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Abstract. This paper aims to investigate nonlinear oscillations of an elevator cable in
a drum drive. The governing equation of motion of the objective system is developed
by virtue of Lagrangian’s method. A complicated term is broached in the govern-
ing equation of the motion of the system owing to existence of multiplication of a
quadratic function of velocity with a sinusoidal function of displacement in the kinetic
energy of the system. The obtained equation is an example of a well-known category
of nonlinear oscillators, namely, non-natural systems. Due to the complex terms in
the governing equation, perturbation methods cannot directly extract any closed for-
m expressions for the natural frequency. Unavoidably, different non-perturbative ap-
proaches are employed to solve the problem and to elicit a closed-form expression for
the natural frequency. Energy balance method, modified energy balance method and
variational approach are utilized for frequency analyzing of the system. Frequency-
amplitude relationships are analytically obtained for nonlinear vibration of the ele-
vator’s drum. In order to examine accuracy of the obtained results, exact solutions
are numerically obtained and then compared with those obtained from approximate
closed-form solutions for several cases. In a parametric study for different nonlinear
parameters, variation of the natural frequencies against the initial amplitude is investi-
gated. Accuracy of the three different approaches is then discussed for both small and
large amplitudes of the oscillations.

AMS subject classifications: 70K30, 70E55

Key words: Nonlinear oscillation, perturbation methods, non-perturbative approach, frequency-
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1 Introduction

The nonlinearity and complexity of the real world phenomena enforce leading edge sci-
entists to develop innovative ways for understanding of the enigmatic behavior of the
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nature. There is a broad compendium of detailed information and knowledge regarding
nonlinear systems in different outstanding books. Inevitably, a number of researchers
have devoted their time and effort to find potent approaches for investigating of the non-
linear phenomena. Owing to the difficulty of the corresponding governing equations, a
plenty of approaches have been developed so far to solve such sophisticated problem-
s. As the earliest effort in the mysterious and wondrous road of the investigation of the
nonlinear phenomena, perturbation-based methods can be referred [1,2]. The abovemen-
tioned types of straightforward methods have been widely used and modified mainly by
Nayfeh et al. [1–3] and recently by other researchers [4–12]. They have been also em-
ployed and ameliorated for analyzing of diverse types of nonlinear structural systems.
Adomian Decomposition method [16], Variational iteration method [17] and Homotopy
analysis method [18–20] have been recently broached by researchers to solve nonlinear
systems. In comparison with perturbation methods, more profound knowledge and per-
ception can be provided using the aforesaid new analytical methods [21–26]. Hamilto-
nian approach [27], Energy Balance Method [28], Modified Energy Balance Method [29],
Max-Min approach [30], Variational approach [31] and frequency amplitude formula-
tion [32] can be cited as newly developed non-perturbative approaches. Efficiency and
potency of these analytical methods have been proved in variety of complicated non-
linear cases, namely, non-natural systems, non-Hamiltonian systems, fractional order
systems and generalized Duffing systems [33–42]. Many different kinds of non-natural
systems have been analyzed so far by several researchers [8, 43–50]. The following Ex-
amples 1.1-1.6 (with models and governing equations) of non-natural systems succinctly
delineates a plenty of well-known non-natural systems which have been analytically in-
vestigated so far. In the present study, three different non-perturabtive approaches are
employed to extract frequency-amplitude relationship for nonlinear oscillations of an el-
evator cable in a drum drive elevator system. The governing equation of the nonlinear
system is developed using Lagrangian’s method. In accordance with the obtained ODE,
it can be mentioned that the considered system is a non-natural structure.

Example 1.1. Motion of a particle on rotating parabola [8, 43, 44].

The governing equation is

(1+4p2x2)ẍ+Λx+4p2 ẋ2x=0.

The motion of the system described by the following parabola in which p is a positive
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constant
z= px2.

Example 1.2. Vibration of two-mass spring system [8].

The governing equation is

(m1+
m2x2

l2−x2 )ẍ+
m2l2xẋ2

(l2−x2)2 +kx+m2g
x

(l2−x2)1/2 =0.

