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Abstract. In this paper, we introduce and study a new method for solving inverse
source problems, through a working model that arises in bioluminescence tomography
(BLT). In the BLT problem, one constructs quantitatively the bioluminescence source
distribution inside a small animal from optical signals detected on the animal’s body
surface. The BLT problem possesses strong ill-posedness and often the Tikhonov reg-
ularization is used to obtain stable approximate solutions. In conventional Tikhonov
regularization, it is crucial to choose a proper regularization parameter for trade off
between the accuracy and stability of approximate solutions. The new method is
based on a combination of the boundary condition and the boundary measurement
in a parameter-dependent single complex Robin boundary condition, followed by the
Tikhonov regularization. By properly adjusting the parameter in the Robin boundary
condition, we achieve two important properties for our new method: first, the reg-
ularized solutions are uniformly stable with respect to the regularization parameter
so that the regularization parameter can be chosen based solely on the consideration
of the solution accuracy; second, the convergence order of the regularized solutions
reaches one with respect to the noise level. Then, the finite element method is used to
compute numerical solutions and a new finite element error estimate is derived for dis-
crete solutions. These results improve related results found in the existing literature.
Several numerical examples are provided to illustrate the theoretical results.
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1 Introduction

Bioluminescence tomography (BLT) is a new molecular imaging modality and has shown
its potential in monitoring non-invasively physiological and pathological processes in
vivo at the cellular and molecular level. It is particularly attractive for in vivo applications
because no external excitation source is needed and thus background noise is low while
sensitivity is high [21]. In the BLT problem, one reconstructs quantitatively the biolumi-
nescence source distribution inside a small animal from optical signals detected on the
animal’s body surface. Let Ω⊂R

d (d≤3: space dimension) be an open bounded set with
boundary Γ :=∂Ω. Then without going into detail, we state the BLT problem as follows.

Problem 1.1. Find a source function p inside Ω so that the solution u of the forward (real)
Robin boundary value problem (BVP)

{

−div(D∇u)+µa u= p in Ω,

u+2AD ∂u
∂n = g− on Γ

(1.1)

satisfies the outgoing flux density on the boundary:

g=−D
∂u

∂n
on Γ0. (1.2)

Here D = [3(µa+µ′)]−1 is the diffusion coefficient with µa and µ′ being known as
the absorption and reduced scattering parameters; ∂/∂n stands for the outward normal
derivative; g− is an incoming flux on Γ and it vanishes when the imaging is implemented
in a dark environment; Γ0 ⊂ Γ is the part of the boundary for measurement; A= A(x)=
(1+R(x))/((1−R(x))) with R(x)≈−1.4399γ(x)−2+0.7099γ(x)−1+0.6681+0.0636γ(x)
and γ(x) being the refractive index of the medium at x∈Γ. In what follows, we restrict
ourselves to the case where g−≡0 and Γ0=Γ.

Inverse source problems with only one measurement on the boundary do not have
a unique solution. In the context of the BLT problem, one cannot distinguish between a
strong source over a small region and a weak source over a large region. For instance, let
Ω be the unit circle centered at the origin, µa =0.04, µ′=1.5, and A=3.2 with refractive
index γ=1.3924. We assign two different source functions: a strong small source function
p1 = 4 in a circle centered (0.5,0) with radius 0.2 and a weak big source function p2 = 1
in a circle centered (0.5,0) with radius 0.4. Although the solutions u1 and u2 of (1.1),
corresponding to p1 and p2 respectively, differ greatly in Ω, they have almost the same
outgoing flux density g on the boundary, as is shown in Fig. 1. This agrees with the
theoretical result about the solution non-uniqueness presented in [12]. One can have
better identification with more a priori information about the source function p. One of
the a priori information is a permissible region Ω0⊂Ω of the optical source distribution.
In this case, the first equation of (1.1) is replaced by

−div(D∇u)+µa u= pχΩ0
in Ω,
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Figure 1: The outgoing flux on Γ for different source functions.

where χΩ0
is the characteristic function of Ω0, i.e., its value is 1 in Ω0, and is 0 outside

Ω0. Thus, the BLT problem is ill-posed. We refer the reader to [3, 6, 8, 9, 11–13, 16–20] etc.
and references therein, for more theoretical analysis and numerical simulations on the
BLT problem. We also refer to [14] for a detailed discussion of the theoretical aspects of
general linear inverse source problems.

