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Abstract. We consider a nonsymmetric Toeplitz system which arises in the discretiza-

tion of a partial integro-differential equation in option pricing problems. The precon-

ditioned conjugate gradient method with a tri-diagonal preconditioner is used to solve

this system. Theoretical analysis shows that under certain conditions the tri-diagonal

preconditioner leads to a superlinear convergence rate. Numerical results exemplify our

theoretical analysis.
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1. Introduction

It is well known that the option price for a European call option under Merton’s jump

diffusion model is determined by the expected value [1,10]

v (t, x)≡ e−r(T̄−t)EQ

h
�

ex+L T̄−t − K
�+
i

, (1.1)

where t is the time, x is the logarithmic price, Q is a risk-neutral measure, r is a risk-free

interest rate, T̄ is the maturity time, K is the strike price, and LT̄−t is a Lévy process. As

an alternative, the option value v (t, x) can also be obtained by solving a partial integro-

differential equation (PIDE) [8] as follows:











vt +
σ2

2
vx x +

�

r − σ
2

2
−λη
�

vx − (r +λ) v+λ
∫ ∞

−∞
v(t, x + y)φ(y)dy = 0,

v(T̄ , x) = H(ex), ∀ x ∈ R,

(1.2)
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where v (t, x) ∈ C1,2
�

(0, T̄]×R� ∩ C0
�

[0, T̄]×R�, φ(x) = e
−(x−µJ )

2
/2σ2

Jp
2πσJ

is the probabil-

ity density function of the Gaussian distribution, the parameters σ, r, λ, µJ , σJ , η =

eµJ+σ
2
J/2 − 1 are constants, and H (·) is the payoff function.

There are many works [1,3,10,11] dealing with numerical solutions of (1.2). Recently

Sachs and Strauss [10] eliminated the convection term in this PIDE and discretized the

transformed equation implicitly by using finite differences with uniform mesh. The result-

ing linear system is a dense Toeplitz system Tnx = b. They solved this system by using the

preconditioned conjugate gradient (PCG) method with circulant preconditioners.

In Merton’s model, jump sizes are normally distributed with mean µJ and standard

deviation σJ . With µJ = 0, discretizing the PIDE without the convection term yields a

symmetric Toeplitz system [10, 11], while for µJ 6= 0, the resulting system Tnx = b is a

nonsymmetric Toeplitz system. In [10, 11], only the case of µJ = 0 was considered. In

this paper, we discuss a more general case of µJ 6= 0. We consider applying the conjugate

gradient (CG) method to the following normalized preconditioned system
�

L−1
n Tn

�∗ �
L−1

n Tn

�

x =
�

L−1
n Tn

�∗
L−1

n b,

where the preconditioner Ln is a tri-diagonal matrix. We show that all the eigenvalues

of the normalized preconditioned matrix
�

L−1
n Tn

�∗ �
L−1

n Tn

�

are clustered around one.

Thus the convergence rate of the CG method is superlinear, when applied to solving the

normalized preconditioned system. We see from numerical results in Section 4 that the

tri-diagonal preconditioner works very well.

2. Discretization of PIDE

For Merton’s model, the corresponding PIDE is of the following form on introducing

w (τ,ξ)≡ v
�

T̄ −τ,ξ− ζτ� [10]:










wτ −
σ2

2
wξξ+ (r +λ)w−λ

∫ ∞

−∞
w(τ, z)φ(z − ξ)dz = 0,

w(0,ξ) = H(eξ), ∀ ξ ∈ R,

(2.1)

where w ∈ C1,2
�

(0, T̄]×R�∩C0
�

[0, T̄]×R�, ζ = r−σ2/2−λη is a constant, the param-

eters σ, r, λ, µJ , σJ , η and the probability density function of the Gaussian distribution

φ (x) are the same as in (1.2). Hence, the option value v (t, x) in Merton’s model can be

determined by solving (2.1).

To solve (2.1) numerically, one can use a domain truncation and a finite-difference

discretization in space, and the second order backward differentiation formula (BDF2) in

time. The domain of ξ is usually chosen to be Ω ≡ �ξ−,ξ+
�

. For a European call option,

the boundary conditions [1] are
(

w(τ,ξ)→ 0, ξ→−∞,

w(τ,ξ) s Keξ−ζτ− Ke−rτ, ξ→ +∞.
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This motivates the introduction of the function

R
�

τ,ξ,ξ+
�

=

∫ +∞

ξ+

�

Kez−ζτ− Ke−rτ
�

φ(z − ξ)dz

= Keξ−ζτ+µJ+σ
2
J/2Φ

�

ξ− ξ+ +µJ +σ
2
J

σJ

�

− Ke−rτΦ

�

ξ− ξ+ +µJ

σJ

�

, (2.2)

where Φ
�

y
�

is the cumulative normal distribution

Φ
�

y
� ≡ 1p

2π

∫ y

−∞
e−

x2

2 dx . (2.3)

The expression (2.2) is used in the discretization of the integral term of (2.1).