Example 1.3. Vibration of a tapered beam [45].

The governing equation is

ü+α0u+α1u3+β1[u2ü+uu̇2]=0.

α0, α1, β1 are constant parameters which can be obtained using the Galerkin procedure
from the governing equation of the system.

Example 1.4. Vibration of the trammel pendulum [46].
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The governing equation is

(ācos2θ+ b̄sin2θ)θ̈+0.5(b̄2− ā2)θ̇2+gb̄sinθ=0.

Define g, θ, g is gravitational acceleration, θ represents rotational oscillations of the tram-
mel pendulum.

Example 1.5. Vibration of a pendulum attached to a rolling wheel [8].

The governing equation is

(l2+r2−2rlcosθ)θ̈+rlsinθθ̇2+glsinθ=0.

Example 1.6. Vibration of a micro-electromechanical system [47].

The governing equation is

ẍ(a1x4+a2x2+a3)+a4x+a5x3+a6x5+a7x7=0.

α0, α1, α2, α3, α4, α5, α6, α7 are constant parameters which can be obtained using the
Galerkin procedure from the governing equation of the system.

The energy balance method, modified energy balance method and variational ap-
proach are applied to delineate the frequency-amplitude relationship of the objective
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problem. Three different and precise frequency-amplitude relationships are analytical-
ly achieved for large oscillations of the elevator’s drum. Parameter expansion method
which was already employed in an earlier paper [50] is actually a specific type of the
perturbation approach [51]. All of the employed approaches are very straightforward
in comparison with parameter expansion method, and they are very efficient for solv-
ing the governing equations without any demand to Taylor series expansion. Owing to
the above-mentioned capability of the employed methods, the obtained solutions here-
in are more accurate than those obtained from parameter expansion method. The exact
solutions (in addition to numerical solutions [50]) of the target system have been devel-
oped in this study in order to verify the obtained analytical solutions. In order to avere
the axiomatic amelioration of the obtained analytical solutions, they are tabulated to be
compared with those found from the exact numerical solutions. It is corroborated the
obtained analytical solutions are palpable improvement and very contiguous to the exact
response of the system.

It is demonstrated that the utilized methods are rather reliable and efficient for elici-
tation of the periodic solutions of the corresponding non-natural systems. A parametric
study is then carried out and natural-frequencies are plotted against nonlinear parame-
ters. In addition, the frequency ratio (defined as the ratio of the nonlinear natural fre-
quency to the linear one) is obtained and discussed for different initial amplitudes. The
most optimal technique for both small and large amplitudes of oscillations is eventually
recognized.

2 Mathematical modeling

A physical model of an elevator cable in a drum drive system is schematically shown in
Fig. 1.

To derive the governing equation of motion of the system, the Lagrangian method is

Figure 1: Elevator cable in a drum drive elevator system [50].
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applied, i.e.,

T= l2θ̇2
(1

2
m1+2m2sin2θ

)
, (2.1a)

U= gl(1−cosθ)(m1+2m2), (2.1b)
d
dt

(∂L
∂θ̇

)
− ∂L

∂θ
=0, L=T−U. (2.1c)

Where T and U stand for the kinetic and potential energy of the system, respectively.
Thus, the governing equation is obtained as

lθ̈(m1+4m2sin2θ)+2lθ̇2sin2θ+g(m1+2m2)sinθ=0 (2.2)

or

θ̈(1+2αsin2θ)+αθ̇2sin2θ+βsinθ=0, where α=
2m2

m1
, β=

g
l
(1+α). (2.3)

It is important to note that the nonlinear coefficient that appears in the inertial part of
the above equation cannot be ignored. The magnitude of α is reasonably large in real
applications and hence one must avoid such a simplification.

