the same penalty

parameters were chosen as in Algorithm 4.1 — i.e. the respective penalty parameters for

the equations ∇x − z = 0 and K x − f − y = 0 were β1 = 200 and β3 = 200. Under

Algorithm 4.1, the restored image and the last iteration for κ̂were obtained simultaneously,

and then the FTVd† with the derived parameter κ̂ and the stopping criterion (6.1), to find

the solution of the TV-ℓ1-model (3.7). The values of the parameter κ̂ and SNRs for the

constrained and unconstrained models are presented in Table 2. The recovered MSEs are

†http://www.caam.rice.edu/ optimization/L1/ftvd/v4.0/
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Table 1: The values of τ1 and τ2.

Tested image Blur noise level τ1 := ‖K x̄ − f ‖1 τ2 via (5.1)-(5.2) |τ1 − τ2|/τ1

salt-and-pepper impulse noise

a I 30% 9.8196e+003 9.8196e+003 2.3464e-006

40% 1.3087e+004 1.3086e+004 7.3590e-005

50% 1.6301e+004 1.6302e+004 9.1184e-005

60% 1.9643e+004 1.9642e+004 4.9575e-005

II 30% 9.8209e+003 9.8206e+003 2.5360e-005

40% 1.3097e+004 1.3096e+004 3.9853e-005

50% 1.6455e+004 1.6454e+004 3.9977e-005

60% 1.9515e+004 1.9515e+004 5.1470e-006

random value impulse noise

a I 30% 9.9073e+003 9.9063e+003 1.0360e-004

40% 1.3155e+004 1.3156e+004 9.6410e-005

50% 1.6382e+004 1.6383e+004 7.2474e-005

60% 1.9691e+004 1.9687e+004 1.9382e-004

II 30% 1.3190e+004 1.3192e+004 1.5832e-004

40% 1.3090e+004 1.3089e+004 7.3576e-005

50% 1.6403e+004 1.6404e+004 2.9497e-005

60% 1.9590e+004 1.9593e+004 1.6469e-004

salt-and-pepper impulse noise

b I 30% 9.8691e+003 9.8692e+003 1.0326e-005

40% 1.3183e+004 1.3184e+004 3.0565e-005

50% 1.6373e+004 1.6373e+004 2.4667e-005

60% 1.9641e+004 1.9642e+004 1.2129e-005

II 30% 9.8681e+003 9.8691e+003 1.0684e-004

40% 1.3157e+004 1.3157e+004 1.9127e-005

50% 1.6319e+004 1.6319e+004 2.2055e-006

60% 1.9668e+004 1.9668e+004 1.1229e-005

random value impulse noise

b I 30% 9.7770e+003 9.7770e+003 7.8120e-007

40% 1.3067e+004 1.3066e+004 9.2740e-005

50% 1.6360e+004 1.6361e+004 5.5121e-005

60% 1.9709e+004 1.9709e+004 1.9229e-005

II 30% 9.8392e+003 9.8397e+003 5.1033e-005

40% 1.3113e+004 1.3114e+004 2.2270e-005

50% 1.6347e+004 1.6348e+004 6.2731e-005

60% 1.9659e+004 1.9661e+004 8.3863e-005

the same for constrained and unconstrained models, so not reported here. Fig. 2 shows the

images degraded by the fspeial (`average',9) blur along with the salt-and-pepper

impulse noise with the images restored via the two models. The results are much the same

as found in other cases.

In the third set of tests, the degraded images were generated similarly. By sampling

a large range of the regularisation parameter λ that also contained κ̂, the FTVd was run

with different regularisation parameters to identify the particular “optimal" value λopt that
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Table 2: Numerial results on the models (3.7) and (3.8).

