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Abstract. In this paper, a new type of gradient recovery method based on vertex-edge-

face interpolation is introduced and analyzed. This method gives a new way to recover

gradient approximations and has the same simplicity, efficiency, and superconvergence

properties as those of superconvergence patch recovery method and polynomial pre-

serving recovery method. Here, we introduce the recovery technique and analyze its

superconvergence properties. We also show a simple application in the a posteriori

error estimates. Some numerical examples illustrate the effectiveness of this recovery

method.
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1. Introduction

Recently, a posteriori error estimates based on gradient recovery methods are active

and attract more and more attention ( [1–4, 8, 10, 12, 14–16, 20, 21, 23–25, 27]). One of

the most widely used in practice is Zienkiewicz-Zhu’s Superconvergence Patch Recovery

(SPR) method ( [27]) based on a local discrete least squares fitting. The popularity of

this method relies on various factors: the method is rather independent of the problem, it

is cheap to compute and easy to implement and the method works very well in practice.

The robustness of the SPR method is dependent on its superconvergence property under

structured meshes ( [22]). However, [25] shows that the SPR is not superconvergence

for linear element under the uniform triangulation of the Chevron pattern. The Polyno-

mial Preserving Recovery (PPR) which overcomes this restriction is one of the most recent

least-squares-based procedures ( [16, 21, 24, 25]). This method is based on computing a

local second order polynomial on a suitable patch associated with each mesh vertex via
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a discrete least-squares procedure. Then, the nodal gradient can be computed, which are

family linearly interpolated. The PPR-recovered gradient has superconvergence proper-

ties in mildly structured meshes, and, in such cases, it was shown to be asymptotic exact

( [21]). Both SPR and PPR select the node values as samples. The effectiveness of the

gradient recovery method is rooted in the superconvergence theory. However, from the

superconvergence theory ( [12,14,15]), we know that the vertex-edge-face interpolations

have better superconvergent properties than the common Lagrange interpolations. In this

paper, a new type of gradient recovery method based on the vertex-edge-face interpolation

is proposed and analyzed. The new gradient recovery method, given a finite element space

of degree k, instead of gradient values at some sampling points on element patches (as in

the SPR method and PPR method), selects gradient integration at the sampling edges and

faces to obtain recovered gradient at each assembly vertex, edge and face. We shall prove

that the new method has superconvergence for the superconvergent mesh (such as uni-

form triangular mesh of the Regular pattern and Chevron pattern, mildly meshes and so

on) ( [3,6,12,14,15,21,26]). In computer implementation, there is no significant differ-

ence between the new method with SPR or PPR compared with the overall cost in finite

element solution.

The simple application of this recovery method to a posteriori error estimate is also

discussed. The reader is referred to [1, 2] for analysis of recovery type a posteriori error

estimators.

The paper is organized as follows. We give the recovery technique in Section 2 and

Section 3 is devoted to the superconvergence analysis. Section 4 shows the application

of the recovery method to a posteriori error estimate. Numerical results are presented in

Section 5. Finally, Section 6 contains some concluding remarks.

2. The Finite Element Method and Recovery Technique

This section is devoted to the introduction of the recovery technique. For simplicity, we

consider the second order elliptic problem: Find a scalar function u such that

−∇ · (A∇u) + bu = f , in Ω, (2.1)

u = uD, on ∂Ω, (2.2)

whereA ∈R2×2 is a positive definite matrix in Ω, b ≥ 0 and Ω⊂R2 is a bounded domain

with Lipschitz boundary ∂Ω.

In order to use the finite element method to compute the problem (2.1)-(2.2), we need

to introduce a triangulation Th on the domain Ω and then define the finite element space

Sh ⊂ H1(Ω) as

Sh =
�

v ∈ H1(Ω) : v|e ∈ Pk(e), ∀e ∈ Th

	
,

where Pk(e) is the space of polynomials of degree not greater than a positive integer k.

The finite element method is to find uh ∈ SD
h

such that

a(uh, v) = ( f , v), ∀v ∈ Sh, (2.3)
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where

a(u, v) =

∫

Ω

(∇u · A∇v+ buv)d xd y,

( f , v) =

∫

Ω

f vd xd y,

and SD
h

denote the set of the functions in Sh satisfying the boundary condition (2.2).