In this paper, we target for stable approximate solutions of Problem 1.1 using the
Tikhonov regularization in a non-standard way. In the conventional Tikhonov regular-
ization framework, the value of the regularization parameter is crucial to both solution
accuracy and stability, and should be chosen carefully to balance these two aspects. One
of the purposes of this work is to explore a new Tikhonov regularization method for
solving Problem 1.1, with the property that the regularized solutions are insensitive with
respect to the small size of the regularization parameter so that we can choose the regu-
larization parameter based solely on the consideration of the solution accuracy. This will
be accomplished by a parameter dependent coupled complex boundary method (CCBM)
which reformulates Problem 1.1 into a complex one, see Section 2 for details. The parame-
ter independent CCBM was first introduced in [4]. The idea of CCMB is to couple bound-
ary conditions and boundary measurements into a Robin boundary condition in such a
way that the Neumann data and Dirichlet data are the real part and imaginary part of
the Robin boundary condition, respectively. As is shown in [4], the CCBM makes inverse
source problems more robust and more efficient in computations. Different from [4], the
parameter dependent CCBM proposed here includes a small parameter α in the coupled
complex Robin boundary condition. As a result, when applying the Tikhonov regular-
ization to the reformulated inverse problem, we can prove that with properly selected
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values of α, the regularized solutions are uniformly stable with respect to the regulariza-
tion parameter.

Another contribution of this work is the possibility of improvement over the existing
work about the convergence rate of linear inverse problems. Let K be the forward opera-
tor in our inverse problem and p∗ be a solution for noise free data, to be defined in Section
3. It is well-known that under the source condition p∗=K∗z for some z, the convergence
rate is O(

√
δ); under the source condition p∗=K∗Ky for some y, the convergence rate is

O(δ2/3), where K∗ is the adjoint operator of K and δ is the noise level. Both convergence
rates are optimal for these source conditions, see [15, Theorem 2.12] for example. For
the new parameter dependent CCBM, we can prove a convergence rate O(δ) when the
source condition p∗=K∗z for some z is satisfied and properly parameter α is chosen (cf.
Theorem 3.3).

When piecewise constant functions are used to discretize the regularized problem, a
finite element error estimate O(ε−1/2 h3/4+ε−1/2 h1/2 Eh(pδ

ε )
1/2) is shown in [12], where h

is the finite element meshsize, ε is the regularization parameter and Eh(pδ
ε ) is defined in

Theorem 4.2 of Section 4. In [4], with CCBM, the finite element error estimate is improved
to O(ε−1 h2+ε−1/2h1/2 Eh(pδ

ε )
1/2). However, in these error estimates, the magnitude of

the error bounds can become very big when ε is small for an accurate reconstruction. In
this paper, with parameter dependent CCBM and properly chosen parameter α, the error
estimate is improved further to O(h2k+3/2+hk+1/2 Eh(pδ

ε )
1/2) with k≥0.

The paper is organized as follows. A detailed description of the parameter dependent
CCBM is proposed in Section 2, where we also apply the Tikhonov regularization to the
reformulated inverse problem to obtain stable approximate source functions. In Section 3,
we provide a theoretical analysis of the new regularization framework. We discretize the
regularized optimal problem with finite element methods in Section 4 and derive a new
error estimate. Several numerical examples are presented in Section 5 to demonstrate the
feasibility and efficiency of the proposed method. Finally, concluding remarks are given
in Section 6.

2 A reformulation of the BLT problem with a new CCBM

We first introduce some notations for function spaces and assumptions on the data. For
a set G (e.g., Ω, Ω0 or Γ), we denote by Wm,s(G) the standard real Sobolev spaces with
the norm ‖·‖m,s,G. Let W0,s(G) := Ls(G). In particular, Hm(G) represents Wm,2(G) with
the corresponding inner product (·,·)m,G and norm ‖·‖m,G. Let Hm(G) be the complex
version of Hm(G) with the inner product ((·,·))m,G and norm |||·|||m,G defined as follows:
∀ u,v∈Hm(G), ((u,v))m,G=(u,v̄)m,G, |||v|||2m,G=((v,v))m,G. Denote V=H1(Ω),V=H1(Ω),

Q= L2(Ω), Q=L2(Ω), QΓ = L2(Γ), QΓ =L2(Γ) and Q0 = L2(Ω0). The source function p
will be sought from an admissible set Qad ⊂ Q0. We assume Qad is nonempty, closed,
and convex. For the problem data, assume Γ is Lipschitz continuous, g∈QΓ, and D,µa ∈
L∞(Ω), D≥D0, µa≥µ0 a.e. in Ω for some positive constants D0 and µ0. In the following,
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we denote by c a constant which may have different values at different places.
Combining the boundary condition in (1.1) and measurement in (1.2), we have u=

2Ag on Γ. Then Problem 1.1 reduces to finding a source function p in Ω0 such that

{

−div(D∇u)+µa u= pχΩ0
in Ω,

D ∂u
∂n = g1, u= g2 on Γ,

(2.1)

with g1 :=−g, g2 :=2Ag.
For a parameter α>0, consider a complex BVP

{

−div(D∇u)+µa u= pχΩ0
in Ω,

D ∂u
∂n +iαu= g1+iαg2 on Γ,

(2.2)

where i =
√
−1 is the imaginary unit. Obviously, if (u,p) satisfy (2.1), then (2.2) holds.

