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Abstract. In this paper, we compute a phase field (diffuse interface) model of Cahn-
Hilliard type for moving contact line problems governing the motion of isothermal
multiphase incompressible fluids. The generalized Navier boundary condition pro-
posed by Qian et al. [1] is adopted here. We discretize model equations using a con-
tinuous finite element method in space and a modified midpoint scheme in time. We
apply a penalty formulation to the continuity equation which may increase the stabil-
ity in the pressure variable. Two kinds of immiscible fluids in a pipe and droplet dis-
placement with a moving contact line under the effect of pressure driven shear flow
are studied using a relatively coarse grid. We also derive the discrete energy law for
the droplet displacement case, which is slightly different due to the boundary condi-
tions. The accuracy and stability of the scheme are validated by examples, results and
estimate order.
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1 Introduction

Multiphase flows are common in our lives, for example, gas bubbles trapped and droplet
of oil moved in water, biological fluids, and cells in blood, etc.. They play an important
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role in engineering, biological and applications. For example, the inclusion removal of
melted materials is carried out with the help of bubble flotation [2]. When a bubble rises
to the edge of a container the interface changes its geometric property. This forms moving
contact line problem. Moving contact line, where the fluid-fluid interface intersects the
solid wall has been extensively studied by researchers both theoretically and experimen-
tally. Norman and Miksis [3] investigated the dynamics of a gas bubble with a moving
contact line rising in an inclined channel. Luo et al. [4] carried out a numerical simu-
lation on the Poiseuille flow of two immiscible fluids between two parallel plates with
undulating solid surface and showed the effect of the surface roughness on the motion
of two phase flow. The formation of bubbles on an orifice plate was studied by Chen et
al. [5]. In their works, two models are considered where one is a stick-slip model and
the other one assumes that the apparent contact angle is linearly related to the velocity.
Fuentes and Cerro [6] presented a model for two immiscible fluids, considering force
balance and inertia effect. Nikolayev et al. [7] proposed a model that took into account
of heterogeneities of the solid surface and the inertia effect. Zahedi et al. [8] applied the
idea of driving contact line movement by enforcing the equilibrium contact angle at the
boundary to that in the traditional model and solved the new model by a conservative
level set method. Gerbeau and Lelivre [9] numerically simulated two immiscible fluids
between two parallel walls and performed a stability analysis in the energy norm with
the consideration of the gravity and surface tension effects. Xu and Wang [10] analyzed
the effect of the roughness of the rough surface on moving contact line. Jacqmin [11] in-
vestigated moving contact line dynamics of CHW (Cahn-Hilliard-van der Waals) diffuse
mean-field interface. The convection or the diffusion driven by chemical potential gradi-
ents would cause the change of the interface. This phase field model was compared with
the classical sharp interface model.

The change of the contact line as the fluid flows is of great interest where the boundary
condition of a moving contact line is crucial. A no-slip condition holds on the boundary
may lead to a force singularity in the vicinity of the contact line. This is why moving con-
tact line problems are more complicated than normal multiphase flow problems. Several
works have been carried out to eliminate the singularity. The most popular viewpoint
is to relax the no-slip condition by introducing a new parameter called slip length [12].
With this viewpoint, Qian et al. [1] proposed the generalized Navier boundary condi-
tion (GNBC) based on the molecular dynamics theory. With the help of GNBC that can
be derived variationally from the principle of minimum energy dissipation [21], they
successfully simulated the moving contact line in two chemically patterned channels.
Several numerical methods have been developed for moving contact line problem, for
example, immersed interface method [13], finite element method [14, 25], the volume of
fluid method [15], a hybrid atomistic-continuum method [16] and moving mesh spectral
method [17], etc. have been applied to moving contact line problems over the years. In
addition, to construct a stable scheme, the energy of the system was made decreasing
with time under certain conditions [19].
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Among the models of multiphase flow problems, the phase field model attracts more
and more attention recently. In a phase field model (or diffuse interface model, see [11]),
the interface is considered to have a thickness and the change of flow-parameters from
one phase to the other is continuous. Unlike sharp interface models, the two fluids in
a phase field model are treated as one fluid and are mixed smoothly near the interfacial
region, where the flow parameters change rapidly. This two fluid mixture may also be
considered as a special kind of non-Newtonian fluids.

There is usually a physical energy law associated with the phase field model (see [21]
for example). The preservation of the energy law turns out to be very important in de-
signing a numerical method for such models. When a rapid change or a singularity
occurs in the solution the preservation of energy law is more likely to produce correct
evolution of the solution [20,22–24], even though a relatively coarse mesh is used. There-
fore an energy law preserving method may reduce the cost of computational as well.

In this paper we propose an energy law preserving continuous finite element scheme
to moving contact line problems based on the Cahn-Hilliard phase field model. The
scheme in this paper is different from those in [14, 25]. In [14], the operator-splitting is
used on the time-discretization. In [25], a convex splitting scheme is used for the Cahn-
Hilliard equations, where an extra stabilization term is introduced to ensure the energetic
stability of the scheme. In the spatial discretization, P2-P0 mixed finite element method is
directly applied to the Navier-Stokes equations with the inf-sup condition being satisfied.

