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Abstract. In this paper, an improved singular boundary method (SBM), viewed as one
kind of modified method of fundamental solution (MFS), is firstly applied for the nu-
merical analysis of two-dimensional (2D) Stokes flow problems. The key issue of the
SBM is the determination of the origin intensity factor used to remove the singularity
of the fundamental solution and its derivatives. The new contribution of this study is
that the origin intensity factors for the velocity, traction and pressure are derived, and
based on that, the SBM formulations for 2D Stokes flow problems are presented. Sev-
eral examples are provided to verify the correctness and robustness of the presented
method. The numerical results clearly demonstrate the potentials of the present SBM
for solving 2D Stokes flow problems.
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1 Introduction

The incompressible viscous flow in slow motion, known as Stokes flow, is a classical
problem in fluid dynamics. It can be regarded as a subset of Navier-Stokes flows, and has
been widely applied in the industry. For the numerical analysis of Stokes flow problem,
three formulations are well-known: vorticity-stream vector function, vorticity-velocity
approach and primitive variable (velocity-pressure) approach.

Many numerical methods have been applied to the solution of the Stokes equations,
such as finite difference method (FDM) [1], finite element method (FEM) [2] and bound-
ary element method (BEM) [3]. More recently, with the development of the meshless
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method, some other simpler and fast methods have appeared in the literature, particular-
ly the method of fundamental solution (MFS) which has been used to solving Stokes flow
problems [4–6]. Over the last decade, the main advantage of the MFS, namely the simple
computational implementation, has been recognized. However, a fictitious boundary for
the distribution of source points is required in the MFS, which enormously restricts its
application in the practical project.

Some efforts have been put in the elimination of this drawback, and numerous tech-
niques are developed. A comprehensive review with respect to these methods can be
found in the [7–9]. In this work, we focus on the singular boundary method (SBM), re-
cently proposed by Chen and his collaborators [8, 10, 11]. For the SBM, the source and
collocation points are both distributed on the physical boundary, thus there is no need of
fictitious boundary required in the MFS. But, the singularity of the fundamental solution
is caused when the source point coincides with the collocation point. To isolate the sin-
gularity of the fundamental solution, the origin intensity factor is introduced, and thus
how to determine the factor is the key issue of the SBM. Prior to this study, the SBM has
since been successfully applied to potential [8] and elasticity problems [11], in which we
find that the method has a well performance.

The object of this paper is to extend the SBM for solving Stokes flow problems. Differ-
ent from our previous SBM solution of 2D elasticity problems [11], a new regularization
technique can accurately remove the singularities of the fundamental solution and it-
s derivatives, and consequently, the origin intensity factors can be determined directly
without requiring sample nodes as in [11]. Furthermore, based on the corresponding o-
rigin intensity factors, the SBM formulations for the velocity, traction and pressure are
established. The rest of this paper is organized as follows. In Section 2, the governing
equation of the Stokes problems is introduced, and the origin intensity factors for the
velocity, traction and pressure are derived. Section 3 provides four numerical examples
to assess the performance of the proposed SBM scheme. Finally, some conclusions are
provided in Section 4.

2 The SBM formulation for Stokes problems

In this paper, we always assume that Ω is a bounded domain in R2, Ωe is its open com-
plement; Γ = ∂Ω denotes their common boundary; n(x) and t(x) are the unit outward
normal vector and tangential vector of Γ to domain Ω at point x, respectively.

Assuming the incompressibility for the fluid medium, the governing equation for the
steady-state Stokes flow problems can be expressed as follows:

Momentum equation : −p,i+µui,jj=0, x∈Ω, (2.1a)

Continuity equation: ui,i=0, x∈Ω, (2.1b)

Boundary condition :

{

ui= ūi, x∈Γu,
ti = t̄i, x∈Γt,

(2.1c)
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where ui is the velocity, p the pressure, µ the coefficient of viscosity of the fluid, ūi and
t̄i the given values of velocity ui and traction ti on the boundary Γu and Γt (Γ= Γu∪Γt)
respectively, and i, j=1,2. The stress σij (i, j=1,2) in the fluid can be written as

σij =−pδij+µ(ui,j+uj,i), x∈Ω, (2.2)

and traction ti (i=1,2) on Γ can be expressed as

ti =σijnj, x∈Γ, (2.3)

where nj is the component of the outward normal vector n.