Conversely, let (u,p) satisfy (2.2) and write u = u1+iu2, u1 and u2 being the real and
imaginary part of u. Then the real-valued functions u1,u2 satisfy

{ −div(D∇u1)+µa u1= pχΩ0
in Ω,

D ∂u1
∂n −αu2= g1 on Γ,

(2.3)

and
{

−div(D∇u2)+µa u2=0 in Ω,

D ∂u2
∂n +αu1=αg2 on Γ.

(2.4)

If u2 = 0 in Ω, then u2 = 0, ∂u2
∂n = 0 on Γ. As a result, from (2.3) and (2.4), it follows that

(u,p)=(u1,p) satisfy (2.1) and hence also (1.1)-(1.2).
Summarizing the above discussion, we arrive at the following reformulation of the

BLT problem.

Problem 2.1. Given g1 and g2, find p∈Qad such that

u2=0 in Ω,

where u2 is the imaginary part of the solution u=u1+iu2 of the BVP (2.2).

Define four bilinear forms:

aΩ(u,v)=
∫

Ω

(D∇u·∇v+µa uv)dx ∀u,v∈V, (2.5)

bΩ(u,v)=
∫

Ω

uvdx ∀u,v∈Q, (2.6)

bΩ0
(u,v)=

∫

Ω0

uvdx ∀u,v∈Q0, (2.7)

bΓ(u,v)=
∫

Γ

uvds ∀u,v∈QΓ. (2.8)
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Note that the definitions in (2.5)-(2.8) are also valid when all the complex function spaces
are replaced by the real ones. Then the weak form of (2.2) is

u∈V, aΩ(u,v̄)+iαbΓ(u,v̄)=bΩ0
(p,v̄)+bΓ(g1+iαg2,v̄) ∀v∈V. (2.9)

For a given p∈Q0, by the use of the complex version of Lax-Milgram Lemma [7, p. 376],
the problem (2.9) has a unique solution u∈V. Moreover, we have

|||u|||1,Ω ≤ c(‖p‖0,Ω0
+‖g1‖0,Γ+α‖g2‖0,Γ), (2.10)

where c>0 is a constant independent of α. We refer to [4] for the proofs of the wellposed-
ness of (2.9) and the priori estimate (2.10), with a slight modification due to the presence
of the parameter α.

Next we apply the Tikhonov regularization to Problem 2.1 for stable approximation
of a solution. In the following, we allow Neumann and Dirichlet data g1 and g2 to contain
random noise with a known level δ, and write them as gδ

1 and gδ
2. Then (2.2) is modified

to
{ −div(D∇uδ)+µa uδ= pχΩ0

in Ω,

D ∂uδ

∂n +iαuδ = gδ
1+iαgδ

2 on Γ,
(2.11)

with
‖gδ

k−gk‖0,Γ ≤δ, k=1,2.

The weak form of (2.11) is

uδ∈V, aΩ(u
δ,v̄)+iαbΓ(u

δ,v̄)=bΩ0
(p,v̄)+bΓ(gδ

1+iαgδ
2,v̄) ∀v∈V. (2.12)

For any p∈Q0, denote by uδ(p)= uδ
1(p)+iuδ

2(p)∈V the solution of (2.12). Define a
objective functional

Jδ
ε (p)=

1

2
‖uδ

2(p)‖2
0,Ω+

ε

2
‖p‖2

0,Ω0
,

and introduce the following Tikhonov regularization framework for Problem 2.1.

Problem 2.2. Find pδ
ε ∈Qad such that

Jδ
ε (pδ

ε)= inf
p∈Qad

Jδ
ε (p).

It is not difficult to verify that for any p,q∈Q0,

(Jδ
ε )

′(p)q=(uδ
2(p),uδ

2(q)−uδ
2(0))0,Ω+ε(p,q)0,Ω0

,

(Jδ
ε )

′′(p)(q,q)=‖uδ
2(q)−uδ

2(0)‖2
0,Ω+ε‖q‖2

0,Ω0
.

Hence, for ε>0, Jε(·) is strictly convex. Recall that Qad is non-empty, closed and convex.
We have the following well-posedness result.
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Proposition 2.1. For any ε>0, Problem 2.2 has a unique solution pδ
ε ∈Qad which depends

continuously on all data. Moreover, pε is characterized by

(wδ
2+ε pδ

ε ,q−pδ
ε )0,Ω0

≥0 ∀q∈Qad, (2.13)

where wδ
2 is the imaginary part of the weak solution wδ :=wδ(pδ

ε )∈V of the adjoint prob-
lem:

{ −div(D∇wδ)+µa wδ=uδ
2 in Ω,

D ∂wδ

∂n +iαwδ =0 on Γ,
(2.14)

and uδ
2 is the imaginary part of the solution uδ := uδ(pδ

ε ) ∈ V of the BVP (2.12) with p
replaced by pδ

ε .