The penalty method is introduced, which reformulates the continuous equation from
index-2 problem to an index-1 problem so that the reformulated problem is more stable
and more flexible in designing a temporal discretization [30–33]. We then design a mod-
ified midpoint temporal scheme where a discrete energy law that is approximately the
same as the continuous energy law can be derived. The energetic stability is simply a
by-product of the energy law.

This paper is organized as the following. In Section 2, we introduce the model, bound-
ary conditions as well as its weak formulation and energy law. In Section 3, we present
a fully discretized NSCH system with a continuous finite element method and a second
order temporal scheme. The discrete energy law is also derived in Section 3. In Section
4, two kinds of immiscible fluids in a pipe and droplet displacement under the effect
of pressure driven shear flow are simulated using our scheme which demonstrates that
our scheme for moving contact line problems is stable and can produce correct solution
of the evolution. The preservation of continuous energy law is also demonstrated. We
will show that the total free energy increases by time during the simulation, whereas the
sum of total free energy and the work done to the wall decreases by time. Our compu-
tations are carried out in a relatively coarse mesh to demonstrate that the robustness and
efficiency of our energy law preserving scheme.
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2 Phase field model, weak form and energy law

Let Ω be a bounded domain in R
2 and Γ be the boundary of Ω (Lipschitz-continuous).

Moving contact line problems can be modeled with a system which combines Cahn-
Hilliard and Navier-Stokes equations with the generalized Navier boundary condition
[1, 19, 25]

∂φ

∂t
+u·∇φ=M∆µ, µ=−K∆φ−rφ+λφ3 (the chemical potential), (2.1)

∇·u=0, (2.2)

ρ

[

∂u

∂t
+(u·∇)u

]

=−∇p+∇·σ+µ∇φ, for all x=(x,z)∈Ω. (2.3)

Here u= (ux,uz) the velocity of the fluid mixture, where ux denotes the velocity in the
x direction and uz the velocity in the z direction, p is the hydrostatic pressure, φ is the
“phase” of the mixture (φ = 1: fluid A; φ=−1: fluid B), σ = η(∇u+∇uT) denotes the
viscous part of stress tensor, ρ and η the fluid density and viscosity coefficient which
are assumed to be constants in this paper, M the phenomenological mobility coefficient
and µ∇φ the capillary force. As moving contact line problems we study occur in a pipe
Ω= [−Lx/2,Lx/2]×[−Lz/2,Lz/2], we define, as in [19], Γ = ΓT+ΓB+ΓL+ΓR reflecting
top(T), bottom(B), left(L), right(R) four edges. At first let’s consider the moving contact
line intersects boundaries T and B. The boundary conditions of ΓT and ΓB are

βu
slip
x =−η∂nux+L(φ)∂xφ, (2.4)

∂φ

∂t
+ux∂xφ=−H [L(φ)], (2.5)

uz =0, ∂nµ=0, (2.6)

where β is the slip coefficient. (n, τ) is normal and tangential directions to the boundary.
H is a positive parameter, and the boundary conditions of ΓL and ΓR are

∂xu=0, ∂xφ=0, ∂xµ=0, (2.7)

p(x,z)= const, ∂x p(x,z)=0, (2.8)

ux(x,z)=−ux(x,−z), uz(x,z)=0. (2.9)

In addition L(φ)=K∂nφ+∂γw f (φ)/∂φ and γw f (φ)=−(1/2)γcosθ
sur f
s sin(π

2 φ). K, r, λ are

the parameters that are related to the interface thickness ξ=
√

K/r, the interfacial tension

γ=2
√

2r2ξ/3λ and also the phase variable φ=
√

r/λ. θ
sur f
s is the static contact angle. The

dimensionless physical quantities are

U=
u

V
, T=

tV

L
, ϕ=

φ√
r/λ

, p∗=
pL

ηV
, X=

x

L
, ǫ=

√
K/r

L
, (2.10)
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where L is the characteristic length of the fluids domain and V is the characteristic speed.
Applying (2.10) to the system and without loss of generality letting u=U, x=X, φ= ϕ,
t=T, p= p∗, the system of NSCH becomes

∂φ

∂t
+u·∇φ= Ld∆µ∗, µ∗=−ǫ∆φ− 1

ǫ
φ+

1

ǫ
φ3, (2.11)

∇·u=0, (2.12)

Re

[

∂u

∂t
+(u·∇)u

]

=−∇p+∆u+Bµ∗∇φ. (2.13)

The boundary conditions of ΓT and ΓB become

1

Ls
u

slip
x =−∂nux+BLc(φ)∂xφ, (2.14)

∂φ

∂t
+ux∂xφ=−Vs [Lc(φ)], (2.15)

uz =0, ∂nµ∗=0, (2.16)

and the boundary conditions of ΓL and ΓR become

∂xu=0, ∂xφ=0, ∂xµ∗=0, (2.17)

p(x,z)= const, ∂x p(x,z)=0, (2.18)

ux(x,z)=−ux(x,−z), uz(x,z)=0. (2.19)

Here

Re=
ρVL

η
, B=

√
Kr

ηV
, Ld=

M
√

Kr

L2V
,

Ls =
η

βL
, Vs=

LH
√

Kr

V
,

Lc(φ)=ǫ∂nφ+
∂γ∗

w f (φ)

∂φ
,

γ∗
w f (φ)=−

√
2

3
cosθ

sur f
s sin

(π

2
φ
)

.