Employing indicial notation for coordinates of points x and s, i.e., x1, x2 and s1, s2,
respectively, the fundamental solutions of the Stokes equation are given as [6]

Uij(x,s)=
1

4πµ

[

−δij lnr(x,s)+r,i(x,s)r,j(x,s)
]

, i, j=1,2, (2.4a)

Pi(x,s)=
1

2π

r,i(x,s)

r(x,s)
, i=1,2, (2.4b)

where r(x,s) is the Euclidean distance between the collocation point x and source point
s,

r,i(x,s)=
∂r(x,s)

∂xi
=

xi−si

r(x,s)

expresses the derivative of the distance r with respect to xi, and δij is the Kronecker sym-
bol.

Making use of the Eqs. (2.2)-(2.4b), the fundamental solutions of the traction and
stress can be respectively expressed as

Tij(x,s)=−
1

πr
r,i(x,s)r,j(x,s)r,k(x,s)nk(x), i, j,k=1,2, (2.5a)

Dijk(x,s)=−
1

πr
r,i(x,s)r,j(x,s)r,k(x,s), i, j,k=1,2. (2.5b)

The SBM uses the fundamental solution as the basis function of its approximation, which
is similar to the MFS [7, 12–14]. However, unlike the MFS, the collocation points and
source points of the SBM are coincident and placed on the physical boundary, as seen
in Figs. 1(a) and (b). For the SBM, we have a fundamental assumption [11, 15] which is
the existence of the origin intensity factor upon the singularity of the coincident source-
collocation nodes for mathematically well-posed problems.

With the help of the above assumption, the SBM interpolation formulations for 2D
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(a) (b)

Figure 1: The source (collocation) point distributions: (a) for interior problems, (b) for exterior problems.

Stokes flow problems can be expressed as

ui(x
m)=

N

∑
n=1,n 6=m

αj(s
n)Uij(x

m,sn)+αj(s
m)uij(x

m), (2.6a)

ti(x
m)=

N

∑
n=1,n 6=m

αj(s
n)Tij(x

m,sn)+αj(s
m)tij(x

m), (2.6b)

p(xm)=
N

∑
n=1,n 6=m

αj(s
n)Pj(x

m,sn)+αj(s
m)pj(x

m), (2.6c)

where αj(s
n) is the unknown coefficient, xm and sn are the mth collocation point and the

nth source point, respectively. uij(x
m), tij(x

m), pj(x
m) are defined as the origin intensity

factors, namely diagonal and sub-diagonal elements of the SBM interpolation matrix.

2.1 The calculation of uij(x
m)

As the collocation point xm approaches to the source point sn, the distance between these
two boundary nodes trends to zero, which would cause different orders of singularities
in Eqs. (2.6a)-(2.6c). By adopting an average value of the fundamental solution over a
portion of the boundary, the calculated formulation of uij(x

m) can be expressed as

uij(x
m)=

1

Lm

∫

Γm

Uij(x
m,s)dΓ(s)

=
1

4πµLm

{

−δij

∫

Γm

lnr(xm,s)dΓ(s)+
∫

Γm

r,i(x
m,s)r,j(x

m,s)dΓ(s)
}

, (2.7)

where Lm indicates the half distance between the source point sm−1 to the source point
sm+1.
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Obviously, the second integral at the right side of Eq. (2.7) has no singularity, and thus
it can be accurately calculated by using the standard Gaussian quadrature. But, the fol-
lowing special treatment is required for the first integral which has the weak singularity

∫

Γm

lnr(xm,s)dΓ(s)=
∫ 1

−1
J(ξ)lnr(xm,ξ)dξ

=
∫ 1

−1
[J(ξ)− J(η)]lnr(xm,ξ)dξ+ J(η)

∫ 1

−1
lnr(xm,ξ)dξ , (2.8)

in which ξ is the intrinsic coordinate that transforms the integral so that it is mapped
onto the interval [−1,1], η ∈ [−1,1] represents the position of xm, and J(ξ) denotes the
Jacobian of the transformation. Now, the two integrals at the right side of Eq. (2.8) can
be well calculated by using the standard Gaussian quadrature and analytical technique,
respectively.