We will introduce a new gradient recovery operator Gh : Sh → Sh × Sh. First, let us

introduce the vertex-edge-face interpolation of degree k for u ∈ H1+ε(e) as follows

uI (Zi) = u(Zi), i = 1,2,3, (2.4a)
∫

li

uI vds =

∫

li

uvds,∀v ∈ Pk−2(li), i = 1,2,3, (2.4b)

∫

e

uI vd xd y =

∫

e

uvd xd y, ∀v ∈ Pk−3(e), (2.4c)

where Zi and li are the three vertices and three edges of element e and ε is an arbitrary

small positive number. From the interpolation definition, the number of equations is 3+

3(k− 1)+ (k− 1)(k− 2)/2= (k+ 1)(k+ 2)/2 which equals the dimension of Pk(e).

In the superocnvergence theory, it has been proved that this type of interpolation has

better superconvergent property than the common Lagrange interpolation especially for

high order finite element method. For example, this type of interpolation has very beautiful

interpolation expansions by the integral identity or integral expansion ( [11, 12, 14, 15]).

From the definition, we can know there are three kinds of degree of freedom: vertex

value, edge integration and face integration. The gradient recovery procedure aims to

obtain these three kinds of degree of freedom.

Now, let’s introduce the gradient recovery procedure. Given a finite element solution

uh, we need to define Ghuh at the following three types of degree of freedom: vertex value,

edge integration, and face integration. For the linear element all degrees of freedom are

vertex values, for the quadratic element they are vertex values and edge integrations, and

for the cubic element all three types of degrees of freedom are presented. After determining

values of Ghuh at all degrees of freedom, we obtain Ghuh ∈ Sh × Sh on the whole domain

by interpolation with the original shape functions of Sh.

2.1. Step 1

We start from vertices. For a vertex Zi, let hi be the length of the longest edge attached

to Zi. Elements which include Zi are selected to form the patch ωi

ωi =
⋃

Zi∈e∈Th

e.
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Let EZi
denote the element edges set on the patch ωi. We fit a two dimensional polynomial

vector of degree k, in the least-squares sense, to the gradient of the finite element solution

uh at the degrees of freedom: edge and face integrations.

First, we define the affine transformation F : (x , y) 7→ (ξ,η):

ξ=
x − x i

h
, η =

y − yi

h
, (2.5)

where (x i, yi) is the coordination of Zi and h = hi . In order to eliminate unstability, we

implement the recovery process in the reference patch

bωi = Fωi =
⋃

Zi∈e∈Th

Fe.

Then, we set Ó∇uh(ξ,η) = ∇uh(x , y), bv(ξ,η) = v(x , y). Now, let’s define a functional

for any polynomial vector bv ∈ (Pk( bωi))
2 by

F (bv) =
∑

be∈ bωi

∑

0≤m+ j≤k−2

 �∫

be
bv · (ξmη j , 0)T dξdη

�2

+

�∫

be
bv · (0,ξmη j)T dξdη

�2
!

+
∑

bl∈ bEZi

k−1∑

j=0

�∫

bl
bv ·btlbs jdbs

�2

, (2.6)

where btl denotes the reference unity tangent vector of the corresponding edge and bEZi

denotes the element edges set on the reference patch bωi, and be the element in bωi.

In order to implement the recovery procedure, we introduce the following notations

bPk =

� bPT
k

, 0T
n

0T
n , bPT

k

�
,

where
bPT

k = (1,ξ,η,ξ2, · · · ,ξk,ξk−1η, · · · ,ηk)

and 0n denote the vector whose elements are all 0 with n = (k+ 1)(k+ 2)/2. The fitting

polynomial vector is denoted by

bσk(ξ,η; Zi) = bPkba

with

baT = (ba1, ba2, · · · , ba2n).

Then, the fitting polynomial vector bσk can be determined by minimizing the following

functional problem

F (bσk −Ó∇uh) = min
bv∈(Pk( bωi))

2
F (bv −Ó∇uh). (2.7)
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Remark 2.1. Of course, in order to reduce the dimensions of the minimization problem

(2.7), we can also modify this functional problem into the following similar version

F (∇bσk+1−Ó∇uh) = min
v∈Pk+1( bωi)

F (∇bv−Ó∇uh),

where bσk+1 ∈ Pk+1( bωi).

The minimization problem (2.7) yields the following linear system

AT Aba= ATbbh. (2.8)

After solving the linear system, we obtain the coefficient vector ba and then the polynomial

vector bσk(ξ,η; Zi). The final fitted polynomial can be obtained by

σk(x , y; Zi) = bσk

�
x − x i

h
,

y − yi

h
; Zi

�
.