We rewrite the phase field equations as

∂φ

∂t
+u·∇φ= Ld∆(w+cφ), (2.20)

ω+cφ=µ∗=−ǫ∆φ− 1

ǫ
φ+

1

ǫ
φ3, (2.21)
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where the positive constant c is introduced to enhance the stability of the numerical
method [20, 28]. As in [20], we deal with the divergence-free condition (2.12) by the
penalty formulation

∇·u+δp=0,

where δ is small penalty. The benefit of the penalty method is (i) an energy law may be
derived relatively easily; (ii) an artificial boundary condition for the pressure p may be
avoided.

Denote W1,3(Ω)=(W1,3(Ω))2, L2(Ω)=(L2(Ω))2 and L2
0(Ω)={p∈L2(Ω),

∫

Ω
pdx=0}

as usual. Applying the idea in [20] to the present work, the weak form of the penalized
NSCH system reads: Find u∈W1,3(Ω), p∈L2

0(Ω), φ∈(W1,3(Ω)) and ω∈(W1,3(Ω)) such
that

∫

Ω

(

∂φ

∂t
ψ+(u·∇φ)ψ+Ld∇(ω+cφ)·∇ψ

)

dx=0, ∀ψ∈W1,3(Ω), (2.22)

∫

Ω

(

(ω+cφ)χ−ǫ∇φ·∇χ− 1

ǫ

(

φ3−φ
)

χ

)

dx

+
∫

ΓT ,ΓB

(

Lc(φ)χ−
∂γ∗

w f (φ)

∂φ
χ

)

ds=0, ∀χ∈W1,3(Ω), (2.23)

∫

Ω
(∇·u+δp)qdx=0, ∀q∈L2

0(Ω), (2.24)

∫

Ω

(

Re

(

∂u

∂t
·v+(u·∇)u·v

)

−p(∇·v)+∇u :∇v−B(ω+cφ)∇φ·v
)

dx

+
∫

ΓT ,ΓB

(

1

Ls
u

slip
x vx−BLc(φ)∂xφvx

)

ds=0, ∀v∈W1,3(Ω). (2.25)

Letting ψ=B(ω+cφ), v=u, q= p and χ=B∂φ/∂t, the weak form becomes

∫

Ω

(

B
∂φ

∂t
(ω+cφ)+(B(u·∇φ)(ω+cφ))+BLd |∇(ω+cφ)|2

)

dx=0, (2.26)

∫

Ω

(

B(ω+cφ)
∂φ

∂t
−B

∂

∂t

(

ǫ

2
(∇φ)2+

1

4ǫ

(

φ2−1
)2
))

dx

+
∫

ΓT,ΓB

(

BLc(φ)
∂φ

∂t
−B

∂γ∗
w f (φ)

∂t

)

ds=0, (2.27)

∫

Ω
(p∇·u+δp2)dx=0, (2.28)

∫

Ω

(

Re

2

∂

∂t
|u|2−p(∇·u)+|∇u|2−B(ω+cφ)∇φ·u

)

dx

+
∫

ΓT,ΓB

(

1

Ls
u

slip
x

(

u
slip
x +uw

)

−BLc(φ)∂xφux

)

ds=0. (2.29)
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Then (2.26)−(2.27)+(2.28)+(2.29) yields an energy law as follows

dE

dt
=−

(

‖∇u‖2
L2 +BLd‖ω+cφ‖2

L2 +δ‖p‖2
L2

)

−
∫

ΓT,ΓB

(

1

Ls
u

slip
x uw

)

ds

−
∫

ΓT,ΓB

(

BVs|Lc(φ)|2+
1

Ls
|uslip

x |2
)

ds, (2.30)

where

E=
Re

2
‖u‖2

L2 +
Bǫ

2
‖∇φ‖2

L2 +B
∫

Ω

(

1

4ǫ

(

φ2−1
)2
)

dx+B
∫

ΓT ,ΓB

γ∗
w f (φ)ds,

is the total free energy.
The energy law (2.30) is applicable to the example in Section 4.1, but not directly to

the example drop displacement in Section 4.2. For the example in Section 4.2 the energy
law will be slightly modified there. Through the examples in Section 4, we will show
that the total free energy (E) increases by time during the simulation where meanwhile
the total energy that is the sum of total free energy and the work done to the wall (G in
Section 3) decreases by time due to the second term in the right hand side of (2.30). In
the next section we will present a fully discrete scheme for the NSCH system and derive
a discrete energy law.

3 Fully discretized NSCH system and discrete energy laws

The solution of the weak problem (2.22)-(2.25) is approximated by a finite difference
scheme in time and a conformal C0 finite element method in space.