2.2 The calculation of tij(x
m)

By using a subtracting and adding-back technique [16], the SBM traction formulation for
interior problems can be re-expressed as follows

ti(x
m)=

N

∑
n=1

αj(s
n)TI

ij(x
m,sn)=

N

∑
n=1,n 6=m

(

αj(s
n)−

Ln

Lm
αj(x

m)
)

TI
ij(x

m,sn)

+
αj(x

m)

Lm

N

∑
n=1

[

LnTI
ij(x

m,sn)+LnTE
ij (s

n,xm)
]

, (2.9)

where

N

∑
n=1

LnTE
ij (s

n,xm)=0, (2.10)

and Ln is the half distance between source nodes sn−1 and sn+1, the superscript I and E
denote the interior domain problem and the exterior domain problem, respectively. The
derivations of Eq. (2.10) are given as in Appendix.

Based on the dependency of the outward normal vector on two kernel functions of
interior and exterior problems [17], one can obtain the following relationship

TI
ij(s

n,xm)=κTE
ij (s

n,xm), (2.11)

where κ is equal to 1 as m=n and is equal to −1 as m 6=n.
Substituting (2.11) into (2.9), we have

ti(x
m)=

N

∑
n=1,n 6=m

αj(s
n)TI

ij(x
m,sn)−

αj(x
m)

Lm

( N

∑
n=1,n 6=m

LnTI
ij(s

n,xm)−χI
m

)

, (2.12)
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in which

χI
m= LmTI

ij(x
m,sm)+LmTI

ij(s
m,xm). (2.13)

The terms TI
ij(x

m,sn) and TI
ij(s

n,xm) in Eq. (2.12) are regular and can be calculated di-

rectly because xm and sn are not coincident, i.e., n 6=m. The remaining term χI
m can be

approximated as the following integral

χI
m≈

∫

Γm

TI
ij(x

m,s)+TI
ij(s,xm)dΓ(s). (2.14)

We can easily find that the integral (2.14) has no singularity, so it can be accurately calcu-
lated by using the standard Gaussian quadrature.

Using the procedure described above, the final form of the regularized traction equa-
tion for interior problems can be written as

ti(x
m)=

N

∑
n=1,n 6=m

αj(s
n)TI

ij(x
m,sn)−

αj(x
m)

Lm

( N

∑
n=1,n 6=m

LnTI
ij(s

n,xm)−χI
m

)

(2.15)

and then the origin intensity factor can be calculated by the following formulation

tij(x
m)=−

1

Lm

( N

∑
n=1,n 6=m

LnTI
ij(s

n,xm)−χI
m

)

. (2.16)

Using a similar derivation, the regularized traction equation for exterior problems can be
easily constructed as

ti(x
m)=

N

∑
n=1,n 6=m

αj(s
n)TE

ij (x
m,sn)+

αj(x
m)

Lm

( N

∑
n=1,n 6=m

LnTE
ij (s

n,xm)+χE
m

)

, (2.17)

where

χE
m≈

∫

Γm

TE
ij (x

m,s)+TE
ij (s,xm)dΓ(s). (2.18)

Also, the origin intensity factor for exterior problems can be expressed as

tij(x
m)=

1

Lm

( N

∑
n=1,n 6=m

LnTE
ij (s

n,xm)+χE
m

)

. (2.19)