Proof of the well-posedness of Problem 2.2 is standard and we omit it here. The first
order optimality condition (2.13) can be proved similar to [4, Proposition 3.1].

3 Convergence, uniform boundedness and improved

convergence order

For the future need, we first prove the following lemma.

Lemma 3.1. For any p∈Q0, denote by u(p)=u1(p)+iu2(p),uδ(p)=uδ
1(p)+iuδ

2(p)∈V the
unique solutions of the problems (2.9) and (2.12). Then we have

‖uδ
2(p)−u2(p)‖1,Ω ≤ cαδ. (3.1)

Proof. Subtracting (2.9) from (2.12), we have,

aΩ(u
δ(p)−u(p),v̄)+iαbΓ(u

δ(p)−u(p),v̄)=bΓ((gδ
1−g1)+iα(gδ

2−g2),v̄) ∀v∈V. (3.2)

Similar to (2.10), applying the complex version of Lax-Milgram Lemma to (3.2), there
holds

|||uδ(p)−u(p)|||1,Ω ≤ c
(

‖gδ
1−g1‖0,Γ+‖gδ

2−g2‖0,Γ

)

≤ cδ. (3.3)

From (3.2), we have

aΩ(u
δ
2(p)−u2(p),v)=αbΓ((gδ

2−g2)−(uδ
1(p)−u1(p)),v) ∀v∈V. (3.4)

Take v=uδ
2(p)−u2(p) in (3.4) and use (3.3) to get (3.1).

Denote by S the solution set of Problem 1.1 or 2.1, and assume it is nonempty. It is
straightforward to show that S is closed and convex. Denote

p∗=arginfp∈S‖p‖0,Ω0
.

Then it exists and is unique. We have the following convergence result.
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Theorem 3.1. Fix α> 0. For a sequence of noise levels {δn}n≥1 which converges to 0 in R as

n→∞, let εn= ε(δn) be chosen satisfying εn→0 and δ2
n/εn →0, as n→∞. Denote by pδn

εn ∈Qad

the solution of Problem 2.2 with gδ
1, gδ

2 and ε replaced by gδn
1 , gδn

2 and εn respectively. Then the

sequence {pδn
εn}n≥1 converges to p∗ in Q0 as n→∞.

Proof. For simplicity in exposition, write pn = pδn
εn , gn

1 = gδn
1 and gn

2 = gδn
2 . Denote by un =

un
1+iun

2 =uδn(pn) and un(p∗)=un
1(p∗)+iun

2 (p∗) the unique solutions of (2.12) in V, both
with gδ

1, gδ
2 replaced by gn

1 , gn
2 , and with p replaced by pn, p∗ respectively. Moreover, from

the definition of p∗, we have u2(p∗)=0, u2(p∗) being the imaginary part of the solution
of the problem (2.9) with p replaced by p∗. Then, using (3.1),

Jδn
εn
(pn)≤ Jδn

εn
(p∗)=

1

2
‖un

2 (p∗)−u2(p∗)‖2
0,Ω+

εn

2
‖p∗‖2

0,Ω0
≤ cα2δ2

n+
1

2
εn‖p∗‖2

0,Ω0
,

which gives

‖pn‖2
0,Ω0

≤ cα2 δ2
n

εn
+‖p∗‖2

0,Ω0
. (3.5)

Like (2.10), we have the regularity estimate for un:

|||un|||1,Ω ≤ c(‖pn‖0,Ω0
+‖gn

1‖0,Γ+α‖gn
2‖0,Γ)

≤ c(‖pn‖0,Ω0
+δ+‖g1‖0,Γ+αδ+α‖g2‖0,Γ). (3.6)

From (3.5)-(3.6), {(pn,un)} is a bounded sequence in Q0×V. Thus, there are a subse-
quence {n′} of the sequence {n} and some elements p∞ ∈Q, u∞ ∈V such that as n′→∞,

pn′
⇀ p∞ in Q0, un′

⇀u∞ in V, un′ →u∞ in Q and QΓ. (3.7)

It is not difficult to verify that u∞=u(p∞), the solution of (2.9) with p replaced by p∞.
In fact, from the definition of un, we have

aΩ(u
n′

,v̄)+iαbΓ(u
n′

,v̄)= aΩ0
(pn′

,v̄)+bΓ(gn′
1 +iαgn′

2 ,v̄) ∀v∈V.

Let n′→0, and use the convergence relations (3.7) to get

aΩ(u
∞,v̄)+iαbΓ(u

∞,v̄)= aΩ0
(p∞,v̄)+bΓ(g1+iαg2,v̄) ∀v∈V.