Tested Blur noise SNR (dB) κ̂ SNR (dB) via λopt SNR (dB) via

image level via (3.8) (3.7) with κ̂ (3.7) with λopt

salt-and-pepper impulse noise

a I 30% 17.519 59.090 17.401 70 17.4636

40% 14.720 22.473 14.658 46 15.5418

50% 13.631 21.484 13.598 32 13.8932

60% 12.404 18.623 12.375 21 12.3928

II 30% 16.299 63.131 16.077 108 16.4733

40% 13.741 22.013 13.678 69 14.7644

50% 13.155 21.667 13.122 49 13.7138

60% 12.381 19.881 12.359 32 12.5819

random value impulse noise

a I 30% 17.037 51.374 16.893 60 17.003

40% 13.344 20.706 13.020 19 13.198

50% 10.729 12.856 10.663 9 10.898

60% 7.426 2.503 7.499 5 7.795

II 30% 15.784 56.051 15.716 89 16.214

40% 12.356 19.221 12.229 33 12.375

50% 10.762 8.797 10.776 6 10.869

60% 7.406 2.280 7.549 5 7.872

salt-and-pepper impulse noise

b I 30% 16.861 55.512 16.820 60 16.828

40% 15.070 18.258 14.983 35 15.4508

50% 14.239 17.263 14.189 25 14.3542

60% 13.186 14.919 13.136 18 13.1740

II 30% 16.254 57.615 15.958 82 16.0503

40% 14.521 17.585 14.428 42 14.8931

50% 14.040 17.548 13.963 34 14.2696

60% 13.249 16.573 13.179 25 13.348

random value impulse noise

b I 30% 16.712 49.937 16.471 58 16.498

40% 14.313 17.692 14.246 24 14.385

50% 12.068 14.117 12.029 13 12.035

60% 8.607 4.665 8.575 6 8.693

II 30% 15.954 52.114 15.770 73 15.868

40% 13.947 17.147 13.887 25 14.060

50% 11.657 13.026 11.603 11 11.772

60% 8.580 3.676 8.620 4 8.696

provided the highest SNR of the restored image. The results are also displayed in Table 2,

where the optimal value λopt and SNR of the recovered image are listed. For the salt-

and-pepper impulse noise, the discrepancy between the SNRs of the images recovered via

κ̂ and λopt is small. On the other hand, for the random-valued impulsive noise there is

a clear difference between the SNRs for images recovered by constrained and “optimal"

unconstrained models.
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Figure 2: Left: Blurred and noisy image; Middle: Images restored via onstrained model (3.8); Right:

Images restored via unonstrained model (3.7). Noise level: Row 1 � 30%; Row 2 � 40%; Row 3 � 50%;

Row 4 � 60%.
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Figure 3: Restored SNR against λ, and the di�erene between the restored via κ̂ and the trial-and-error

method; Noise level: Row 1 � 30% and 40%; Row 2 � 50% and 60%. Noise: salt-and-pepper; Blur � I.

.

In Fig. 3, graphs of SNRs for the unconstrained TV-ℓ1-model (3.7) with different reg-

ularisation parameters are shown. The red dashed line represents the SNR with κ̂ as the

regularisation parameter. The curve over the red dashed line shows the gap between the

SNRs for images recovered via κ̂ and the “optimal" value found. The graphs in Fig. 3 corre-

spond to a different level of salt-and-pepper noise. For the “Cameraman.tif" image degraded

by fspeial (`average',9) blur, for low and middle noise levels the discrepancy be-

tween the SNRs for κ̂ and “optimal" values is about 0.2 dB, and diminishes for higher noise

levels. The results of numerical experiments for the Neumann boundary conditions were

similar, so not reported here.

6.2. Inpainting from impulsive noise

The efficiency of the approach was explored for the models (1.2) and (1.3) with the

data-fidelity term Φfit = ‖SK x − f ‖1. The resulting models

min
x
‖∇x‖+λ‖SK x − f ‖1 , (6.3)
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min
x
‖∇x‖

s.t. ‖SK x − f ‖1 ≤ τ , (6.4)

are suitable for image inpainting from impulsive noise. The parameter τ in the model (6.4)

can be determined analogously to Section 5 as follows:

• apply a filter from Ref. [16] to locate the set ΠC where the pixel values are corrupted

by impulsive noise;

• obtain the estimate û of K x̄ by solving the model

min
u
‖∇u‖

s.t. (Su)Π = fΠ ; (6.5)

• compute the estimate for τ from the formula

τ := ‖(Sû)− f ‖1 . (6.6)

In the first set of tests, τ was obtained from the model (6.5) and Eq. (6.6). The images

were degraded by blur and noise under periodic boundary conditions, and different sample

ratios ranging from 30% to 70% with equal 10% distance were tested, followed by salt-and-

pepper impulsive noise. The noise level was set to 5% and 15%, and the model (6.5) solved

by the ADMM reformulated as

min
u,y,w,z

‖y‖

s.t. ∇u= y

u = w

Su = z

zΠ = fΠ , (6.7)

where the chosen penalty parameter values in the ADMM were β1 = 10, β2 = 20, and

β3 = 20. Recall that β1, β2, and β3 are related to the first, second, and third equations

in (6.7), respectively. The solution û of (6.7) was obtained, and then computed τ2 using

the formula (6.6). The results are presented in Table 3, where the parameter τ2 is seen to

be a good approximation for the true value τ1, so it was used in subsequent tests for the

constrained model (6.4). The details of these tests are discussed in the Appendix, where

the procedure from Section 6.1 was followed. Thus two types of impulsive noise and two

types of the blur were considered, and vector f generated as follows. A convolution K was

applied to x̄ to obtain K x̄ under the periodic boundary condition, and random samples

were taken to get SK x̄ . Various sample ratios ranging from 30% to 70% with the equal

distance 10% were tested, and then the impulsive noise added with the noise level set to

5% and 15%. The SNRs of the images restored by constrained and unconstrained mod-

els were compared, and the “optimal" regularisation parameter obtained was used in the

corresponding unconstrained model.
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Table 3: The values of τ1 and τ2.

