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Abstract. A Legendre-collocation method is proposed to solve the nonlinear Volterra
integral equations of the second kind. We provide a rigorous error analysis for the pro-
posed method, which indicate that the numerical errors in L2-norm and L∞-norm will
decay exponentially provided that the kernel function is sufficiently smooth. Numer-
ical results are presented, which confirm the theoretical prediction of the exponential
rate of convergence.
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1 Introduction

The integro-differential equations (IDEs) arise from the mathematical modeling of many
scientific phenomena. Nonlinear phenomena, that appear in many applications in sci-
entific fields can be modeled by nonlinear integro-differential equations. This paper is
concerned with the nonlinear Volterra integral equations (VIEs) of the second kind

y(t)=
∫ t

0
K̂(t,τ,y(τ))dτ+ ĝ(t), t∈ [0,T], (1.1)

where kernel function K̂ : S×R→R (where S := {(t,τ) : 0≤ τ≤ t≤T}) and ĝ(t) : [0,T]→
R are known, function y(t) is the unknown function to be determined. It will always
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be assumed that problem (1.1) possesses a unique solution, K̂ is continuous for all S
and Lipschitz continuous with its third argument. We will consider the case that the
solutions are sufficiently smooth. Consequently it is natural to implement very high-
order numerical methods such as spectral methods for the solutions.

In recent years, numerous works have been focusing on the development of more
advanced and efficient methods for integral equations and integro-differential equa-
tions, such as the linearization method [1], differential transform method [2], RF-pair
method [4], product integration method [30], Hermite-type collocation method [5], semi-
analytical-numerical techniques, such as the Adomian decomposition method [36], Tay-
lor expansion approach [3], collocation methods [9] and references therein. Nevertheless,
few works touched the spectral approximations to integral-differential equations. Then
Chebyshev spectral methods were investigated in [19] for the first kind Fredholm inte-
gral equations under multiple-precision arithmetic. However, no theoretical results were
provided to justify the high accuracy numerically obtained. Recently, Tang and Xu [32]
developed a novel spectral Legendre-collocation method to solve linear Volterra integral
equations of (1.1). Xie, Li and Tang [38] developed a spectral Petrov-Galerkin methods
for linear Volterra type integral equations. Chen, Li and Tang [16–18] proposed a spec-
tral Jacobi-collocation approximation for linear Volterra integral equations with weakly
singular kernels. For nonlinear case, polynomial spline collocation methods for the non-
linear Basset equation is discussed in [12]. Legendre spectral Galerkin method has been
proposed to nonlinear Volterra integral equations in [35]. In this paper, the main purpose
of this work is to provide Legendre-collocation methods for nonlinear Volterra integral
equations and provide a rigorous error analysis which theoretically justifies the spectral
rate of convergence. The linear kind of (1.1) was provided in [32], but they pointed out
that the rate of convergence seems not optimal, in this paper, the optimal order of con-
vergence O(N−m) is obtained.

The paper is organized as follows. In Section 2, we outline the spectral approaches
for (1.1). Some lemmas useful for establishing the convergence results will be provided
in Section 3. The convergence analysis will be carried out in Section 4, and Section 5
contains numerical results, which will be used to verify the theoretical results obtained
in Section 4. Finally, in Section 6, we end with conclusions and future work.

2 Legendre-collocation method

For a given N≥0, we denote by {θk}
N
k=0 the Legendre points, and by {ωk}

N
k=0 the corre-

sponding Legendre weights. Then, the Legendre-Gauss integration formula is

∫ 1

−1
f (x)dx≈

N

∑
k=0

f (θk)ωk. (2.1)

For the sake of applying the theory of orthogonal polynomials, we use the change of



76 Y. Yang, Y. P. Chen, Y. Q. Huang and W. Yang / Adv. Appl. Math. Mech., 7 (2015), pp. 74-88

variable

t=
1

2
T(1+x), x=

2t

T
−1,

τ=
1

2
T(1+s), s=

2τ

T
−1,

and let

u(x)=y
(1

2
T(1+x)

)
, g(x)= ĝ

(1

2
T(1+x)

)
,

K(x,s,u)=
T

2
K̂
(1

2
T(1+x),

1

2
T(1+s),y

(1

2
T(1+s)

))
,

we obtain form (1.1) that

u(x)=
∫ x

−1
K(x,s,u(s))ds+g(x), x∈ I=[−1,1]. (2.2)