Similar to [1,10], we consider a uniform mesh in space and in time - i.e.

(

ξi = ξ−+ (i − 1)h with h=
�

ξ+ − ξ−
�

/ (n+ 1) = 2 x̂/ (n+ 1) , i = 1,2, . . . , n+ 2,

τm = mk with k = T̄/q, m= 0,1, . . . ,q.

Let wm
i ≈ w(τm,ξi) and φi, j ≡ φ

�

ξ j − ξi

�

. The integral term in (2.1) is approximated by

the composite trapezoidal rule on Ω and the estimate (2.2) on R\Ω. For the time variable

and space variable we use the following approximations:

wτ(τm,ξi)≈







�

3

2
wm

i − 2wm−1
i +

1

2
wm−2

i

�

/k, m ≥ 2,

�

wm
i −wm−1

i

�

/k, m = 1,

wξξ
�

τm,ξi

�≈
�

wm
i+1 − 2wm

i +wm
i−1

�

/h2.

The initial solution vector is w0 =
�

w0
1 , . . . , w0

n+2

�T
=
�

H(eξ1), . . . , H(eξn+2)
�T

. With the

known values wm
1 and wm

n+2 from the boundary conditions, we obtain an n×n linear system

with the coefficient matrix Tn which is Toeplitz. For detail of the discretization, we refer

to [10].

More precisely, the diagonals of Tn in terms of n and q are given by







































t
(n)
0 =

σ2 T̄ (n+ 1)2

4 x̂2q
+
(r +λ) T̄

q
+

3

2
− 2 x̂λT̄p

2πσJ q (n+ 1)
e
− µ

2
J

2σ2
J ,

t
(n)
±1
= −σ

2 T̄ (n+ 1)2

8 x̂2q
− 2 x̂λT̄p

2πσJq (n+ 1)
e
− (∓

2 x̂
n+1
−µJ )

2

2σ2
J ,

t
(n)

± j
= − 2 x̂λT̄p

2πσJ q (n+ 1)
e
− (∓

j
n+1 2 x̂−µJ )

2

2σ2
J , 2≤ j ≤ n− 1.

(2.4)
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From (2.4), we see that the entries of Tn depend on n. For various grid numbers n, we

obtain a family of Toeplitz systems. Hence, we write the resulting systems as

T (n)n wm = bm, m= 1, . . . ,q, (2.5)

where wm =
�

wm
2 , . . . , wm

n+1

�T ∈ Rn and bm =
�

bm
2 , . . . , bm

n+1

�T ∈ Rn is the right hand side.

Obviously, the coefficient matrix T (n)n is a nonsymmetric Toeplitz matrix when µJ 6= 0.

3. Solving Normalized Preconditioned System

We solve (2.5) by applying the CG method to the following normalized preconditioned

system
�

(L(n)n )
−1T (n)n

�∗ �
(L(n)n )

−1T (n)n

�

wm =
�

(L(n)n )
−1T (n)n

�∗
(L(n)n )

−1bm, (3.1)

where L(n)n is a tri-diagonal Toeplitz matrix with diagonals given by



























l
(n)
0 = t

(n)
0 =

σ2 T̄ (n+ 1)2

4 x̂2q
+
(r +λ) T̄

q
+

3

2
− 2 x̂λT̄p

2πσJ q (n+ 1)
e
− µ

2
J

2σ2
J ,

l
(n)

1
= l
(n)

−1
= −σ

2 T̄ (n+ 1)2

8 x̂2q
,

l
(n)

j
= l
(n)

− j
= 0, 2≤ j ≤ n− 1.

(3.2)

Let M (n)n be a Toeplitz matrix with diagonals given by


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














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


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m
(n)
0 = 0,

m
(n)
±1 = −

2 x̂λT̄p
2πσJ q (n+ 1)

e
− (∓

2 x̂
n+1−µJ )

2

2σ2
J ,

m
(n)

± j
= − 2 x̂λT̄p

2πσJ q (n+ 1)
e
− (∓

j
n+1

2 x̂−µJ )
2

2σ2
J , 2≤ j ≤ n− 1.

(3.3)

Then

T (n)n = L(n)n +M (n)n (3.4)

for every n≥ 1. By using a technique (FGF) provided in [11], one can prove the following

lemma.

Lemma 3.1. Let L(n)n and M (n)n be the Toeplitz matrix with diagonals given by (3.2) and (3.3)

respectively, q = O ((n+1)α) with α > 0. Then for any 0< ǫ < 1/2 there exists an N(ǫ)> 0

such that for all n> N ‖(L(n)n )
−1‖2 ≤ 1 and ‖M (n)n ‖2 < ǫ.