Tested image Blur sample ratio τ1 := ‖SK x̄ − f ‖1 τ2 via (6.5)-(6.6) |τ1 − τ2|/τ1

salt-and-pepper (noise level � 5%)

a I 30% 8.4583e+002 8.4670e+002 1.0285e-003

40% 1.1467e+003 1.1469e+003 1.8674e-004

50% 1.3933e+003 1.3936e+003 2.4051e-004

60% 1.6902e+003 1.6908e+003 3.6453e-004

70% 1.9872e+003 1.9879e+003 3.0933e-004

II 30% 8.6568e+002 8.6533e+002 4.1154e-004

40% 1.1611e+003 1.1615e+003 3.3930e-004

50% 1.4558e+003 1.4558e+003 3.1312e-005

60% 1.7513e+003 1.7515e+003 1.0286e-004

70% 2.0249e+003 2.0250e+003 7.6999e-005

salt-and-pepper (noise level � 15%)

b I 30% 2.5571e+003 2.5572e+003 4.4790e-005

40% 3.4058e+003 3.4076e+003 5.1017e-004

50% 4.2525e+003 4.2529e+003 9.7112e-005

60% 5.1351e+003 5.1353e+003 3.6894e-005

70% 5.9105e+003 5.9107e+003 3.5500e-005

II 30% 2.5622e+003 2.5630e+003 3.1496e-004

40% 3.4350e+003 3.4347e+003 6.6886e-005

50% 4.3173e+003 4.3171e+003 5.2739e-005

60% 5.1593e+003 5.1601e+003 1.6458e-004

70% 6.0577e+003 6.0574e+003 4.3713e-005

The ADMM from Ref. [38] was used to solve the unconstrained model (6.3), and the

results are presented in Table 4. It is notable that SNRs for the images recovered by these

models are almost the same. Fig. 4 shows the restoration results for the constrained model

and the penalised version for the sample ratios 30%, 40%, 50% and 60%.

Fig. 5 shows graphs of the SNR for the image restored by the penalised version (6.3)

against λ. The red dashed lines represent the SNRs for λ= κ̂ in the penalised model (6.3),

and the curves over the red dashed lines indicate the gap between the SNRs of the images

recovered via the parameter κ̂ and via the optimal recovered value. It is again notable that

the gap diminishes as the sample ratio increases.

7. Conclusions

Minimisation of the seminorms ‖D · ‖ for ℓ1-data-fidelity terms has been considered,

where the solution of the discrepancy equation is not unique. Connexions between con-

strained and unconstrained models have been established, and the optimal regularisation

parameter evaluated by solving constrained model. This approach preserves a closed-form

solution of each subproblem, and recovers blurry images with simultaneous evaluation of

the balance parameter of the unconstrained model. The numerical simulations illustrate

the efficiency of the method for constrained ℓ1-models.
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Figure 4: Left: Blurred and noisy images. Middle: Images restored by the model (6.4). Right: Images

restored by the model (6.3). Sample ratio: Row 1 � 30%; Row 2 � 40%; Row 3 � 50%; Row 4 � 60%.

Noise level � 5%. Blur � I.
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Table 4: Numerial results for the models (6.3) and (6.4).

Tested Blur noise SNR (dB) κ̂ SNR (dB) via λopt SNR (dB) via

image level via (6.4) (6.3) with κ̂ (6.3) with λopt

salt-and-pepper (noise level: 5%)

a I 30% 14.063 38.582636 14.028 67 14.192

40% 14.885 34.529045 14.808 66 15.070

50% 15.448 31.441490 15.358 66 15.528

60% 15.806 28.988864 15.724 63 15.874

70% 16.227 27.282183 16.150 61 16.291

II 30% 13.163 32.655956 13.116 67 13.277

40% 13.635 30.981656 13.595 65 13.759

50% 13.986 29.048234 13.932 64 14.132

60% 14.278 27.365302 14.213 62 14.515

70% 14.569 26.609349 14.507 61 14.731

salt-and-pepper (noise level: 15%)

a I 30% 13.423 34.766208 13.377 60 13.595

40% 14.125 31.727550 14.065 55 14.376

50% 14.611 27.201878 14.529 55 14.761

60% 15.060 27.201878 14.986 47 15.229

70% 15.659 25.884016 15.554 47 15.790

II 30% 12.700 27.544485 12.671 62 12.938

40% 13.126 27.701021 13.095 60 13.381

50% 13.595 26.514622 13.547 61 13.816

60% 13.802 25.701829 13.748 60 14.016

70% 14.136 24.938766 14.063 55 14.353
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Appendix

Some basic information about image inpainting is provided here, involving the infill of

missing or damaged regions in an image — cf. also Ref. [12]. Let x̄ be an unknown image.