Set the collocation points as the set of (N+1) Legendre-Gauss points, {xi}
N
i=0 associated

with ωk. Assume that (2.2) holds at xi:

u(xi)=
∫ xi

−1
K(xi,s,u(s))ds+g(xi). (2.3)

The main difficulty in obtaining high order of accuracy is to compute the integral term in
(2.3). In particular, for small values of xi, there is little information available for u(s). To
overcome this difficulty, we will transfer the integral interval [−1,xi] to a fixed interval
[−1,1] and then make use some appropriate quadrature rule. More precisely, we first
make a simple linear transformation:

s(x,θ)=
1+x

2
θ+

x−1

2
, −1≤ θ≤1. (2.4)

Then (2.3) becomes

u(xi)=
∫ 1

−1
K̃
(

xi,s(xi,θ),u(s(xi,θ))
)
dθ+g(xi), (2.5)

where

K̃(xi,s(xi,θ),u(s(xi,θ)))=
1+xi

2
K(xi,s(xi,θ),u(s(xi,θ))).

Next, using Legendre-Gauss integration formula, the integration term in (2.5) can be ap-
proximated by

∫ 1

−1
K̃(xi,s(xi,θ),u(s(xi,θ)))dθ≈

N

∑
k=0

K̃
(

xi,s(xi,θk),u(s(xi,θk))
)
ωk, (2.6)
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where the set {θi}
N
i=0 coincide with the Legendre-Gauss collocation points {xi}

N
i=0.

We use ui to approximate the function value u(xi), 0≤ i≤N, and use

U(x)=
N

∑
j=0

ujFj(x) (2.7)

to approximate the function u(x), namely, u(xi)≈ui, u(x)≈U(x), and

U(s(xi,θk))=
N

∑
j=0

ujFj(s(xi,θk)), (2.8)

where Fj(x) is the Lagrange interpolation basis function associated with {xi}
N
i=0 which is

the set of (N+1) Legendre-Gauss points

Fj(x)=
N

∏
i=0,i 6=j

x−xi

xj−xi
. (2.9)

Then, the Legendre collocation method is to seek U(x) such that {ui}
N
i=0 satisfies the

following collocation equations

ui=
N

∑
k=0

K̃
(

xi,s(xi,θk),
N

∑
j=0

ujFj(s(xi,θk))
)

ωk+g(xi). (2.10)

The numerical scheme (2.10) leads to a nonlinear system for {ui}
N
i=0, we can get the val-

ues of {ui}
N
i=0 by solving the system of nonlinear equations using a proper solver (e.g.,

Newton method).
There are some recent studies for using the collocation methods and the product in-

tegration methods for solving multi-dimensional Volterra integral equations. In two di-
mensions, we have

u(x,y)=
∫ x

−1

∫ y

−1
K(x,y,s,ζ,u(s,ζ))dsdζ+g(x,y), (x,y)∈ I=[−1,1], (2.11)

we denote the collocation points by {xi}
N
i=0, which is the set of N+1 Legendre-Gauss, or

Legendre-Gauss-Radau, or Legendre-Gauss-Lobatto points, and by {ω
(1)
i }N

i=0 the corre-
sponding weights. Similarly, we denote the collocation points by {yj}

N
j=0, which is the set

of N+1 Legendre-Gauss, or Legendre-Gauss-Radau, or Legendre-Gauss-Lobatto points,

and by {ω
(2)
j }N

j=0 the corresponding weights. Assume that (2.11) holds at the Legendre-

collocation point-pairs (xi,yj), we have

u(xi,yj)=
∫ xi

−1

∫ yj

−1
K(xi,yj,s,ζ,u(s,ζ))dsdζ+g(xi ,yj). (2.12)
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We use u(xi,yj)≈ui,j,u(x,y)≈U(x,y)=∑
N
i=0∑

N
j=0 ui,jFi(x)Fj(y), then using the linear trans-

formation, the Legendre-collocation method is to seek U(x,y) such that ui,j satisfies the
following collocation equations:

ui,j=
1+xi

2

1+yj

2

N

∑
p=0

N

∑
l=0

K
(

xi,yj,s(xi,θp),ζ(yj,θl),
N

∑
i=0

N

∑
j=0

ui,jFi(s(xi,θp))Fj(ζ(yj,θl))
)

ω
(1)
i ω

(2)
j

+g(xi,yj). (2.13)

3 Some useful lemmas

In this section, we will provide some elementary lemmas, which are important for the
derivation of the main results in the subsequent section.