As usual, let

W=W1,3(Ω)×L2
0(Ω)×W1,3(Ω)×W1,3(Ω)

and Wh =Uh×P h×Hh×Hh ⊂W be a finite dimensional subspace of W. Further, ∆t> 0
denotes the time step size, (un

h ,pn
h ,φn

h ,ωn
h)∈ Wh is an approximation of u(tn) = u(n∆t),

p(tn) = p(n∆t), φ(tn) = φ(n∆t) and ω(tn) = ω(n∆t), and (un+1
h ,pn+1

h ,φn+1
h ,ωn+1

h ) is the
approximation at time tn+1=(n+1)∆t. The modified midpoint scheme [20,23] was able to
preserve the continuous energy law accurately for a two-phase flow problem. Therefore
we slightly modify it to fit the weak problem (2.22)-(2.25) and derive a discrete energy
law in this section. The fully discrete system we propose reads:

∫

Ω

(

φn+1
t̄

ψ+

(

u
n+ 1

2

h ·∇φ
n+ 1

2

h

)

ψ+Ld∇
(

ω
n+ 1

2

h +cφ
n+ 1

2

h

)

·∇ψ

)

dx=0, (3.1)
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∫

Ω

((

ω
n+ 1

2

h +cφ
n+ 1

2

h

)

χ−ǫ∇φ
n+ 1

2

h ·∇χ− χ

ǫ
g
(

φn+1
h ,φn

h

)

)

dx

−
∫

ΓT,ΓB

(

χ

Vs

(

φn+1
t̄ +u

n+ 1
2

h,x ∂xφ
n+ 1

2

h

)

+
γ∗

w f (φ
n+1)−γ∗

w f (φ
n)

φn+1−φn
χ

)

ds=0, (3.2)

∫

Ω

(

∇·un+ 1
2

h +δp
n+ 1

2

h

)

qdx=0, (3.3)

∫

Ω

(

Re

(

un+1
t̄

·v+
(

u
n+ 1

2

h ·∇
)

u
n+ 1

2

h ·v
)

+
Re

2

((

∇·un+ 1
2

h

)

u
n+ 1

2

h

)

·v
)

dx

+
∫

Ω

(

−p
n+ 1

2

h (∇·v)+∇u
n+ 1

2

h :∇v−B

(

ω
n+ 1

2

h +cφ
n+ 1

2

h

)

∇φ
n+ 1

2

h ·v
)

dx

+
∫

ΓT,ΓB

(

1

Ls
u

slip,n+ 1
2

h,x vx+
B

Vs

(

φn+1
t̄

+u
n+ 1

2

h,x ∂xφ
n+ 1

2

h

)

∂xφ
n+ 1

2

h vx

)

ds=0, (3.4)

for all (ψ,χ,q,v)∈Wh where uh =(uh,x,uh,z), u
slip,n+1/2
h,x =un+1/2

h,x −uw (uw represents wall

speed), φn+1
t̄

=(φn+1
h −φn

h)/∆t, un+1
t̄

=(un+1
h −un

h)/∆t, φn+1/2
h =(φn

h +φn+1
h )/2, un+1/2

h =

(un
h+un+1

h )/2, pn+1/2
h =(pn

h+pn+1
h )/2, ωn+1/2

h =(ωn
h+ωn+1

h )/2 and

g
(

φn+1
h ,φn

h

)

=

(

|φn+1
h |2+|φn

h |2−2
)(

φn+1
h +φn

h

)

4
.

Similarly, if we take ψ=B(ωn+1/2
h +cφn+1/2

h ), v=un+1/2
h , q=pn+1/2

h , χ=Bφn+1
t̄

in (3.1)–(3.4)
and do (3.1)+(3.4)−(3.2)+(3.3), and some derivation in [29]:

∇φ
n+ 1

2

h ·∇Bφn+1
t̄ =

(

∇φn+1
h +φn

h

2

)

·∇B
φn+1

h −φn
h

∆t
=

B

2

(

∇φn+1
h

)2
−
(

∇φn
h

)2

∆t

=
B

2

(

|∇φn+1
h |2

)

t̄
, (3.5)

∫

Ω

[(

u
n+ 1

2

h ·∇
)

u
n+ 1

2

h ·un+ 1
2

h +
1

2

((

∇·un+ 1
2

h

)

u
n+ 1

2

h

)

·un+ 1
2

h

]

dx=0, (3.6)

(

|φn+1
h |2+|φn

h |2−2
)(

φn+1
h +φn

h

)

Bφn+1
t̄

=B

(

|
(

φn+1
h

)2
−1 |2

)

t̄

, (3.7)

γ∗
w f (φ

n+1
h )−γ∗

w f (φ
n
h )

φn+1
h −φn

h

Bφn+1
t̄ =B

γ∗
w f (φ

n+1
h )−γ∗

w f (φ
n
h )

φn+1
h −φn

h

φn+1
h −φn

h

∆t
=Bγ∗

w f (φ
n+1
h )t̄, (3.8)

we can obtain a discrete energy law:

En+1−En =−∆t

(

‖∇u
n+ 1

2

h ‖2
L2 +BLd‖ω

n+ 1
2

h +cφ
n+ 1

2

h ‖2
L2+δ‖p

n+ 1
2

h ‖2
L2

)