This shows u∞=u(p∞). Therefore, as n′→∞,

J
δn′
εn′ (pn′

)=
1

2
‖un′

2 ‖2
0,Ω+

εn′

2
‖pn′‖2

0,Ω0
→ 1

2
‖u2(p∞)‖2

0,Ω,

where we used the boundedness of {pn′}n′ (cf. (3.5)). Since

J
δn′
εn′ (pn′

)≤ J
δn′
εn′ (p∗)≤ cα2 δ2

n′+
1

2
εn′‖p∗‖2

0,Ω0
→0 as n′→∞,
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we arrive at the conclusion that

u2(p∞)=0 in Ω.

As a result, p∞ is a solution of Problem 2.1 or Problem 1.1. Hence, p∞ ∈S.
Next we prove p∞ = p∗. From the lower semi-continuity of the norm ‖·‖0,Ω0

and the

weak convergence of pn′
to p∞, we have

‖p∞‖0,Ω0
≤ liminf

n′→∞

‖pn′‖0,Ω0
.

Therefore, for any fixed η > 0, there exists a positive integer N such that ∀n′
> N, the

following relation holds:

‖pn′‖2
0,Ω0

≥‖p∞‖2
0,Ω0

−η. (3.8)

We note that (3.5) also holds when p∗ is replaced by p∞. Therefore, together with (3.8),

−η≤‖pn′‖2
0,Ω0

−‖p∞‖2
0,Ω0

≤ cα2 δ2
n′

εn′

holds for n′
>N. Passing to the limit with n′→∞ first and then η→0 in the relation above

to give

lim
n′→∞

‖pn′‖0,Ω0
=‖p∞‖0,Ω0

. (3.9)

From the definition of p∗, we have ‖p∗‖0,Ω0
≤‖p∞‖0,Ω0

. Combining it with (3.5), for
n′
>N, the following relation holds:

‖pn′‖2
0,Ω0

−‖p∞‖2
0,Ω0

≤‖pn′‖2
0,Ω0

−‖p∗‖2
0,Ω0

≤ cα2 δ2
n′

εn′
.

Letting n′→∞ in the relation above and using (3.9), we have

‖p∞‖0,Ω0
=‖p∗‖0,Ω0

. (3.10)

Using the definition of p∗ again, (3.10) means p∞ = p∗ and pn′
⇀ p∗ in Q, as n′ → ∞.

Thus the limit does not depend on the subsequence selected, and then the entire solution
sequence pn

⇀0 in Q, as n′→∞.
The strong convergence holds from limn→∞‖pn‖0,Ω0

= ‖p∗‖0,Ω0
and weak conver-

gence, and the proof is completed.

Denote by Πad the orthogonal projection from Q0 onto Qad. Then the optimality con-
dition (2.13) is equivalent to the following nonlinear equation:

pδ
ε =Πad

(

− 1

ε
wδ

2χΩ0

)

. (3.11)

We can ensure the uniform boundedness of − 1
ε wδ

2χΩ0
by choosing the parameter α prop-

erly, as is shown next.
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Theorem 3.2. Let α=O(
√

ε). Then for any fixed δ≥0, − 1
ε wδ

2χΩ0
is uniformly bounded in Q0

with respect to ε for small ε>0.

Proof. Denote by uδ∈V the solution of (2.12), with p replaced by pδ
ε . Then using (3.5)-(3.6)

and α=O(
√

ε), we have

|||uδ|||1,Ω ≤ c(‖pδ
ε‖0,Ω0

+‖gδ
1‖0,Γ+α‖gδ

2‖0,Γ)

≤ c
(

δ
α√

ε
+‖p∗‖0,Ω0

+δ+‖g1‖0,Γ+αδ+α‖g1‖0,Γ

)

≤ c. (3.12)

Let uδ =uδ
1+iuδ

2. Then uδ
2∈V solve

aΩ(u
δ
2,v)=αbΓ(gδ

2−uδ
1,v) ∀v∈V. (3.13)

Taking v=uδ
2 in (3.13) and using (3.12), we get

‖uδ
2‖1,Ω≤ cα(‖uδ

1‖0,Γ+‖gδ
2‖0,Γ)≤ cα. (3.14)

Similarly, from the definition of wδ in (2.14), we have

|||wδ|||1,Ω ≤ c‖uδ
2‖0,Ω≤ cα. (3.15)

Let wδ =wδ
1+iwδ

2. Then wδ
2∈V solve

aΩ(w
δ
2,v)=−αbΓ(w

δ
1,v) ∀v∈V. (3.16)

Taking v=uδ
2 in (3.16) and using (3.15), we get

‖wδ
2‖1,Ω ≤ cα‖wδ

1‖0,Γ ≤ cα2. (3.17)

Therefore, if α=O(
√

ε),
∥

∥

∥
− 1

ε
wδ

2χΩ0

∥

∥

∥

0,Ω0

=O(1),

and the proof is completed.

Theorem 3.2 indicates that a reasonable reconstruction of the source function can be
achieved for rather small regularization parameter with a properly selected α. It also
provides a guidance on how to choose α properly; see the numerical simulation results
reported in Section 5.