We therefore have the following main result.
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Theorem 3.1. Let T (n)n and L(n)n be given by (2.4) and (3.2) respectively, q = O ((n+ 1)α)

with α > 0. Then for any 0 < ǫ < 1/2 there exists an N(ǫ) > 0 such that for all n > N all

the eigenvalues of
�

(L(n)n )
−1T (n)n

�∗�
(L(n)n )

−1T (n)n

�

are inside the interval [1−δ, 1+ δ] with

δ = 2ǫ+ ǫ2.

Proof. We have by (3.4),

(L(n)n )
−1T (n)n = (L(n)n )

−1(L(n)n +M (n)n ) = In +W (n)
n ,

where W (n)
n = (L(n)n )

−1M (n)n . By Lemma 3.1, for any 0 < ǫ < 1/2, there exists an N(ε) > 0

such that for all n> N , ‖(L(n)n )
−1‖2 ≤ 1 and ‖M (n)n ‖2 < ǫ. Then

‖W (n)
n ‖2 ≤ ‖(L(n)n )

−1‖2 · ‖M (n)n ‖2 < ǫ. (3.5)

By (3.5), Weyl’s theorem and the fact that

�

(L(n)n )
−1T (n)n

�∗ �
(L(n)n )

−1T (n)n

�

= In + (W
(n)
n )
∗+W (n)

n + (W (n)
n )
∗W (n)

n ,

we know that all the eigenvalues of the normalized preconditioned matrix

�

(L(n)n )
−1T (n)n

�∗ �
(L(n)n )

−1T (n)n

�

are inside the interval [1− δ, 1+ δ] with δ = 2ǫ+ ǫ2. �

Thus, by Corollary 1.11 in [2] or by the Theorem 1.15 in [6], we know that the con-

vergence rate of the CG method when applied to (3.1) is superlinear.

4. Numerical Experiments

In this Section, we give numerical experiments with two preconditioners. All compu-

tations are carried out in MATLAB version 2008a on a Dell Inspiron 530 computer with

Intel® CoreTM2 Quad CPU Q6600 @2.40GHz and 2.00 GB of RAM. The analytical expres-

sion of the European call option in (1.1) has been found for Merton’s model [7]:

v (t, x) = w̃(t, Kex ) = w̃(t, s) =

∞
∑

m=0

e−λ(1+η)τ
�

λ(1+η)τ
�m

m!
VBS(τ, s, K , rm,σm), (4.1)

where τ = T̄ − t, σ2
m = σ

2+mσ2
J/τ, η= eµJ+σ

2
J/2−1, rm = r−λη+m · log(1+η)/τ and

VBS(τ, s, K , r,σ) = sΦ(d1)− Ke−rτΦ(d2) with d1 =
log(s/K)+(r+σ2/2)τ

σ
p
τ

, d2 = d1 −σ
p
τ, and

Φ given by (2.3). The parameters λ, r, σ, µJ , σJ are constants related to Merton’s model.

We truncate the series (4.1) to 50 terms, which is adequate for the needed accuracy.

In the experiments, we solve the linear system (2.5) by applying the CG method to its

corresponding normalized preconditioned system (3.1). The tri-diagonal preconditioner
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onditioners with q = O (n).
n q l∞ error None Strang Tri-diagonal

64 5 8.99e-03 28 6 5

128 10 2.28e-03 47 6 5

256 20 5.73e-04 83 7 4

512 40 1.43e-04 152 7 4

1024 80 3.59e-05 283 8 3

2048 160 8.98e-06 533 8 3

given by (3.2) and Strang’s circulant preconditioner [2, 5, 6] are used. The parameters in

Merton’s model are chosen to be

x̂ = 5, λ= 0.6, µJ = −0.6, σJ = 0.5, T̄ = 0.5, r = 0.05, σ = 0.6, K = 1.

The stopping criterion is defined by
‖r(k)‖2
‖r(0)‖2 < 10−8, where r(k) is the residual vector after

the kth iteration. The initial guess for the normalized preconditioned system is chosen to

be the solution from the last time step.

Numbers of iterations for different preconditioners are shown in Table 1. The column

“l∞ error” refers to the infinity norm of the difference between the numerical solution vec-

tor and the analytical solution evaluated at the grid points at the final time τ = T̄ . “None”,

“Strang”, and “Tri-diagonal” stand for no preconditioner, Strang’s preconditioner, and tri-

diagonal preconditioner, respectively. The number of iterations in Table 1 is obtained from

solving the last system (i.e. the qth system in (2.5)). A careful investigation reveals that it

is almost equal to the average numbers of iterations obtained from solving systems (2.5).

From Table 1, we see that both Strang’s preconditioner and tri-diagonal preconditioner

lead to a fast convergence rate, with the tri-diagonal preconditioner proving somewhat

more efficient.
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