Lemma 3.1 (see [15], Integration Error from Gauss Quadrature). Assume that a (N+1)-
point Gauss, or Gauss-Radau, or Gauss-Lobatto quadrature formula relative to the Legendre
weight ωj is used to integrate the product uϕ, where u ∈ Hm(I) for some m ≥ 1. Let PN de-
note the space of all polynomials of degree not exceeding N, ϕ∈PN . Then there exists a constant
C independent of N such that

∣∣∣
∫ 1

−1
u(x)ϕ(x)dx−(u,ϕ)N

∣∣∣≤CN−m|u|Hm,N(I)‖ϕ‖L2(I), (3.1)

where

|u|Hm,N(I)=
( m

∑
j=min(m,N+1)

‖u(j)‖2
L2(I)

)1/2
, (u,ϕ)N =

N

∑
j=0

u(xj)ϕ(xj)ωj. (3.2)

Lemma 3.2 (see [34], Lemma 3.2). Assume that u ∈ Hm(I) and denote INu its interpola-
tion polynomial associated with the (N+1) Legendre-Gauss, or Gauss-Radau, or Gauss-Lobatto
points {xj}

N
j=0, namely,

INu=
N

∑
i=0

u(xi)F(xi).

Then the following estimates hold

‖u− INu‖L2(I)≤CN−m|u|Hm,N(I), (3.3a)

‖u− INu‖L∞(I)≤CN
3
4−m|u|Hm,N(I). (3.3b)

Using Theorem 1 in [24], we have the following estimate for the Lagrange interpola-
tion associated with the Jacobi Gaussian collocation points.

Lemma 3.3. For every bounded function v, there exists a constant C, independent of v such that

sup
N

∥∥∥
N

∑
j=0

v(xj)Fj(x)
∥∥∥

L2(I)
≤C max

x∈[−1,1]
|v(x)|,
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where Fj(x) is the Lagrange interpolation basis function associated with the Legendre collocation

points {xj}
N
j=0.

From [23], we have the following result on the Lebesgue constant for the Lagrange
interpolation polynomials associated with the zeros of the Jacobi polynomials.

Lemma 3.4. Assume that {Fj(x)}N
j=0 is the N-th Lagrange polynomials associated with the

Gauss, or Gauss-Radau, or Gauss-Lobatto points of the Legendre polynomials, then

max
x∈[−1,1]

N

∑
j=0

|Fj(x)|=O
(

N
1
2
)
. (3.4)

Lemma 3.5 (see [21], Gronwall Inequality). Suppose L≥0 and G(x) is a non-negative, locally
integrable function defined on [−1,1] satisfying

E(x)≤G(x)+L
∫ x

−1
E(τ)dτ.

Then there exists a constant C such that

‖E‖Lp(I)≤ L‖G‖Lp(I), p≥1.

4 Convergence analysis

This section is devoted to provide a convergence analysis for the numerical scheme. The
goal is to show that the rate of convergence is exponential, i.e., the spectral accuracy
can be obtained for the proposed approximations. Firstly, we will carry our convergence
analysis in L2 space.

Theorem 4.1. Let u(x) be the exact solution of the nonlinear Volterra integro equation (2.2),
which is assumed to be sufficiently smooth, K(x,t,u) is satisfies m times Lipschitz continuous
with its third argument. U(x) is obtained by using the spectral collocation scheme (2.10). If
u∈Hm(I), then for m≥1,

‖U(x)−u(x)‖L2(I)≤CN−m
(

max
x∈[−1,1]

|K(x,s,u(s))|Hm,N(I)+|u|Hm,N(I)

)
(4.1)

provided that N is sufficiently large, where C is a constant independent of N.

Proof. First, form (2.10), we have as

ui=
∫ 1

−1
K̃(xi,s(xi,θ),U(s(xi,θ)))dθ+g(xi)+ Ii,1, (4.2)
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where

Ii,1=
N

∑
k=0

K̃
(

xi,s(xi,θk),U(s(xi,θk))
)
ωk−

∫ 1

−1
K̃(xi,s(xi,θ),U(s(xi,θ)))dθ. (4.3)

Using the integration error estimates from Legendre-Gauss polynomials quadrature in
Lemma 3.1, we have

|Ii,1(x)|≤CN−m|K(x,s(x,θ),U(s(x,θ)))|Hm,N(I),

note that

|K(x,s(x,θ),U(s(x,θ)))|≤ |K(x,s,u(s))|+|K(x,s,U(s))−K(x,s,u(s))|.