−Gn+1+Gn

−
∫

ΓT,ΓB

∆t

(

B

Vs
|φn+1

t̄
+u

n+ 1
2

h,x ∂xφ
n+ 1

2

h |2+ 1

Ls
|uslip,n+ 1

2

h,x |2
)

ds, (3.9)
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where

Ei =
Re

2
‖ui

h‖2
L2 +

Bǫ

2
‖∇φi

h‖2
L2 +B

∫

Ω

(

1

4ǫ

(

(

φi
h

)2
−1

)2
)

dx+B
∫

ΓT,ΓB

γ∗
w f

(

φi
h

)

ds, (3.10)

Gi=
i−1

∑
k=0

∫

ΓT ,ΓB

∆t

(

1

Ls
u

slip,k+ 1
2

h,x uw

)

ds, (3.11)

and G represents the work done to the wall in [19].
It is indicated in [20] that the midpoint scheme may cause oscillation near the interface

due to the stiffness associated with (2.21). Therefore we adopt the remedy in [20], where
we use a stiffly stable scheme (e.g. backward Euler scheme) at the first time step and use
the modified midpoint scheme (3.1)-(3.4) afterwards.

This discrete scheme is nonlinear implicit, therefore we need to introduce a lineariza-
tion and an iterative method at each time step. As in [20, 23] we apply a fixed point
method in the linearization process. We can also use Newton method which converges
much faster than a fixed point method at each time step. But the linear system resulted
from Newton method depends on the time, which increases the computation cost. The
resulted linear system by a carefully designed fixed point method may not depend on the
time and we just need to do the LU factorization of the linear system once at the initial
two time steps. So it is efficient in the time evolution. If the fixed point method does not
converge, then we have to replace it by the Newton method.

The following iterative scheme (for s=1,2,···) is used at every time level tn+1, i.e. find
φ̄s, ω̄s, ūs and p̄s (as an approximation of φn+1

h , ωn+1
h , un+1

h and pn+1
h , respectively) to

satisfy:

∫

Ω

(

φ̄s−φn
h

∆t
ψ+

(

ūs−1+un
h

2
·∇ φ̄s−1+φn

h

2

)

ψ

+Ld∇
(

ω̄s+ωn
h

2
+c

φ̄s+φn
h

2

)

·∇ψ

)

dx=0, (3.12)

∫

Ω

((

ω̄s+ωn
h

2
+c

φ̄s+φn
h

2

)

χ−ǫ∇
(

φ̄s+φn
h

2

)

·∇χ− χ

4ǫ

(

|φ̄s−1|2+|φn
h |2−2

)

×(φ̄s−1+φn
h ))dx−

∫

ΓT,ΓB

(

χ

Vs

(

φ̄s−φn
h

∆t
+

ūs−1,x+un
h,x

2
∂x

(

φ̄s−1+φn
h

2

))

−
√

2

3
cosθ

sur f
s

sin
(

π
2 φ̄s−1

)

−sin
(

π
2 φn

h

)

φ̄s−1−φn
h

χ

)

ds=0, (3.13)

∫

Ω

(

∇· ūs+un
h

2
+δ

p̄s+pn
h

2

)

qdx=0, (3.14)
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∫

Ω

(

Re

(

ūs−un
h

∆t
·v+

(

ūs−1+un
h

2
·∇
)

ūs−1+un
h

2
·v
)

+
Re

2

((

∇· ūs−1+un
h

2

)

× ūs−1+un
h

2

)

·v− p̄s+pn
h

2
(∇·v)+∇ ūs+un

h

2
:∇v−B

(

ω̄s−1+ωn
h

2

+c
φ̄s−1+φn

h

2

)

∇ φ̄s−1+φn
h

2
·v
)

dx+
∫

ΓT ,ΓB

(

B

Vs

(

φ̄s−1−φn
h

∆t
+

ūs−1,x+un
h,x

2

×∂x

(

φ̄s−1+φn
h

2

))

∂x

(

φ̄s−1+φn
h

2

)

vx+
1

Ls

ū
slip
s,x +u

slip,n
h,x

2
vx



ds=0, (3.15)

where we choose the initial iteration as φ̄0=φn
h , ω̄0=ωn

h , ū0=un
h and p̄0= pn

h .
As the iterative scheme shows, we can solve (3.12) and (3.13) first to get φ̄s and ω̄s

and then substitute them into (3.14) and (3.15) to obtain ūs and p̄s. This will reduce
computational cost significantly than solving (3.12)-(3.15) all together at the same time.

4 Numerical examples and results

In this section, to demonstrate the method presented earlier, we compute the same exam-
ples given in [19,25], i.e., immiscible fluids in a pipe and droplet displacement under the
effect of pressure driven shear flow. Also the energy and the error in the energy law will
be shown during the computations. The computations are carried out and the results are
shown with the help of the freefem++ platform ( [18]), MATLAB and Tecplot. All compu-
tations are carried out under the P2 (piecewise polynomial of degree two) finite element
space for the velocity u and the phase variables φ and ω, and the P1 finite element space
for the pressure p. In all examples, the density and viscosity are constant. Moreover, we
demonstrate that the energy law preserving method works well under a relatively coarse
mesh.