In order to carry out integrations in Eqs. (2.8), (2.14) and (2.18), the boundary has to be
discretised into boundary mesh. However, the numerical integration in the evaluation of
origin intensity factors only increase negligible computing costs in terms of the total costs,
while keeps essential meshless merit since mesh is only used for diagonal numerical
integration.
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2.3 The calculation of pj(x
m)

By adopting a subtracting and adding-back technique, the pressure equation (2.6c) for
interior problem can be expressed as

p(xm)=
N

∑
n=1,n 6=m

(

αj(s
n)−

Ln

Lm
αj(x

m)
)

PI
j (x

m,sn)+
1

Lm
αj(x

m)
N

∑
n=1

LnPI
j (x

m,sn), (2.20)

where Ln denotes the half distance of source points sn−1 and sn+1. Making use of the
notation

ψ(xm,sn)=
1

2π
lnr(xm,sn) (2.21)

and the following relationship

PI
j (x

m,sn)=
∂ψI(xm,sn)

∂n(xm)
nj(x

m)+
∂ψI(xm,sn)

∂t(xm)
tj(x

m), (2.22)

the Eq. (2.20) can be rewritten as

p(xm)=
N

∑
n=1,n 6=m

(

αj(s
n)−

Ln

Lm
αj(x

m)
)

PI
j (x

m,sn)

+
αj(x

m)

Lm

{

nj(x
m)

N

∑
n=1

(

Ln
∂ψI(xm,sn)

∂n(xm)
+Ln

∂ψE(xm,sn)

∂n(sn)

)

+tj(x
m)

N

∑
n=1

(

Ln
∂ψI(xm,sn)

∂t(xm)
+Ln

∂ψE(xm,sn)

∂t(sn)

)}

, (2.23)

in which

N

∑
n=1

Ln
∂ψE(xm,sn)

∂n(sn)
=0,

N

∑
n=1

Ln
∂ψE(xm,sn)

∂t(sn)
=0. (2.24)

The derivations of Eq. (2.24) are provided in Appendix.

Based on the dependency of the outward normal or tangent vectors on two kernel
functions of interior and exterior problems, we can obtain following relationships [17]:

∂ψI(xm,sn)

∂n(sn)
=κ

∂ψE(xm,sn)

∂n(sn)
,

∂ψI(xm,sn)

∂t(sn)
=κ

∂ψE(xm,sn)

∂t(sn)
, (2.25)

in which κ is equal to 1 as n=m and is equal to −1 as n 6=m. Besides, for arbitrarily smooth
boundary, we assume that the source point sn moves gradually close to the collocation
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point xm along a line segment, e.g., the tangential direction of xm, then we have















lim
sn→xm

∂ψI(xm,sn)

∂n(xm)
+

∂ψI(xm,sn)

∂n(sn)
=0,

lim
sn→xm

∂ψI(xm,sn)

∂t(xm)
+

∂ψI(xm,sn)

∂t(sn)
=0.

(2.26)

With the help of Eqs. (2.25) and (2.26), the finally regularized pressure equation can be
obtained as follows

p(xm)=
N

∑
n=1,n 6=m

αj(s
n)PI

j (x
m,sn)

−
αj(x

m)Ln

Lm

N

∑
n=1,n 6=m

(

nj(x
m)

∂ψI(xm,sn)

∂n(sn)
+tj(x

m)
∂ψI(xm,sn)

∂t(sn)

)

. (2.27)

It can be observed from the above equation that the origin intensity factor pj(x
m) for

interior problems can be calculated by using the formulation:

pj(x
m)=−

Ln

Lm

N

∑
n=1,n 6=m

(

nj(x
m)

∂ψI(xm,sn)

∂n(sn)
+tj(x

m)
∂ψI(xm,sn)

∂t(sn)

)

. (2.28)

With the similar derivation, the regularized pressure equation for exterior problems can
be expressed as

p(xm)=
N

∑
n=1,n 6=m

αj(s
n)PE

j (x
m,sn)−

αj(x
m)

Lm

{

nj(x
m)

+
N

∑
n=1,n 6=m

(

Ln
∂ψE(xm,sn)