Then we get

|Ii,1(x)|≤CN−m
(
|K(x,s,u(s))|Hm,N(I)+|K(x,s,U(s))−K(x,s,u(s))|Hm,N(I)

)
. (4.4)

We assume that K(x,t,u) is m times Lipschitz continuous with its third argument,

|K(x,s,u1)−K(x,s,u2)|≤ L0|u1−u2|, (4.5a)
∣∣∣∂K(x,s,u1)

∂u
−

∂K(x,s,u2)

∂u

∣∣∣≤ L1|u1−u2|,··· , (4.5b)

∣∣∣∂mK(x,s,u1)

∂um
−

∂mK(x,s,u2)

∂um

∣∣∣≤ Lm|u1−u2|, (4.5c)

and using the definition of |·|Hm,N(I) in (3.2), we have

|K(x,s,U(s))−K(x,s,u(s))|Hm,N(I)

=
( m

∑
j=min(m,N+1)

∥∥∥∂jK(x,s,U)

∂U j
−

∂jK(x,s,u)

∂uj

∥∥∥
2

L2(I)

) 1
2

≤
m

∑
j=min(m,N+1)

∥∥∥∂jK(x,s,U)

∂U j
−

∂jK(x,s,u)

∂uj

∥∥∥
L2(I)

≤
m

∑
j=min(m,N+1)

Li‖U−u‖L2(I)

≤C‖U−u‖L2(I). (4.6)

Then (4.4) can be rewritten as

|Ii,1(x)|≤CN−m|K(x,s(x,θ),U(s(x,θ)))|Hm,N(I)

≤CN−m
(
|K(x,s,u(s))|Hm,N(I)+‖U−u‖L2(I)

)
. (4.7)
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Multiplying Fi(x) on both sides of (4.2) and summing up from 0 to N yield

U(x)= IN

∫ x

−1
K(x,s,U(s))ds+ IN g(x)+ J1(x), (4.8)

where

J1(x)=
N

∑
i=0

Ii,1Fi(x). (4.9)

It follows from (2.2) that

U(x)=IN

∫ x

−1
K(x,s,U(s))ds+ IN

(
u(x)−

∫ x

−1
K(x,s,u(s))ds

)
+ J1(x)

=INu(x)+ IN

∫ x

−1

(
K(x,s,U(s))−K(x,s,u(s))

)
ds+ J1(x). (4.10)

Let e(x) denote the error function,

e(x)=U(x)−u(x).

Then, (4.10) can be written as

e(x)= IN

∫ x

−1

(
K(x,s,U(s))−K(x,s,u(s))

)
ds+ J1(x)+ J2(x), (4.11)

where

J2(x)= INu(x)−u(x). (4.12)

Consequently,

|e(x)|≤ IN

∫ x

−1

∣∣K(x,s,U(s))−K(x,s,u(s))
∣∣ds+|J1(x)|+|J2(x)|. (4.13)

It follows the Lipschitz conditions (4.5) that

|e(x)|≤L0 IN

∫ x

−1
|U(s)−u(s)|ds+|J1(x)|+|J2(x)|

≤L0

∫ x

−1
|e(s)|ds+|J1(x)|+|J2(x)|+ J3(x), (4.14)

where

J3(x)= L0 IN

∫ x

−1
|e(s)|ds−L0

∫ x

−1
|e(s)|ds. (4.15)

It follows from the Gronwall inequality of Lemma 3.5

‖e(x)‖L2(I)≤C
(
‖J1(x)‖L2(I)+‖J2(x)‖L2(I)+‖J3(x)‖L2(I)

)
. (4.16)
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Using Lemma 3.3 and the estimates (4.7), we have

‖J1‖L2(I)≤C max
0≤i≤N

|Ii,1|≤CN−m
(

max
x∈[−1,1]

|K(x,s,u(s))|Hm,N(I)+‖e(x)‖L2(I)

)
. (4.17)

Due to Lemma 3.2,

‖J2‖L2(I)=‖INu(x)−u(x)‖L2(I)≤CN−m|u|Hm,N(I). (4.18)