The condition for (2.8) to have a unique solution is

RankA= 2n, (2.9)

which is always satisfied in practical situation when grid points are reasonably distributed.

Then, we define

Ghuh(Zi) = σk(x , y; Zi)(Zi). (2.10)

2.2. Step 2

For the degree of freedom on the edge l between two vertices Zi1
and Zi2

, we define

∫

l

Ghuhvds =
1

2

�∫

l

σk(x1, y1; Zi1
)vds+

∫

l

σk(x2, y2; Zi2
)vds

�
,∀v ∈ (Pk−2(l))

2, (2.11)

where (x1, y1) (or (x2, y2)) is the local coordinate on the edge with origin at Zi1
(or Zi2

).

2.3. Step 3

For the degree of freedom on the face e which formed by three vertices Zi1
, Zi2

and Zi3
,

we define

∫

e

Ghuhvd xd y =
1

3

3∑

j=1

∫

e

σk(x j, y j; Zi j
)vd xd y, ∀v ∈ (Pk−3(e))

2, (2.12)

where (x j, y j) are the local coordinates on the face e with origin at Zi j
, respectively.

Remark 2.2. We use criteria (2.11) and (2.12) to make the recovery process be consistent

with the vertex-edge-face interpolation definition and its shape functions. Of course, the

direct average of the corresponding vector polynomials σk can also be used.
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After determining values of Ghuh at all the degrees of freedom, Ghuh can be constructed

by interpolation with the original shape functions of Sh. In order to demonstrate the

method more clearly, here we discuss two examples in detail. For the sake of simplic-

ity, both examples are under uniform meshes. Nevertheless, we can find the method can

be applied to arbitrary meshes even with curved boundaries.

Example 2.1. Linear element on the uniform triangulation of the Regular pattern. Let the

length of the horizontal and vertical edge of the element patch (see Fig. 1) be h and we

scale the patch by the factor h with x = hξ, y = hη. Equivalently, we fit a linear polynomial

vector

σ1(x , y; Zi) = P1a

minimizing the following functional

∑

l∈EZi

�∫

l

(
∂ uh

∂ tl

−σ1 · tl)ds

�2

= min
v∈(P1(ωi))

2




∑

l∈EZi

�∫

l

(
∂ uh

∂ tl

− v · tl)ds

�2



 , (2.13)

where

P1 =

�
1 x y 0 0 0

0 0 0 1 x y

�
,

The fitting procedure results in AT Aa= AT b. It is straightforward to calculate

(AT A)−1AT =
1

12




2 2 2 2 1 1 1 1 1 1 1 1

0 −6 6 0 −3 3 −3 3 −3 3 −3 3

5 −3 3 −5 −1 3 −3 1 −2 2 0 0

1 1 1 1 2 2 2 2 −1 −1 −1 −1

1 −3 3 −1 −5 3 −3 5 2 −2 0 0

3 −3 3 −3 0 6 −6 0 3 −3 −3 3




.

After obtaining the vector b, the fitted linear polynomial vector at (0,0) (it means the

vertex Zi) is

1

6h

�
2(u3− u6) + u4 − u5 + u2 − u1

2(u4− u1) + u5 − u6 + u3 − u2

�
. (2.14)

By the Taylor expansion, it can be verified directly that (2.14) provide the second order

approximation to ∇u at the original vertex Zi which is displayed in Fig. 1. With Ghu given

at each vertex by (2.14), we can construct a recovered gradient field by linear interpolation

using linear finite element basis functions. This result is the same as SPR and PPR.
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Example 2.2. Linear element on the uniform triangulation of the Chevron pattern. Fol-

lowing the same procedure as Example 2.1, we can obtain the recovered gradient at the

vertex Zi (see Fig. 2)

1

22h

�
u4 − u6

−4u0 − 2u1− 7u2 − 2u3+ 2u4 + 11u5+ 2u6

�
. (2.15)

We also know this gives a second order approximation to the gradient and is different with

SPR and PPR. SPR can not give a second order approximation to the gradient and the

scheme determined by PPR is different with (2.15) ( [25]) on the uniform triangulation of

the Chevron pattern.