Next we present a result on the convergence order of the regularized minimizer pδ
ε to

p∗ as ε→0 and δ→0.
For any p∈Q0, denote ũ(p)= ũ1(p)+i ũ2(p)= uδ(p)−uδ(0)∈V. Then ũ(·) is linear

and we have

(ũ2(p),z)0,Ω =(p,w̃2)0,Ω0
∀p∈Q0, z∈Q, (3.18)
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where w̃2 ∈V is the imaginary part of the weak solution w̃= w̃1+iw̃2 ∈V of the adjoint
BVP

{

−div(D∇w̃)+µa w̃= z in Ω,

D ∂w̃
∂n +iαw̃=0 on Γ.

(3.19)

We make the following assumption:

(A1) Assume there is z∗∈Q such that w̃∗
2χΩ0

= p∗, where w̃∗
2 is the imaginary part of the

weak solution w̃∗= w̃∗
1+iw̃∗

2 ∈V of the problem (3.19) with z replaced by z∗.

Note that Assumption (A1) is a source condition about p∗.

Theorem 3.3. Let Assumption (A1) hold. Then, the solution pδ
ε of Problem 2.2 satisfies the

following estimate

‖pδ
ε −p∗‖0,Ω0

≤ c
(√

ε+
αδ√

ε

)

. (3.20)

In particular, if ε=O(δ2) and α=O(
√

ε), then

‖pδ
ε −p∗‖0,Ω0

≤ cδ. (3.21)

Proof. From the definitions of pδ
ε and p∗, we have

Jδ
ε (pδ

ε )=
1

2
‖uδ

2(pδ
ε )‖2

0,Ω+
ε

2
‖pδ

ε‖2
0,Ω0

≤ Jδ
ε (p∗)=

1

2
‖uδ

2(p∗)‖2
0,Ω+

ε

2
‖p∗‖2

0,Ω0
,

which gives

‖uδ
2(pδ

ε )‖2
0,Ω+ε‖pδ

ε −p∗‖2
0,Ω0

≤‖uδ
2(p∗)‖2

0,Ω−2ε(p∗,pδ
ε −p∗)0,Ω0

. (3.22)

From (3.1), we obtain

‖uδ
2(p∗)‖2

0,Ω =‖uδ
2(p∗)−u2(p∗)‖2

0,Ω ≤ cα2δ2, (3.23)

where we used the fact that u2(p∗)=0 in Ω.

In addition, from Assumption (A1) and by using (3.18), we have

(p∗,pδ
ε −p∗)0,Ω0

=(w̃∗
2,pδ

ε −p∗)0,Ω0
=(z∗,ũ2(pδ

ε −p∗))0,Ω=(z∗,uδ
2(pδ

ε )−uδ
2(p∗))0,Ω. (3.24)

Combine (3.22)-(3.24) to give

‖uδ
2(pδ

ε )‖2
0,Ω+2ε(z∗,uδ

2(pδ
ε ))0,Ω+ε‖pδ

ε −p∗‖2
0,Ω0

≤ cα2 δ2+2ε(z∗,uδ
2(p∗))0,Ω. (3.25)

By adding ε2‖z∗‖2
0,Ω to both sides of (3.25), we obtain

‖uδ
2(pδ

ε )+εz∗‖2
0,Ω+ε‖pδ

ε −p∗‖2
0,Ω0

≤ cα2δ2+2ε(z∗,uδ
2(p∗))0,Ω+ε2‖z∗‖2

0,Ω. (3.26)
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Using (3.1) again,

(z∗,uδ
2(p∗))0,Ω=(z∗,uδ

2(p∗)−u2(p∗))0,Ω≤ cαδ‖z∗‖0,Ω.

Therefore, (3.26) implies

‖uδ
2(pδ

ε )+εz∗‖2
0,Ω+ε‖pδ

ε −p∗‖2
0,Ω0

≤ cα2δ2+2ε2‖z∗‖2
0,Ω,

which leads to (3.20).
The bound (3.21) follows directly from (3.20) and the proof is completed.

4 Finite element discretization and error estimates

In this section, we discretize Problem 2.2 and study the convergence of the numerical
solutions. To simplify the notation, we omit in this section the symbol δ. We use linear
finite elements to solve (2.12). For the source function p, piecewise constant approxima-
tions are used. For error estimation later, in this section, we assume g1,g2∈H1/2(Γ), and
Ω⊂R

d is a bounded open set with the boundary Γ∈C1,1.
Let {Th}h be a regular family of finite element partitions of Ω. Define the linear finite

element space

Vh ={v∈C(Ω) |v is linear in T ∀T∈Th}
and denote by πhv the piecewise linear interpolant of v ∈ H2(Ω). Then we have the
existence of a constant c>0 such that [1, 2, 5]

‖v−πhv‖0,Ω+h‖v−πhv‖1,Ω ≤ ch2‖v‖2,Ω ∀v∈H2(Ω). (4.1)