By virtue of Lemma 3.2 with m=1,

‖J3‖L2(I)=
∥∥∥L0 IN

∫ x

−1
|e(s)|ds−L0

∫ x

−1
|e(s)|ds

∥∥∥
L2(I)

≤CN−1
∣∣∣
∫ x

−1
|e(s)|ds

∣∣∣
H1(I)

≤CN−1‖e‖L2(I). (4.19)

Combining (4.17), (4.18), (4.19), gives

‖e‖L2(I)≤CN−m
(

max
x∈[−1,1]

|K(x,s,u(s))|Hm,N(I)+‖e(x)‖L2(I)

)

+CN−m|u|Hm,N(I)+CN−1‖e‖L2(I). (4.20)

Provided that N is sufficiently large, we have the desired estimate (4.1).

Theorem 1 in [32] have convergence analysis with the order of convergence
O(N1/2−m) which seems not optimal, in our result, the optimal order of convergence
O(N−m) is obtained.

Next, we will give the error estimates in L∞ space.

Theorem 4.2. If the hypotheses given in Theorem 4.1 hold, then

‖U(x)−u(x)‖L∞(I)≤CN
1
2−m max

x∈[−1,1]
|K(x,s,u(s))|Hm,N(I)+CN

3
4−m|u|Hm,N(I), (4.21)

provided that N is sufficiently large and C is a constant independent of N.

Proof. Following the same procedure as in the proof of Theorem 4.1, we have

|e(x)|≤ L
∫ x

−1
|e(s)|ds+|J1(x)|+|J2(x)|+ J3(x), (4.22)

where J1, J2 and J3 are defined by (4.9), (4.12) and (4.15), respectively. It follows from the
Gronwall inequality (see Lemma 3.5) that

‖e(x)‖L∞(I)≤C
(
‖J1(x)‖L∞(I)+‖J2(x)‖L∞(I)+‖J3(x)‖L∞(I)

)
. (4.23)



Y. Yang, Y. P. Chen, Y. Q. Huang and W. Yang / Adv. Appl. Math. Mech., 7 (2015), pp. 74-88 83

Using Lemma 3.4 and the estimates (4.7), we have

‖J1‖L∞(I)≤CN
1
2 max

0≤i≤N
|Ii,1|≤CN

1
2−m

(
max

x∈[−1,1]
|K(x,s,u(s))|Hm,N(I)+‖e(x)‖L2(I)

)
. (4.24)

From Lemma 3.2, we have

‖J2‖L∞(I)=‖INu(x)−u(x)‖L∞(I)≤CN
3
4−m|u|Hm,N(I). (4.25)

It follows again from Lemma 3.2 with m=1 that

‖J3‖L∞(I)=
∥∥∥L0 IN

∫ x

−1
|e(s)|ds−L0

∫ x

−1
|e(s)|ds

∥∥∥
L∞(I)

≤CN− 1
4

∣∣∣
∫ x

−1
|e(s)|ds

∣∣∣
H1(I)

≤CN− 1
4 ‖e‖L2(I)≤CN− 1

4 ‖e‖L∞(I). (4.26)

The desired estimate (4.21) is obtained by combining (4.23), (4.24), (4.25) and (4.26).

5 Numerical experiments

We will provide some numerical examples below using the spectral technique proposed
in this work.

All the experiments are implemented on Matlab 7.1, the resulting nonlinear algebraic
system (2.10) and (2.13) is solved by the Matlab build-in function fsolve with the initial
value 0 and tolerance 1.0e−15. The computing environment is: Thinkpad Laptop (Intel
i5-3230M CPU 2.50GHz, Memory 4.0GB), and the operator system is Windows XP.

Example 5.1. Consider the following nonlinear Volterra equation (2.2) with

K(x,s,u(s))=
1

2+2u2(s)
, (5.1a)

g(x)= tan((1+x)/2)−0.25sin(1+x)−0.25(1+x), (5.1b)

so that the exact solution is u(x)= tan((1+x)/2).
Table 1 shows the errors ‖U−u‖L∞(−1,1) and ‖U−u‖L2(−1,1) for 2≤N≤20 obtained by

using the spectral collocation methods described above. Fig. 1 presents the approximate

Table 1: The errors ‖U−u‖L∞(−1,1), ‖U−u‖L2(−1,1) and CPU time used for Example 5.1.