∂n(sn)
nj(x

m)+Ln
∂ψE(xm,sn)

∂t(sn)
tj(x

m)
)}

, (2.29)

and the origin intensity factor is given as

pj(x
m)=

−1

Lm

{

nj(x
m)+

N

∑
n=1,n 6=m

(

Ln
∂ψE(xm,sn)

∂n(sn)
nj(x

m)+Ln
∂ψE(xm,sn)

∂t(sn)
tj(x

m)
)}

. (2.30)

2.4 The formulations of velocity and stress in the domain

Using the procedure described above, we have derived the SBM formulations for both
the velocity and traction boundary conditions (2.1c). For the boundary value problem
(2.1a)-(2.1c), unknown coefficients aj(s

n) (j=1,2, n=1,··· ,N) can be determined by col-
locating N observation points on the boundary conditions. Once all boundary unknowns



W. Z. Qu and W. Chen / Adv. Appl. Math. Mech., 7 (2015), pp. 13-30 21

are solved, the velocity and stress at any inner point y can be calculated by using the fol-
lowing formulations

ui(y)=
N

∑
n=1

αj(s
n)Uij(y,sn), (2.31a)

σij(y)=
N

∑
n=1

αk(s
n)Dijk(y,sn). (2.31b)

As the point y approaches the boundary, the above formulations will encounter the well-
known boundary layer effect, as observed as well in the boundary element method. This
drawback can be remedied by using the technique in paper [18]. In addition, the SBM for-
mulation for 3D stokes problems can be obtained through the similar derivations. Some
work along this line is already underway and will be reported in a subsequent paper.

3 Numerical examples

We present four numerical experiments to demonstrate the accuracy and efficiency of
the proposed SBM formulations for solving 2D Stokes flow problems. An experimental
program based on the present method is written in Compaq Visual FORTRAN 6.6. In
all examples, the coefficient of viscosity is µ = 0.5, Ndenotes the number of boundary
nodes. In all numerical examples, the boundary nodes are uniformly distributed on the
boundary unless a special description is given.

3.1 Flow caused with the uniform rotation of a circular cylinder

In this case, we consider the flow in an infinite 2D medium caused with the uniform
rotation of a circular cylinder, as shown in Fig. 2. The radius of the cylinder is R=1 and
the angular velocity is ω̂ = 1. The analytical solution [19] of this problem in the polar
coordinate can be given as follows

ur(r,θ)=0, uθ(r,θ)= ω̂R2/r, σrθ(r,θ)=−2µω̂R2/r2 and P(r,θ)=0. (3.1)

The velocity is specified on the boundary using the above solution.

Figure 2: A cylinder with uniform rotation in an infinite domain.
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Table 1: Results of the velocity uθ and the shear stress σrθ at the point (4,0).

N
Exact solution uθ : 0.2500 Exact solution σrθ :−0.0625

Numerical Numerical (Non) Numerical Numerical (Non)
20 0.2518058E+00 0.2531024E+00 -0.6295145E-01 -0.6331438E-01
60 0.2506039E+00 0.2520482E+00 -0.6265097E-01 -0.6300217E-01

100 0.2503622E+00 0.2514168E+00 -0.6259055E-01 -0.6276409E-01
140 0.2502587E+00 0.2509977E+00 -0.6256467E-01 -0.6261948E-01
180 0.2502012E+00 0.2506284E+00 -0.6255029E-01 -0.6259028E-01
220 0.2501646E+00 0.2505215E+00 -0.6254114E-01 -0.6257649E-01
260 0.2501392E+00 0.2505029E+00 -0.6253481E-01 -0.6256601E-01
300 0.2501207E+00 0.2504913E+00 -0.6253017E-01 -0.6256158E-01

Table 1 lists the results of the velocity uθ and the shear stress σrθ at the inner point (4,0)
by using the present method as the total number of boundary nodes varies from 20 to 300.
As we can see, the numerical results remain in good agreement with the exact solutions.
Furthermore, with an increasing number of boundary nodes, the present SBM performs
stably with a fast convergence rate and the relative errors for uθ and σrθ are both less
than 5% as the number of the boundary nodes reaches up to 300. We also observe that
the satisfied numerical results sill can be obtained by using non-uniformly distributed
boundary nodes (the ratio of the boundary node numbers in four quadrants is 3 :2 :3 :2).