4.1 Two immiscible fluids in a pipe

Some of the numerical examples in [19] are re-computed in this section. The energy and
the error in the energy law are computed by using (3.9)-(3.11). Two immiscible fluids

are distributed at the left and right parts of a pipe and θ
sur f
s means the right static contact

angle between the interface of fluids and the lower wall at initial time. Three cases θ
sur f
s =

77.6◦, θ
sur f
s = 90◦, θ

sur f
s = 120◦ are discussed. The computational domain is [x,z]∈ [0,1]×

[0,0.4] and 32×16 grid is used to solve the system. The upper wall speed uw=1.0 and the
lower wall speed uw=−1.0. Values of other parameters are:

Ld=5×10−4, Re=3, B=12, Vs=500, Ls=0.0038, ǫ=0.01, c=0.5 and ∆t=10−5.
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Figure 1: Deformed interfaces at the first time step, t=0.2, 0.4 and 0.6 for θ
sur f
s =77.6◦.

The initial value of phase field parameter φ is

φ(x,z,0)= tanh
((

z−tan
(

θ
sur f
s

)

(x−0.5)
)

/
(

2
√

2ǫ
))

.

Fig. 1 shows the level curves of φ=0 at times t=0,0.2,04,0.6 for θ
sur f
s =77.6◦. The velocity

along the lower boundary at time t= 0.5938 is depicted in Fig. 4, where we can see that
the phenomena of near complete slip around contact line. Fig. 2 and Fig. 3 show the level

curves at time t = 0, 0.04, 0.12, 0.2 for θ
sur f
s = 90◦, θ

sur f
s = 120◦, respectively. In order to

show the accuracy of our scheme, we compare the result of the example in [19], where
ǫ= 0.001 and uw =± 0.2 with our results. As it is shown in Fig. 5, our results are close
to that of Fig. 2a in [19], where, for both examples, the position of the intersection point
between the interface and the lower boundary is around 0.44 and velocities along the
lower wall are very close (the smallest velocities are close to ux =−0.02 and the biggest
velocities are close to ux=−0.17). We also observe slight difference with interface profile:
the interface in [19] is a straight line, whereas the interface in our computation is slightly
bending which is probably due to the relatively coarse grid in our computation. Com-
paring between Fig. 4 and Fig. 5, we observe that as the velocity increases the interface
moves further and changes severer.

The error in the energy law and the energy are depicted in Fig. 6, where E stands
for the total free energy and E+G is the total energy as shown in Section 3. The figure
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Figure 2: Deformed interfaces at the first time step, t=0.04, 0.12 and 0.2 for θ
sur f
s =90◦.

shows the same behavior as that in [19], where the total free energy increases by time
whereas the total energy decrease. The error in the energy law with an order of magni-
tudes O(10−4) depends on the tolerance chosen in the fixed point iterative method and

seems to be good enough for the computation. The energies for θ
sur f
s = 120◦ have the

same behavior. If we want to obtain a smoother interface in Fig. 1, we can use a finer grid
(e.g. a 64×32 grid). Certainly a finer grid will cost more computational time.

To determine roughly the accuracy of the method we compute ‖∇·(u−un
h)‖= ‖∇·

un
h‖=(

∫

Ω
|∇·un

h |2dx)1/2 at a time step. The estimated order of the finite element method
for ∇·u is computed as lg(‖∇·(u−uh)‖/‖∇·(u−uh/2)‖)/lg2, which can be more than
one as indicated in Table 1.

Table 1: The estimated order for ∇·u with θ
sur f
s =77.6◦.

mesh 32x16 64x32 128x64

‖∇·(u−uh)‖ 0.163548 0.0837296 0.0319579

estimated order - 0.96 1.39

As it is discussed in [34], the sharp-interface limit for the phase field model based
on moving contact line problems can be achieved by reducing the thickness of interface
ǫ, with the criterion ǫ < 4ld = 4

√
Ld/B. In [34], the no slip boundary condition for the
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Figure 3: Deformed interfaces at the first time step, t=0.04, 0.12 and 0.2 for θ
sur f
s =120◦.
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Figure 4: Interfaces structure and the ux along lower boundary at t= 0.5938 for θ
sur f
s = 77.6◦, ǫ= 0.01 and

uw=±1.0.

velocity is adopted and Ls = 2.5ld, where Ls is the slip length, ld is the diffusion length.
In the present work, the phase field model and slip condition GNBC are adopted where
both of ld and Ls exist. Therefore, except the relation Ls =2.5ld, there are various choices
of relations between ld and Ls can be adopted. Moreover, if Ls arbitrarily chosen, the
criterion (ǫ<4ld) may not be suitable for the model in the present work. To demonstrate

this viewpoint, we re-compute the first case (θ
sur f
s =77.6◦) in Section 4.1, where we have

ld =
√

Ld/B = 0.0065 whereas Ls = 0.0038 6= 2.5ld. Three values of interface thickness ǫ,
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Figure 5: Interfaces structure and the ux along lower boundary at t= 0.5938 for θ
sur f
s = 77.6◦, ǫ= 0.001 and

uw=±0.2.
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Figure 6: Left: The error (≈O(10−4)) in the energy law; Right: The total energy and total free energy, when

θ
sur f
s =90◦ and ∆t=0.00001.
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Figure 7: The total free energy and total energy when θ
sur f
s =120◦.