The observed image f after image inpainting is given by

f = N
�

S(K x̄)
�

,

where S ∈ Rn×n is a mask operator and the corresponding constrained ℓ1-model (6.4) is

similar to that in Refs. [11,13]. If SK is considered the whole matrix K ′, under Algorithm

4.1 the x -related subproblem does not have a closed-form solution as the matrices on the

left-hand side of equation (4.9) are not diagonalisable by a discrete FFT or discrete DCT.
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Figure 5: Restored SNR vs. λ, and di�erene between the restored SNR with κ̂ and trial-and-error.

Sample ratio: Row 1 � 30% and 40%; Row 2 � 50% and 60%. Noise level: 5%. Blur � I.

However, one can rewrite the model (6.4) as

min
x ,y,zi ,v,u1,u2,w

n
∑

i=1

‖zi‖

s.t. ∇i x = zi : µi

K x = v : p1

Sv − f = y : p2

y + u1 −w = 0 : ν

y − u2 +w = 0 : δ

e⊤w= τ : κ

u1,u2 ≥ 0 .

The augmented Lagrangian function of the above problem is

LA (x , y, z, v,u1,u2, w;µ, p1, p2,ν,δ,κ)

=

n
∑

i=1

‖zi‖+
n
∑

i=1

〈µi,∇i x − zi〉+
β1

2

n
∑

i=1

‖∇i x − zi‖
2
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Algorithm A.1 ADMM approach for the imaging inpainting model (6.4).

Input f , K, S, τ > 0, β1, β2, β3, β4, β5 > 0 and µ0, p0
1, p0

2, ν0, δ0, κ0. Initialise x = f ,

y = f , w= f and µ= µ0, p1 = p0
1, p2 = p0

2, ν= ν0, δ = δ0 and κ= κ0.

Output x̂, κ̂.

While “a stopping criterion is not satisfied”, Do

1) Compute zk+1
i
(i = 1, . . . , n) according to

zk+1
i
=max
n



∇i x
k + 1

β1
(µk)i





− 1
β1

, 0
o ∇i x

k+ 1
β1
(µk)i

‖∇i x
k+ 1
β1
(µk)i‖

, i = 1,2, · · · , n.

2) Compute vk+1 according to

vk+1 =
�

I +
β3

β2
S⊤S
�−1 �

K x k + 1
β2

pk
1 +

β3

β2
S⊤( f + yk)− 1

β2
S⊤pk

2

�

.

3) Compute uk+1
1

, and uk+1
2

according to

uk+1
1
=PRn

+

�

wk − yk − ν
k

β4

�

,

uk+1
2
=PRn

+

�

wk + yk + δ
k

β4

�

.

4) Compute x k+1 by solving

x k+1 = (∇⊤∇+ β2

β1
K⊤K)−1
�

∇⊤(zk+1 − 1
β1
µk) + 1

β1
K⊤(β2vk+1− pk

1)
�

.

5) Compute yk+1 by solving

yk+1 = 1
β3+2β4

�

β3(Svk+1 − f ) + pk
2
− νk −δk + β4(u

k+1
2
− uk+1

1
)
�

.

6) Compute wk+1 by solving

wk+1 = (2I +
β5

β4
ee⊤)−1
�

uk+1
1
+ uk+1

2
+ 1
β4
(νk −δk + (β5τ− κ

k)e)
�

.

7) Update µk+1, pk+1
1

, pk+1
2

, νk+1, δk+1 and κk+1 via

µk+1
i
= µk

i
+ β1(∇i x

k+1− zk+1
i
); i = 1, · · · , n.

pk+1
1
= pk

1
+ β2(K x k+1− vk+1).

pk+1
2
= pk

2 + β3(Svk+1− f − yk+1).

νk+1 = νk + β4(y
k+1 + uk+1

1
−wk+1).

δk+1 = δk + β4(y
k+1 − uk+1

2
+wk+1).

κk+1 = κk + β5(e
⊤wk+1 −τ).

End Do

+ 〈p1, K x − v〉+
β2

2
‖K x − v‖2 + 〈p2,Sv − f − y〉+

β3

2
‖Sv − f − y‖2

+ 〈ν, y + u1 −w〉+
β4

2
‖y + u1 −w‖2 + 〈δ, y − u2 +w〉+

β4

2
‖y − u2 +w‖2

+ 〈κ, e⊤w−τ〉+
β5

2
‖e⊤w− τ‖2 ,

where β1, β2, β3, β4, β5 > 0. With µ = (µ(1);µ(2)) ∈ R2n andµi = (µ
(1)

i
,µ
(2)

i
) (i = 1, · · · , n),

the approach for the image inpainting model (6.4) is summarised in Algorithm A.1 above.
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