With using 40 boundary nodes, the field solutions of uθ(r,0) and σrθ(r,0) at different
points (r,0) are plotted in the Fig. 3. Good match can be observed from the compari-
son between the numerical and exact solutions, which indicates that satisfied results can
be obtained by the present SBM even though very few boundary nodes are distributed
on the boundary. Table 2 shows the numerical results of the pressure p computed at
boundary points in the angle interval [0,0.5π) using the Eq. (2.29). Obviously, the SBM
formulation (2.29) for the pressure passes the test successfully.

Figure 3: Velocity uθ and shear stress σrθ at the different points (r,0).
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Table 2: Results of the pressure p at boundary points in the angle interval [0,0.5π).

θ Numerical θ Numerical
0.00π -0.2037259E-13 0.25π -0.1925196E-13
0.05π -0.2223222E-13 0.30π -0.2009504E-13
0.10π -0.2082362E-13 0.35π -0.2307182E-13
0.15π -0.2034484E-13 0.40π -0.1871420E-13
0.20π -0.2247508E-13 0.45π -0.2002218E-13
Exact 0.0000000E+00

3.2 A recirculating flow in a circular cavity

We next tackle a model problem consisted of a recirculating flow in a circular cavity. The
radius of the circular is assumed to be unity. The configuration and boundary conditions
of the problem is depicted in Fig. 4. In the low half of the boundary, the velocity uθ=ur=0
are prescribed, and in the upper half, the velocity uθ =1 and ur =0 are imposed.

Figure 4: Circular cavity flow problem with boundary conditions.

In this model, there are 80 boundary nodes on the circular boundary. Fig. 5 shows the
velocity vector plots within the fluid obtained by using analytical formulation [20] and
the proposed SBM, where 800 points {(ρ,θ)|ρ = i/21, θ = (1+2j)π/40, i = 1,··· ,20; j =
1,··· ,40} are distributed inside the domain. It can be seen that present computations give
very satisfied results as compared with the exact solutions. We also can observed that the
velocity becomes larger as the calculated point approaches to the upper half of boundary
and reduces to zero as the calculated point approaches to the low half of boundary, which
reflects the reasonable physical characteristics.

Fig. 6 shows the comparison of velocity profile on the vertical centerline, where the
SBM solutions are compared with the exact solutions [20] and the numerical solutions
obtained by the multiquadrics method (MQ) with 612 collocation points [21]. As can be
seen in Fig. 6, the present SBM produces more accurate results than the MQ scheme in
the computation of velocity uθ, even if only 80 collocation points are used.
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(a) (b)

Figure 5: Vector plot of the velocity field for a circular cavity: (a) Exact solution, (b) SBM solution.

Figure 6: Velocity profile on the line x=0 for a circular cavity.

3.3 Shear flow between two parallel plates

In this case, the flow between two parallel plates is considered. The top plate is moving
with a constant speed v0 in the x-direction and no slip condition is assumed between the
plates and fluid. The dimension of the model is shown in Fig. 7, and H = 1, L= 3. The
analytical solution [19] for this problem is

ux(x,y)=v0y/H, uy=0, (3.2)

where v0=10.

The mixed boundary conditions are used in this case, so the SBM formulations (2.6a)
and (2.6b) can both be tested. For the upper boundary, ux = v0 and uy = 0 are specified,
while for lower boundary, velocity are given as ux =uy =0. For the two vertical bound-
aries, tractions are givens as tx =0, ty=µv0/H at x= L; and tx =0, ty=−µv0/H at x=0.
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Figure 7: Flow between two parallel plates.