ǫ = 0.02, ǫ = 0.01 and ǫ = 0.005, are chosen to show the interfaces structure at t = 0.12
and all the thickness satisfy the criterion (ǫ<4ld). Fig. 8 shows that for Ls =0.0038 (left)
the interfaces converge to a unique shape for the case ǫ= 0.01 and ǫ= 0.005, but not for
ǫ = 0.02. However if we set Ls = 2.5ld = 0.01625 (right), three interfaces with different
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Figure 9: Deformed interfaces at time t=0, t=2, t=6 and t=8 for θ
sur f
s =77.6◦ and uw=0.

interface thicknesses all converge to a unique shape. It means that for Cahn-Hilliard
model based on GNBC, the criterion (ǫ<4ld) may not be suitable for the sharp-interface
limit if the slip length Ls is arbitrary chosen. But the results in Fig. 8 show that this slip
model also has the sharp-interface limit for any slip length.

We also compute the example of still walls (uw=0), where we set θ
sur f
s =77.6◦, 90◦ and

120◦ respectively. As shown in Figs. 9-11, the interface is a straight line for three cases at

the initial time. For the case θ
sur f
s =90◦, the interface stays steady for all the time, whereas

for the case θ
sur f
s 6=90◦, the interface turns to be a parabolic shape at the steady state.

4.2 The droplet displacement under the effect of pressure driven shear flow

A simulation based on a relatively large Ld and a suitably chosen Vs can make the nu-
merical solution much closer to the solution in a moving-contact-line experiment with a
much smaller slip length [35]. Imposing the dynamics contact angle can result in an accu-
rate macroscopic solution effectively and the large Vs returns the dynamics contact angle
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sur f
s =90◦ and uw=0.
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Figure 11: Deformed interfaces at time t=0, t=2, t=4 and t=8 for θ
sur f
s =120◦ and uw=0.

to the equilibrium static contact angle. The same situation is also discussed in [36–38].
We choose several large Vs in our numerical examples and we do not impose dynamics
contact angle in this paper.

In this section, we re-compute the example of a droplet displacement under the effect
of a pressure driven shear flow [25]. The energy law for this example is slightly different
from (2.30) which is due to the new boundary condition. At the initial time, the fluid is
at rest and there is a droplet in connection with the lower boundary. The pressure pl on
the left boundary and pr on the right boundary maintain a difference (pl−pr =1000) for
all the time. The fluid flows then under the pressure difference and the droplet moves
under the effect of the shear flow. The computing domain is [x,z]∈ [0,1.2]×[0,0.6]. The
values of parameters are the same as those in [25]:

Re=5, Ls =0.0025, ǫ=0.003, B=12, Vs=200, Ld=5×10−4, c=0.5.

Three cases θ
sur f
s =60◦, θ

sur f
s =90◦ and θ

sur f
s =120◦ are discussed and the similar results as

in [25] are shown in Figs. 12, 13 and 14 respectively. The finite element grid 64×32 and
time step ∆t= 10−5 is adopted for the former two cases and grid 128×64, ∆t= 10−6 for
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Figure 12: The interface structure of droplet displacement with θ
sur f
s =60◦ at t=0.04,0.08,0.12 and 0.20.

the last case. In fact our static angle is the supplementary angle in [25]. Here the weak
form of the momentum equation has to be slightly modified as the fluid flow is driven
by the pressure difference. The modified weak form for the momentum equations reads:

∫

Ω

(

Re

(

∂u

∂t
·v+(u·∇)u·v

)

−p(∇·v)+∇u :∇v−B(ω+cφ)∇φ·v
)

dx

+
∫

ΓT,ΓB

(

1

Ls
u

slip
x vx−BLc(φ)∂xφvx

)

ds+
∫

ΓL,ΓR

(pv·n)ds=0. (4.1)

The initial value of φ is

φ(x,z,0)= tanh

((
√

(x−0.3)2+z2−0.1

)

/
(

2
√

2ǫ
)

)

.
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Figure 13: The interface structure of droplet displacement with θ
sur f
s =90◦ at t=0.04,0.08,0.20 and 0.24.