3 Solution procedure

3.1 Energy balance method

Eq. (2.3) is analytically solved using the EBM in this section. The corresponding varia-
tional principle can be obtained as

J=
∫ t

0

[
− 1

2
θ̇2(1+2αsin2θ)−βcosθ

]
dt. (3.1)

Supporting Hamiltonian is obtained to be

H=
1
2

θ̇2(1+2αsin2θ)−βcosθ=−βcosA. (3.2)

The initial conditions are assumed to be

θ(0)=A, θ̇(0)=0. (3.3)

Satisfying Eq. (3.3), the function θ=Acosωt is taken into account to be the trail function.
The following residual function is then obtained

R(t)=
1
2

A2ω2sin2ωt(1+2αsin2(Acosωt))−βcos(Acosωt)+βcos(A)=0. (3.4)
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According to the standard EBM procedure and employing the collocation method at ωt→
π/4, the frequency-amplitude relationship is analytically obtained as

ωEBM =
2
A

√√√√β
(

cos
(√2

2 A
)
−cos(A)

)
1+2αsin2(√2

2 A
) . (3.5)

Here the Galerkin-Petrov technique is combined with the standard EBM to find more
accurate solution. Accordingly, integral of the residue vanishes with the kernel of the
trail function so that

R̃=
∫ T/4

0
R(t)cosωtdt=0. (3.6)

Substituting Eq. (3.4) into Eq. (3.6), gives

R̃=
∫ π/2

0

[1
2

A2ω2sin2t
(
1+2αsin2(Acost)

)
−βcos(Acos(t))+βcos(A)

]
costdt=0. (3.7)

Consequently, the nonlinear frequency of the system obtains as

ωMEBM =
1
A

√√√√ 2β
∫ π/2

0 [cos(Acost)−cosA]costdt∫ π/2
0 [sin2t(1+2αsin2(Acost))]costdt

. (3.8)

3.2 Variational approach

Variational approach is applied to solve Eq. (2.3) in this section. According to the princi-
ples of the method [31] and using Eq. (3.1), the variational formulation for the system is
obtained as

J(A)=
∫ T/4

0

[
− 1

2
A2ω2sin2ωt(1+2αsin2(Acosωt))−βcos(Acosωt)

]
dt. (3.9)

The stationary condition with respect to A reads

∂J
∂A

=
∫ T/4

0

[
−Aω2sin2ωt(1+2αsin2(Acosωt)+αAsin(2Acosωt)cosωt)

+βsin(Acosωt)cosωt
]
=0. (3.10)

From the above equation, the closed form frequency-amplitude is given by

ωVA =

√√√√ β
∫ π/2

0 sin(Acost)costdt∫ π/2
0 Asin2t(1+2αsin2(Acost)+αAsin(2Acost)cost)dt

. (3.11)

Besides, by using the elliptic integration technique the exact numerical value of natural
frequency is obtained from Eq. (2.3) to be

ωE =
π

2A

[∫ π/2

0

( (1+2αsin2(Asinφ))cosφ

2β(cos(Asinφ)−cosA)

)1/2

dφ

]−1

. (3.12)
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4 Discussion and numerical results

In this part, a numerical analysis is utilized to examine validity of the obtained results.
Influences of varying amplitude are evaluated on the natural frequencies of the system.
Furthermore, effects of the nonlinear parameters on the frequency responses of the eleva-
tor’s drum are studied. Figs. 2 to 4 demonstrate time responses of the system for different
initial amplitudes and nonlinear parameters in a full period of oscillation. It is seen that,
variational approach is the most accurate technique for analyzing of such a system.

The modified energy balance method furnishes more accurate solution than the clas-
sical EBM in case of the large amplitude of the oscillations.

In contrast, classical EBM predicts more precise results in small amplitude oscillations
and in weakly nonlinear systems. To give a clearer picture of this accuracy analysis, the
achieved natural frequencies are listed in Table 1.

As evidenced by results of Table 1, the variational approach yields the most optimal
solution method for obtaining the natural frequencies of the elevator’s drum. Besides,
Figs. 5 and 6 represent phase-plane trajectories of the target system with respect to differ-

Figure 2: Comparison of the system response obtained by different methods for A=π/4, α=2, β=4.