As same as SPR and PPR, recovering the gradient on the boundary is more complicated,
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Figure 1: The path for the uniform mesh of Regular pattern.
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Figure 2: The path for the uniform mesh of Chevron pattern.
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although there are many ways to deal with that. The obvious way is to use the strategy

adopt for internal vertices. However, as in [25], our computational experiments indicated

that this strategy is not efficient. To overcome this shortcoming, we look for the nearest

layer of vertices around Z that contains at least one internal vertex to recover the gradient

at a vertex Z ∈ ∂Ω. Let this layer be the r−th one, and denote the internal vertices in

this layer by Z1, Z2, · · · , Zm where m > 1. The union of the patches used in recovering the

gradient at Z1, Z2, · · · , Zm, and the elements in the first r layers around Z constitute the

patch for recovering the gradient at Z .

If the unique solution condition (2.9) violates, we need to extend the patch to include

more elements until the rank condition (2.9) is satisfied.

3. Superconvergence Analysis

In this section, we give the superconvergence analysis of our recovery operator with

the tools in [12,14,15]. We refer readers to [5,7] for general theory of the finite element

method and to [6, 12, 14, 15, 18, 26] for the superconvergence theory. Since there are

many papers concerning the superocnvergence analysis of our recovery methods, we only

give the outline for the superconvergence of the new recovery method. Readers who are

interested in the details are refered to the related references.

First, we find the recovery operator has the following properties.

Theorem 3.1. The recovery operator Gh defined in this paper satisfies

‖Ghuh‖0 ≤ C‖uh‖1, ∀uh ∈ Sh, (3.1)

Ghv =∇v, ∀v ∈ Pk+1(ωi), (3.2)

Ghv = GhvI . (3.3)

Proof. Proofs for (3.1) and (3.2) are trivial ( [12,14,15]). For convenient reading, we

give their proofs.

First, we prove F (bv)1/2 defines a norm for bv ∈ (Pk( bωi))
2 on the reference patch bωi .

When the rank condition (2.9) is satisfied, we know F (bv)1/2 = 0 if and only if bv = 0. And

from the finity of the dimension of the polynomial vector space, norm equivalence theorem

and the regularity of the triangulation Th, we can know there exist constants C1 and C2

which are independent of h such that

C1‖bv‖0, bωi
≤F (bv)1/2 ≤ C2‖bv‖0, bωi

.

Based on this result and the minimization problem (2.7), we can know

‖bσk‖0, bωi
≤ 1/C1F (bσk)

1/2 ≤ 1/C1F (Ó∇uh)
1/2 ≤ C2/C1‖Ó∇uh‖0, bωi

.

Combination with the definition of the transformation F , the following inequality can be

obtained

‖σk‖0,ωi
≤ C2/C1‖∇uh‖0,ωi

. (3.4)
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For any element e, let Z1, Z2 and Z3 denote its three vertices. From the recovery process

and (3.4), we can obtain the following inequality

‖Ghuh‖0,e ≤ C

3∑

i=1

‖σk(x , y; Zi)‖0,ωi
≤ C

3∑

i=1

‖∇uh‖0,ωi
. (3.5)

Then from (3.5) and summing over the mesh, we have

‖Ghuh‖
2
0 =

∑

e∈Th

‖Ghuh‖
2
0,e ≤ C

∑

e∈Th

3∑

i=1

‖∇uh‖
2
0,ωi
≤ C‖∇uh‖

2
0.

So (3.1) can be obtained.

For the property (3.2), we should notice that ∇v ∈ (Pk(ωi))
2 when v ∈ Pk+1(ωi) on a

patch ωi . From the function definition (2.6) and the minimizing function problem (2.7),

we can know the fitting polynomial σk(x , y; Zi) =∇v on the patch ωi . Then, the property

(3.2) can be obtained.

For (3.3), we need to prove Gh(v − vI) = 0. This can be ensured by
∫

l

∂ (v − vI)

∂ tl

ϕds = (v− vI)ϕ|
Zi2

Zi1
−

∫

l

(v − vI)
∂ ϕ

∂ tl

ds = 0,

∀ϕ ∈ Pk−1(l),∫

e

∇(v− vI) · w d xd y =

∫

∂ e

(v− vI )n · w ds−

∫

e

(v − vI )∇ · w d xd y = 0,

∀w ∈ (Pk−2(e))
2,

for each edge l between Zi1
and Zi2

and each face e. This is a smart representation for the

definition of the vertex-edge-face interpolation and shows that the recovery method has

the property (3.3).