Comparing to (2.30), the energy law for this example is slightly different which becomes

dE

dt
=−

(

‖∇u‖2
L2 +BLd‖ω+cφ‖2

L2 +δ‖p‖2
L2

)

−
∫

ΓT,ΓB

(

1

Ls
u

slip
x uw

)

ds

−
∫

ΓT,ΓB

(

BVs|Lc(φ)|2+
1

Ls
|uslip

x |2
)

ds−
∫

ΓL,ΓR

Re

2

(

|u|2u·n
)

ds−
∫

ΓL,ΓR

(pu·n)ds, (4.2)

and the discrete energy law for the droplet displacement is:

En+1−En =−∆t

(

‖∇u
n+ 1

2

h ‖2
L2+BLd‖ω

n+ 1
2

h +cφ
n+ 1

2

h ‖2
L2+δ‖p

n+ 1
2

h ‖2
L2

)

−Gn+1+Gn

−
∫
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∆t

(

B

Vs
|φn+1

t̄
+u

n+ 1
2

h,x ∂xφ
n+ 1

2

h |2+ 1

Ls
|uslip,n+ 1

2

h,x |2
)

ds−
∫

ΓR

∆t

(

Re

2

(

u
n+ 1

2

h,x

)3

+p
n+ 1

2

h u
n+ 1

2

h,x

)

ds+
∫

ΓL

∆t

(

Re

2

(

u
n+ 1

2

h,x

)3

+p
n+ 1

2

h u
n+ 1

2

h,x

)

ds, (4.3)

where Ei and Gi are given in (3.10) and (3.11). The continuous and discrete energy laws
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Figure 14: The interface structure of droplet displacement with θ
sur f
s =120◦ at t=0.04,0.10,0.16 and 0.20.

are slightly different in this example. As the droplet spreads under the effect of pressure
difference, the immiscible fluids flow in one direction from left to right. The flow is not
Couette flow any more and we don’t have the boundary condition ux(x,z)=−ux(x,−z),
which together with the work done by the pressure difference across the pipe formulate
additional terms in the energy law of this example (the last two terms in (4.2)).

From the figures we can see that the results of these three cases are similar to the

results in [25]. When θ
sur f
s = 60◦, the droplet moves along the lower wall at first, and

eventually moves off the lower wall. In other words, the whole droplet pinches off. When

θ
sur f
s =90◦, the droplet first moves along the lower wall as well and later its upper portion

pinches off. When θ
sur f
s = 120◦, no pinch-off can be observed. As our static angle is

the supplementary angle in [25], the phenomenon of pinch-off confirms the assertion
in [26,27], which states that the increase of the contact angel results in a larger fraction of
droplet being entrained in the bulk. The energy and the error in the energy law in Fig. 15
show the accuracy of the discrete energy law. Even though the energy law is different
from the one in Section 4.1, the energy and error in the energy law for the other two cases
behave similarly.



Y. Jiang et al. / Commun. Comput. Phys., 18 (2015), pp. 180-202 199

0 0.05 0.1 0.15 0.2
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

time

en
er

gy

 

 

E+G

E

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

time

er
ro

r 
in

 th
e 

en
er

gy
 la

w

Figure 15: The total free energy (E), the total energy (E+G) and the error in the energy law for the droplet

with example with θ
sur f
s =120◦.

In addition, we compute another example to show the effect of dimensionless wall
relaxation Vs on the droplet spread. Here we redefine the domain as [x,z]∈ [−0.5,0.5]×
[−0.1,0.1]. The initial value of phase variable φ is set as

φ= tanh

((
√

(x+0.2)2+(z+0.1)2−0.1

)

/
(

2
√

2ǫ
)

)

.

Three groups of dimensionless wall relaxation Vs, Vs=100, Vs=150 and Vs=200, are cho-
sen. The result in Fig. 16 shows that a smaller Vs results in a slower drop spread which
agrees with the conclusion from [35] that the drop spreads more slowly when wall re-
laxation increases the dynamics contact angle. The results above show that we can use
this continuous finite element scheme to compute moving contact line problems with a
grid as coarse as 32×16. By reducing the grid size we find that the scheme is convergent
with an estimated order in the velocity being possibly larger than one. Also the ener-
getical stability of this scheme for moving contact line problems is directly resulted from
the discrete energy law. The stability of the scheme is also demonstrated from numerical
examples.

5 Conclusion

In this paper, a modified midpoint scheme in time and a continuous finite element method
in space have been designed and used to compute the phase field model of Cahn-Hilliard
equation coupled with Navier-Stokes equations based on GNBC for moving contact line
problems. The main results of this paper can be summarized as follows,

(a) We have derived discrete energy laws which are analogous to ones in the con-
tinuous level for Couette flow and droplet displacement cases with moving contact line
problems by using a continuous finite element scheme. To the best of our knowledge,
these discrete energy laws by using this finite element scheme for moving contact line
have not been derived before.
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Figure 16: The compare of three groups of dimensionless wall relaxation.

(b) The numerical results obtained by our energy law preserving numerical method
with a relatively coarse grid are close to the results obtained by using much finer grids
[19, 25]. In addition, with a relatively coarse grid, our computations can be more effec-
tively.

(c) The sharp-interface limit of Cahn-Hilliard model based on GNBC for moving con-
tact line problems has been examined numerically. We show that this model truly ap-
proaches a sharp-interface limit and it can be achieved by reducing the thickness of in-
terface. However the criterion in [34] is not suitable for this model if the slip length is
arbitrarily chosen.

In future work, we plan to provide more detailed study of the moving contact line
problems, e.g., to impose the dynamics contact angle. For the phase field model based
on GNBC, we will also provide theoretical and numerical analysis of criterion for the
sharp-interface limit where the slip length can be arbitrarily chosen.
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