Figure 3: Comparison of the system response obtained by different methods for A=π/2, α=2, β=4.
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Figure 4: Comparison of the system response obtained by different methods for A=π/4, α=2, β=20.

ent parameters. It is found that nonlinear equation of the objective system has a conserva-
tive type trajectory. Moreover, C it is revealed that the elevator’s drum is a Hamiltonian
system. The obtained solutions are also verified in the phase-plane domain. Nonlinear
natural frequencies are plotted with respect to a set of varying nonlinear parameters in
Figs. 7 and 8. These figures show that (a) by an increase in the nonlinear parameter α
(mass ratio), value of the nonlinear natural frequency increases and (b) the accuracy of
the modified energy balance method is enhanced when the nonlinearity index increas-
es. The variational approach is found to be the most accurate method for solving the
objective non-natural system problem.

Non-dimensional frequency ratios are plotted against the variations of the initial con-
ditions in Figs. 9 and 10. As evidenced by those figures, value of the frequency ratios
decreases by an increase in the initial amplitude of the oscillation. The abovementioned
result plays a very crucial role in the dynamicl behavior of the objective system as well as

Table 1: Natural frequencies (rad/s) and relative errors for various lengths of connecting link (A=π/4, α=2).

l(m)
ωVA ωEBM ωEMEBM ωE

(Relative Errors %) (Relative Errors %) (Relative Errors %)

0.1 9.394505 9.268540 9.857774 9.530521
(1.427159) (2.748862) (3.433735)

0.5 4.201350 4.145017 4.408530 4.262228
(1.428298) (2.749983) (3.432541)

1 2.9708033 2.930969 3.117302 3.013850
(1.428297) (2.749985) (3.432543)

5 1.328583 1.310769 1.394099 1.3478402
(1.428701) (2.750383) (3.432119)

10 0.939450 0.926854 0.985777 0.953067
(1.428703) (2.750383) (3.432119)

15 0.767058 0.756773 0.804884 0.778177
(1.428804) (2.750482) (3.432013)
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Figure 5: Phase-plane trajectories of the system A=π/4, π/2, α=2, β=4.

Figure 6: Phase-plane trajectories of the system A=π/4, π/2, α=2, β=20.

Figure 7: Variation of natural frequency with respect to α for A=π/4, β=1.

real applications. Indeed, it should be highlighted that the real natural frequency is less
than those found from linearization theories.
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Figure 8: Variation of natural frequency with respect to α for A=π/2, β=1.

Figure 9: Variation of frequency ratio with respect to initial amplitude (α=0.1, β=2).

Figure 10: Variation of frequency ratio with respect to initial amplitude (α=1, β=10).

5 Conclusions

In this paper, nonlinear oscillations of an elevator cable in a drum drive elevator sys-
tem was fully scrutinized. In order to obtain the governing equation of motion of the
objective system, Lagrangian’s method was exerted. Three non-perturbative approach-
es, namely, variational approach, classical energy balance method and modified energy
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balance method were performed to obtain frequencyCamplitude relationship of the tar-
get system. The extracted closed form solutions were implemented as a potent tool to
meticulously investigate dynamical behavior of the considered system with respect to
the initial amplitudes as well as nonlinear parameters. Exact numerical solutions were
obtained to analyze potency and validity of the employed approaches. The following
points can be highlighted as chief conclusions of the present study:

1. Variational approach is the most optimal and efficient approach for the elicitation
of the frequency-amplitude relationship of the oscillations of the elevator’s drum
among utilized methods.

2. The effectiveness and potency of the modified energy balance method were proved
in comparison with the classical energy balance method when the target system
oscillates with both large amplitude and strong nonlinearity.

3. It has been represented that an increment in the nonlinear factor α (mass ratio),
results in decrement of the value of the natural frequency of the objective system.

4. The value of the natural frequency decreases by an enhancement of the initial am-
plitude.

5. The conservative behavior of the system was C delineated using phase plane tra-
jectories.

6. In accordance with the exact numerical solutions, it was depicted that the exerted
methods all have excellent accuracy and reliability.
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