Table 3 lists the numerical errors of velocity ux at the point A(L/2,H/3) by using
present SBM, compared with those by using the MFS, BEM and modified MFS (MMF-
S) [22,23]. For the MFS solutions, the fictitious boundary has the same geometrical shape
of the corresponding boundary. The distance d of the fictitious boundary away from the
physical boundary is also quantified by the unit l which is the interval spacing of nodes
on the physical boundary. The BEM solutions are obtained using the linear elements. The
SBM, MFS and MMFS have the same boundary nodes distribution.

Table 3: Relative errors (RE) of the velocity ux at the point A(L/2,H/3).

N
Exact: 0.3333333E+01

RE (MFS d=2l) RE (BEM) RE (MMFS) RE (SBM)
24 0.6666852E-03 0.8743401E-02 0.3847285E-01 -0.1406898E-01
40 -0.5184799E-03 0.3751984E-02 0.5442395E-02 -0.6769428E-02
80 -0.4128827E-01 0.9657298E-03 0.1307427E-02 -0.2717290E-02

160 -0.1767471E-02 0.4761407E-03 0.8622874E-03 -0.1140705E-02
320 -0.5977169E-04 0.1007384E-03 0.5429431E-03 -0.4900665E-03
640 -0.4058019E-03 0.7043791E-04 0.3042955E-03 -0.2109516E-03

1280 0.7539638E-03 0.5173159E-04 0.9575261E-04 -0.8984582E-04

From this table, we can observe that the present SBM, BEM and MMFS perform very
well. The BEM solutions are slightly more accurate than those calculated by the SBM.
But, the SBM is easier to program, and mathematically simple than the BEM. Compared
with the MMFS results, the SBM solutions are less accurate with using small number of
boundary nodes, and conversely are slightly more accurate when using more boundary
nodes. It is also observed that the MFS solutions with the fictitious boundary d=2l dont
show convergence. This demonstrates that the location of the source nodes is vital to the
accuracy and stability of the MFS solution.

Fig. 8 shows the comparison of tractions on boundary nodes with using the exact
solution formulation and SBM formulation. Although only 48 boundary nodes are dis-
tributed on the boundary, we can see from the figure that satisfying results have been
obtained.



26 W. Z. Qu and W. Chen / Adv. Appl. Math. Mech., 7 (2015), pp. 13-30

Figure 8: Traction profile at boundary nodes on the line y=0.

3.4 Flow through a channel with multiple cylinders

In this case, we consider a model with a 4×5 array of elliptic cylinders placed in the
middle section of a channel {(x,y)|−1.5< x< 1.5, −0.5< y< 0.5}. The semi-major axis
of every elliptic cylinder is 1/20, and the semi-minor axis is 1/30. At the inlet (x=−1.5)
and outlet (x=1.5) of the channel, the flow has the following velocity profile

u1=4v0

(1

2
−y

)(1

2
+y

)

, u2=0, (3.3)

where v0 =1 is the maximum value of the velocity. No slip boundary conditions are as-
sumed on the other boundaries. Note that the boundary nodes are uniformly distributed
on the channel and every cylinder boundaries respectively.

By using the SBM and BEM, Fig. 9 plots velocity solutions for a 4×5 array of ellip-
tic cylinders with uniform and irregular distributions. The BEM solutions are obtained
using the 600 linear elements (1200 boundary nodes), where channel and every cylinder
boundaries are respectively discretised with 200 and 20 elements. For the SBM solutions,
we also use 1200 boundary nodes, 400 of which on the channel boundary and 40 on ev-
ery cylinder boundary. It can be observed that numerical results for the SBM agree pretty
well with those for the BEM.

4 Conclusions

This paper proposes the SBM formulations for 2D Stokes flow problems. The origin in-
tensity factors for the velocity, traction and pressure equations are derived, which is the
key work of the SBM. The numerical solutions obtained with the present method agree
well with the exact solutions. Furthermore, we can observe the numerical results exhibit
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(a) (b)

(c) (d)

Figure 9: The velocity field of a channel with 20 elliptic cylinders by using the BEM: (a) for uniform distribution
(b) for irregular distribution; by using the SBM: (c) for uniform distribution (d) for irregular distribution.

a stable convergence trend in all tested examples. All these demonstrate that the present
SBM is efficient and accurate for the numerical analysis of 2D Stokes flow problems.