Since there are many ways to analyze finite element superconvergence ( [3,6,12,14,15,

17–19, 21, 26]), here we just construct a framework for the superconvergence of the new

recovery method. Based on Theorem 3.1, if the mesh has the superconvergence property

( [3,14,17,21]), we can obtain the superconvergence result after recovering the gradient.

Theorem 3.2. If the following superapproximation exists

‖uh− uI‖1 ≤ Chk+δ, (3.6)

where δ ∈ (0,+∞). Then, we have the superconvergence result

‖Ghuh−∇u‖0 ≤ Chk+min{1,δ}. (3.7)

Proof. Combining Theorem 3.1 and (3.6), we have

‖Ghuh−∇u‖0 ≤‖Ghuh− GhuI‖0 + ‖GhuI − Ghu‖0 + ‖Ghu−∇u‖0

≤C‖uh− uI‖1 + Chk+1

≤Chk+min{1,δ}.
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This is the desired result and we complete the proof.

In practical computation, the mesh always has superconvergence property more or less

(means that on the mesh there exists the superconvergence (3.7) with δ > 0 ( [13] and [3,

6,10,12,14,16,21,22])). This is the reason why the finite element postprocessing method

can often improve the accuracy of the solution. This observation has been confirmed by

large number of numerical tests.

4. Application in the a Posteriori Error Estimate

With the recovery method proposed in this paper, we can construct an a posteriori error

estimator. By the recovery gradient Ghuh, a posteriori error estimator can then be defined

as

ηe = ‖Ghuh−∇uh‖0,e, ηΩ =
�∑

e∈Th

η2
e

�1/2
= ‖Ghuh−∇uh‖0. (4.1)

If the recovery gradient Ghuh has superconvergence property

‖∇u− Ghuh‖0≪ ‖∇u−∇uh‖0, (4.2)

the a posteriori error estimator ηΩ is asymptotic exact. Indeed, by the triangular inequality

1−
‖∇u− Ghuh‖0
‖∇u−∇uh‖0

≤
‖Ghuh−∇uh‖0
‖∇u−∇uh‖0

≤ 1+
‖∇u− Ghuh‖0
‖∇u−∇uh‖0

.

By virtue of (4.2), ‖∇u−Ghuh‖0/‖∇u−∇uh‖0 is much smaller comparing with 1. Therefore

‖Ghuh−∇uh‖0
‖∇u−∇uh‖0

≈ 1.

Based on the a posteriori error estimator (4.1), we can construct an adaptive finite element

method to solve some singular problems ( [24,27]).

5. Numerical Tests

In this section, three test problems are used to verify superconvergence of the new

recovery method. Here, we first give the numerical results for the elliptic problem by the

linear element on the uniform meshes of the four patterns: Regular, Chevron, Criss Cross,

and Union Jack. The aim of this example is to investigate the superconvergence of the

new recovery method under the uniform meshes. Then, we give the numerical results

by the linear element on the general mesh which generated by Delauny triangulation. In

this example, we want to investigate the effectiveness of the new recovery method on the

general unstructured meshes. In the third example, recovery method is applied to adaptive

finite element method by constructing a posteriori error estimates.



258 Q. Lin and H. XieTable 1: The uniform triangular mesh of Regular pattern.
Mesh 10× 10 20× 20 40× 40 60× 60

‖∇u−∇uh‖0 0.34408 0.17401 0.087189 0.058144

Rate / / / 0.99325

‖Ghuh−∇u‖0 0.13579 0.034876 0.0087986 0.0039197

Rate / / / 1.9906Table 2: The uniform triangular mesh of Chevron pattern.
Mesh 10× 10 20× 20 40× 40 60× 60

‖∇u−∇uh‖0 0.34356 0.17392 0.087176 0.058141

Rate / / / 0.99253

‖Ghuh−∇u‖0 0.13311 0.030463 0.0071234 0.0030861

Rate / / / 2.0956Table 3: The uniform triangular mesh of Criss Cross pattern.
Mesh 10× 10 20× 20 40× 40 60× 60

‖∇u−∇uh‖0 0.18329 0.091908 0.045974 0.030651

Rate / / / 0.99837

‖Ghuh−∇u‖0 0.076907 0.019296 0.0048235 0.0021432

Rate / / / 1.9986Table 4: The uniform triangular mesh of Union Jak pattern.
Mesh 10× 10 20× 20 40× 40 60× 60

‖∇u−∇uh‖0 0.32627 0.1642 0.082215 0.054822

Rate / / / 0.99601

‖Ghuh−∇u‖0 0.22002 0.057093 0.014401 0.0064115

Rate / / / 1.9764

Example 5.1. The first example is to solve

−∆u= 2π2 sinπx sinπy, in Ω = [0,1]× [0,1],

u= 0, on ∂Ω.