Set Vh =Vh⊕iVh. Then Vh is a finite element subspace of V, and the finite element
approximation of (2.12) is

aΩ(u
h,v̄h)+iαbΓ(u

h,v̄h)=bΩ0
(p,v̄h)+bΓ(g1+iαg2,v̄h) ∀vh ∈Vh. (4.2)

Like the continuous case, the discrete problem (4.2) admit a unique solution uh∈Vh.
For any p ∈ Q0, denote by u∈V and uh ∈Vh the solutions of (2.12) and (4.2). With

arguments similar to those in [4, Section 4], we have u∈H2(Ω) and

|||uh−u|||1,Ω ≤ ch|||u|||2,Ω , (4.3)

|||uh−u|||0,Ω ≤ ch2 |||u|||2,Ω . (4.4)

Here and below in this section, the constant c only depends on Ω, g1, g1 and p.
We will use the following inequality [2]:

‖v‖0,Γ ≤ c‖v‖1/2
0,Ω‖v‖1/2

1,Ω ∀v∈H1(Ω). (4.5)
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Lemma 4.1. For any p∈Q0, let u=u1+iu2∈V and uh=uh
1+iuh

2∈V
h be the solutions of (2.12)

and (4.2) respectively. Then the following error bounds hold:

‖uh
2−u2‖1,Ω≤ cαh, (4.6)

‖uh
2−u2‖0,Ω≤ cαh3/2. (4.7)

Proof. Recall that u2∈V and uh
2 ∈Vh satisfy

aΩ(u2,v)+αbΓ(u1,v)=αbΓ(g2,v) ∀v∈V, (4.8)

aΩ(u
h
2,vh)+αbΓ(u

h
1,vh)=αbΓ(g2,vh) ∀vh ∈Vh. (4.9)

From (4.8) and (4.9),

aΩ(u
h
2−u2,vh)+αbΓ(u

h
1−u1,vh)=0 ∀vh ∈Vh.

Write
aΩ(u

h
2−u2,uh

2−u2)= aΩ(u
h
2−u2,vh−u2)+aΩ(u

h
2−u2,uh

2−vh).

Then

aΩ(u
h
2−u2,uh

2−u2)= aΩ(u
h
2−u2,vh−u2)+ Ih, (4.10)

where

Ih=−αbΓ(u
h
1−u1,uh

2−vh). (4.11)

Note that from (2.4),
‖u2‖2,Ω≤ cα (4.12)

for some constant c independent of α.
We bound Ih of (4.11) as follows:

Ih≤α‖uh
1−u1‖0,Γ (‖uh

2−u2‖0,Γ+‖vh−u2‖0,Γ).

Apply (4.5) and (4.3), (4.4),

‖uh
1−u1‖0,Γ ≤ c‖uh

1−u1‖1/2
0,Ω‖uh

1−u1‖1/2
1,Ω ≤ ch3/2|||u|||2,Ω .

Thus,
Ih≤ cαh3/2‖uh

2−u2‖1,Ω+cαh3/2‖vh−u2‖0,Γ. (4.13)

Now
||uh

2−u2||21,Ω ≤ caΩ(u
h
2−u2,uh

2−u2),

using (4.10) and (4.13), we have

‖uh
2−u2‖2

1,Ω ≤ c‖uh
2−u2‖1,Ω‖vh−u2‖1,Ω+cαh3/2‖uh

2−u2‖1,Ω+cαh3/2‖vh−u2‖0,Γ.



R. Gong et al. / Commun. Comput. Phys., 19 (2016), pp. 226-250 239

By a standard argument,

‖uh
2−u2‖1,Ω ≤ c inf

vh∈Vh

[

‖vh−u2‖1,Ω+cαh3/2+c(αh3/2)1/2‖vh−u2‖1/2
0,Γ

]

.

Apply (4.5),

‖uh
2−u2‖1,Ω ≤ c inf

vh∈Vh

[

‖vh−u2‖1,Ω+cαh3/2+c(αh3/2)1/2‖vh−u2‖1/4
1,Ω‖vh−u2‖1/4

0,Ω

]

.

Then

‖uh
2−u2‖1,Ω ≤ c

(

h‖u2‖2,Ω+cαh3/2+c(αh3/2)1/2(h3/2‖u2‖2,Ω)
1/2

)

≤ c(αh+αh3/2)

from which we obtain (4.6).
To prove (4.7), for any r∈Q, define ϕ= ϕ(r) the solution of the BVP:

{

−div(D∇ϕ)+µa ϕ= r in Ω,

D
∂ϕ
∂n +α ϕ=0 on Γ.