N L∞-error L2-error CPU time (s)
4 0.0023 2.0988e-005 0.0156
8 1.2486e-005 1.0368e-007 0.0469

12 5.7446e-008 4.6983e-010 0.1250
16 2.2265e-010 2.0085e-012 0.3750
20 1.4155e-012 9.4950e-015 1.0625
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Figure 1: Example 5.1: Comparison between approximate solution U(x) and exact solution u(x) (a). The errors
U−u versus the number of collocation points in L2 and L∞ norms (b).

and exact solution on left side, which are found in excellent agreement, on right side, the
numerical errors U−u is plotted for 2≤N≤24 in both L2 and L∞ norms. As expected, the
exponential rate of convergence is observed for the nonlinear problem, which confirmed
our theoretical predictions.

Example 5.2. Consider the following nonlinear Volterra equation (2.2) with

K(x,s,u(s))= ex−3su2(s), (5.2a)

g(x)=
1

2(1+36π2)

(
e−x+36π2e−x−e−x cos6πx

+6πe−x sin6πx−36eπ2
)
ex+ex sin3πx. (5.2b)

The exact solution is u(x)= ex sin3πx.

Table 2: The errors ‖U−u‖L∞(−1,1), ‖U−u‖L2(−1,1) and CPU time used for Example 5.2.

N L∞-error L2-error CPU time (s)
12 0.0478 1.7039e-004 0.2031
14 0.0160 4.6958e-005 0.4063
16 5.4537e-004 7.2824e-006 0.6250
18 8.4306e-005 7.5959e-007 0.9219
20 2.5527e-006 5.7623e-008 1.4063
22 3.7190e-007 3.3416e-009 2.0938
24 1.0254e-008 1.5301e-010 3.3438
26 6.3190e-010 5.6591e-012 4.6250
28 1.8130e-011 1.7091e-013 6.3125
30 4.0181e-012 3.6829e-015 8.3594
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Figure 2: Example 5.2: Comparison between approximate solution U(x) and exact solution u(x) (a). The errors
U−u versus the number of collocation points in L2 and L∞ norms (b).

Numerical errors with several values of N are displayed in Table 2 and Fig. 2. Again
the exponential rate of convergence is observed for the nonlinear problem.

Example 5.3. The third example is concerned with a 2D nonlinear Volterra equation with
second kind. Consider the Eq. (2.11) with

K(x,y,s,ζ,u(s,ζ))= ex+y cot(2s+ζ)u2(s,ζ), (5.3a)

g(x)=
1

16
ex+y

(
sin(4x+2y)−sin(2y−4)−sin(4x−2)−sin6

)
+sin(2x+y). (5.3b)

This problem has a unique solution u(x,y)=sin(2x+y).
Numerical errors with several values of N are displayed in Table 3 and Fig. 3. Al-

though our convergence theory does not cover multi-dimensional case, the exponential
rate of convergence is observed for the 2D nonlinear problem. It is expected that the anal-
ysis techniques proposed in this work can be used to extend Theorem 4.1 and Theorem
4.2 to obtain a spectral convergence rate for (2.13).

Table 3: The errors ‖U−u‖L∞(−1,1), ‖U−u‖L2(−1,1) and CPU time used for Example 5.3.

N L∞-error L2-error CPU time (s)
2 0.4253 0.0151 0.1563
4 0.0292 0.2835 2.2969
6 7.5784e-04 4.2484e-04 18.7969
8 1.4431e-05 5.6910e-06 81.2031

10 1.2489e-07 5.1461e-08 259.4688
12 9.4263e-10 3.1804e-10 1.3286e+003
14 4.8134e-012 1.5284e-012 8.2548e+003
16 2.0539e-014 5.7171e-015 1.6597e+004



86 Y. Yang, Y. P. Chen, Y. Q. Huang and W. Yang / Adv. Appl. Math. Mech., 7 (2015), pp. 74-88

4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

N

 

 
||u−U||∞
||u−U||

L
2

ω

Figure 3: Example 5.3: The errors U−u versus the number of collocation points in L2 and L∞ norms.

6 Conclusions and future work

This paper proposes a numerical method for the nonlinear Volterra integral equations
based on Legendre spectral approach. The most important contribution of this work is
that we are able to demonstrate rigorously that the errors of approximate solutions decay
exponentially in L2-norm and L∞-norm, which is a desired feature for a spectral method.

In our future work, the spectral collocation methods will be studied for the nonlinear
Volterra integral-differential equations with smooth kernels and weakly singular kernels,
and extend this method to high dimension.
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