The exact solution is u(x , y) = sinπx sinπy. Here, we consider the linear element on the

four patterns of uniform triangular meshes.

As mentioned earlier, for the linear element, the new recovery method has the same

superconvergence as the SPR and PPR under the uniform triangular mesh of the Regular

pattern. From Table 2, we can find that the new method provides superconvergence on the

uniform triangulation of Chevron pattern as same as PPR. For structured meshes, the new

recovery method has very good superconvergence properties (see Tables 1, 2, 3 and 4).



Finite element gradient recovery method based on interpolation 259Table 5: Numerial results for the mesh produed by regular re�nement.
Mesh T0.1 T0.1/2 T0.1/4 T0.1/8

‖∇u−∇uh‖0 0.43421 0.21891 0.10968 0.054853

Rate / / / 0.99491

‖Ghuh−∇u‖0 0.12401 0.036524 0.010463 0.0030253

Rate / / / 1.7857Table 6: The general mesh produed by Delauny triangulation.
Mesh T0.1 T0.05 T0.025 T0.0125

‖∇u−∇uh‖0 0.43421 0.21474 0.10728 0.053554

‖Ghuh−∇u‖0 0.12401 0.097541 0.023299 0.0041281

Example 5.2. The second example is to solve

−∇ · (A∇u) = f , in Ω,

u = 0, on ∂Ω,

where

A =

�
ex2+1 ex y

ex y e y2

�
.

The exact solution is also u(x , y) = sinπx sinπy. For this example, the initial mesh is

unstructured which is produced by Delauny triangulation (see Fig. 3). Table 5 is the nu-

merical results on the successive meshes produced by regular refinement (by linking edge

midpoints) of initial mesh. Table 6 lists the numerical results for each level mesh produced

by Delauny triangulation directly and without regular refinement.
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Figure 3: The initial mesh produed by Delauny triangulation.
Tables 5 and 6 show that the new recovery method can improve the accuracy of the

finite element solution obviously on unstructured meshes. In the numerical tests, we also

find that the effectiveness for the interior domain is better than the boundary layer.
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Example 5.3. The third example is to solve the following Poisson equation

−∆u= 0, in Ω,

u= uD, on ∂Ω,

where Ω = (−1,1)× (−1,1)/(0,1)× (−1,0), u = r
2

3 sin(2

3
θ) and uD denotes the Dirichlet

boundary condition.

In order to deal with the reentrant corner singularity of this problem, we need to use

adaptive finite element method. Here, the recovery method proposed in this paper is ap-

plied to construct the a posteriori error estimator ( [24,27]). In this example, we give two

cases: regular initial mesh (Fig. 4) and irregular initial mesh (Fig. 6). The corresponding

numerical results are shown in Fig. 5 and Fig. 7.

The initial mesh Mesh after 20 iterations

Figure 4: The regular initial mesh and the mesh after 20 adaptive iterations.
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The initial mesh Mesh after 20 iterations

Figure 6: The irregular initial mesh and the mesh after 20 adaptive iterations.
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From Figs. 4 and 5, we can find there exists superapproximation and superconver-

gence in the regular initial mesh case simultaneously. But from Figs. 6 and 7, there exists

superconvergence even though there is no obvious superapproximation in the irregular

mesh case. In both cases, the recovery method can give very efficient a posteriori error

estimates.

6. Concluding Remarks

In summary, the new recovery method here keeps all known superconvergence proper-

ties of SPR and PPR. From the definition of the new recovery, we know that it has the same

superconvergence property as PPR for linear element and our forthcoming consideration

will be devoted to testing this method for high order finite elements. The idea of this type
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of postprocessing technique can also be applied to that kind of interpolation which is based

on the edge integration and (or) face integration such as the interpolations of mixed finite

elements and Nédélec element. Of course, our further investigation will be devoted to

the analysis of the application of the new recovery method to a posteriori error estimates

and adaptive finite element methods under unstructured meshes, especially anisotropic

meshes.
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