Appendix: Derivation of Eqs. (2.10) and (2.24)

According to the direct boundary integral equation [24], we have

τuj(x
m)=

∫

Γ

[

Uij(s,xm)ti(s)−Tij(s,xm)ui(s)
]

dΓ(s), (A.1)

where i, j=1,2, ui and ti denote the velocity and traction, respectively, and

τ=

{

1, x∈Ω,
0, x∈Ωe.

(A.2)

By employing the simple test method (t1(s)= t2(s)=0 when u1(s)=1 and u2(s)=0), we
can write Eq. (A.1) as follows

∫

Γ
T11(s,xm)dΓ(s)=−τ,

∫

Γ
T12(s,xm)dΓ(s)=0. (A.3)

In a similar way, by employing the simple test method (t1(s)= t2(s)= 0 when u1(s)= 0
and u2(s)=1), we can write Eq. (A.1) as follows

∫

Γ
T21(s,xm)dΓ(s)=0,

∫

Γ
T22(s,xm)dΓ(s)=−τ. (A.4)
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We can rewrite Eqs. (A.3) and (A.4) as
∫

Γ
Tij(s,xm)dΓ(s)=−δijτ, (A.5)

where δij is the Kronecker delta, i.e.,
∫

Γ
Tij(s,xm)dΓ(s)=−δij, x∈Ω, (A.6a)

∫

Γ
Tij(s,xm)dΓ(s)=0, x∈Ωe. (A.6b)

When the field point xm approaches the boundary, we can discretize Eq. (A.6b) as follows

∫

Γ
TE

ij (s,xm)dΓ(s)=
N

∑
n=1

∫

Γn

TE
ij (s,xm)dΓ(s)≈

N

∑
n=1

LnTE
ij (s,xm)=0, xm ∈Γ, (A.7)

where Ln is half distance between the source nodes sn−1 and sn+1. Thus, we have

N

∑
n=1

LnTE
ij (s,xm)=0, xm ∈Γ, (A.8)

which is the Eq. (2.10) in Section 2.2.

Lemma A.1 (see [25]). Assume Γ be a piecewise smooth curve, we have
∫

Γ

∂lnr(xm,s)

∂n(s)
dΓ(s)=

{

2π, xm ∈Ω,
0, xm ∈Ωe,

(A.9a)

∫

Γ

∂lnr(xm,s)

∂t(s)
dΓ(s)=0, xm ∈Ω∪Ωe, (A.9b)

where Γ denotes the boundary of the domain Ω as well as the outside domain Ωe, s the source
points, xm the field point.

Based on the Lemma A.1, we can easily obtain the following equations
∫

Γ

∂ψE(xm,s)

∂n(s)
dΓ(s)=0,

∫

Γ

∂ψE(xm,s)

∂t(s)
dΓ(s)=0, xm ∈Ωe, (A.10a)

∫

Γ

∂ψI(xm,s)

∂n(s)
dΓ(s)=1,

∫

Γ

∂ψI(xm,s)

∂t(s)
dΓ(s)=0, xm ∈Ω. (A.10b)

In a similar way, based on the (A.10a) and (A.10b), we have

N

∑
n=1

Ln
∂ψE(xm,sn)

∂n(sn)
=0,

N

∑
n=1

Ln
∂ψE(xm,sn)

∂t(sn)
=0, xm ∈Γ, (A.11a)

N

∑
n=1

Ln
∂ψI(xm,sn)

∂n(sn)
=1,

N

∑
n=1

Ln
∂ψI(xm,sn)

∂t(sn)
=0, xm ∈Γ, (A.11b)

where Eq. (A.11a) is the Eq. (2.24) in the previous Section 2.3. Besides, the Eq. (A.11b) can
be used for the derivation of Eq. (2.27).
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