(4.14)

For the solution regularity, we have

‖ϕ‖k,Ω≤ c‖r‖0,Ω, k=1,2. (4.15)

Combine (4.8), (4.9) and (4.14) to have

(uh
2−u2,r)0,Ω = aΩ(u

h
2−u2,ϕ)+αbΓ(u

h
2−u2,ϕ)

= aΩ(u
h
2−u2,ϕ−πh ϕ)−αbΓ(u

h
1−u1,πh ϕ)+αbΓ(u

h
2−u2,ϕ). (4.16)

Using (4.1), (4.6) and (4.15), we have

|aΩ(u
h
2−u2,ϕ−πh ϕ)|≤ c‖uh

2−u2‖1,Ω‖ϕ−πh ϕ‖1,Ω≤ cαh2‖r‖0,Ω. (4.17)

Applying the Cauchy-Schwarz inequality, (4.5), and (4.3)-(4.4), we have

|−αbΓ(u
h
1−u1,πh ϕ)|≤ cα‖uh

1−u1‖0,Γ‖πh ϕ‖0,Γ≤ cαh3/2‖r‖0,Ω, (4.18)

where we used ‖πh ϕ‖0,Γ ≤‖πh ϕ‖1,Ω≤‖πh ϕ−ϕ‖1,Ω+‖ϕ‖1,Ω ≤ c‖r‖0,Ω for h<1.
Similarly, we have

|αbΓ(u
h
2−u2,ϕ)|≤ cα3/2 h3/2‖r‖0,Ω. (4.19)

Then combining (4.16)-(4.19), we get

‖uh
2−u2‖0,Ω =sup

r∈Q

|(uh
2−u2,r)0,Ω|
‖r‖0,Ω

≤ cαh3/2,

which gives (4.7), and the proof is completed.
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For any p∈Q0, denote by uh(p)=uh
1(p)+iuh

2(p)∈Vh the solution of (4.2). Define the
discrete objective functional

Jh
ε (p)=

1

2
‖uh

2(p)‖2
0,Ω+

ε

2
‖p‖2

0,Ω0
.

It is easy to verify that for ε>0, Jh
ε (·) is strictly convex.

For a full discretization of Problem 2.2, we approximate the source function p with
piecewise constants. Define

Qh
0 ={p∈Q0 | p is constant in T, ∀T∈Th and T⊂Ω0}

and the orthogonal projection operator Π
h : Q0→Qh

0 by

(Πh p,qh)0,Ω0
=(p,qh)0,Ω0

∀p∈Q, qh ∈Qh
0. (4.20)

Then there holds [5]:

‖p−Π
h p‖0,Ω0

≤ ch|p|1,Ω0
∀p∈H1(Ω0). (4.21)

Set Qh
ad=Qh

0∩Qad and introduce the following discrete optimization problem:

Problem 4.1. Find ph
ε ∈Qh

ad such that

Jh
ε (ph

ε )= inf
ph∈Qh

ad

Jh
ε (ph).

Similar to Proposition 2.1, we have the following result on Problem 4.1.

Proposition 4.1. For any ε>0, Problem 4.1 has a unique solution ph
ε ∈Qh

ad which depends
continuously on all data. Moreover, ph

ε is characterized by the inequality

(wh
2+ε ph

ε ,qh−ph
ε )0,Ω0

≥0 ∀qh ∈Qh
ad, (4.22)

where wh
2 is the imaginary part of weak solution wh :=wh(ph

ε )∈Vh of the adjoint problem:

aΩ(w
h,v̄h)+iαbΓ(w

h,v̄h)=bΩ(u
h
2,v̄h) ∀vh ∈Vh. (4.23)

and uh
2 is the imaginary part of the solution uh :=uh(ph

ε )∈Vh of (4.2) with p replaced by
ph

ε .

Lemma 4.2. For any p ∈ Q0, let w(p) be the solution of (2.14) and wh(p) be the solution of
(4.23), with uh

2 being replaced by uh
2(p), which is the imaginary part of the solution of (4.2). Then

|||wh(p)−w(p)|||1,Ω ≤ cαh, (4.24)

|||wh(p)−w(p)|||0,Ω ≤ cαh3/2. (4.25)
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Proof. Let w̃h := w̃h(p)∈Vh be the solution of

aΩ(w̃
h,v̄h)+iαbΓ(w̃

h,v̄h)=bΩ(u2(p),v̄h) ∀vh ∈Vh, (4.26)

where u2(p) is the imaginary part of the solution u(p) of (2.12). Then using arguments
similar to those in [4, Section 4] and noticing (3.14) and (3.15), we have

|||w̃h(p)−w(p)|||1,Ω ≤ ch|||w(p)|||2,Ω ≤ cα2h, (4.27)

|||w̃h(p)−w(p)|||0,Ω ≤ ch|||w̃h(p)−w(p)|||1,Ω ≤ cα2h2. (4.28)

Recall that wh :=wh(p) satisfies

aΩ(w
h,v̄h)+iαbΓ(w

h,v̄h)=bΩ(u
h
2(p),v̄h) ∀vh ∈Vh. (4.29)

Subtract (4.26) from (4.29), take vh=wh−w̃h in the resulting equation and use (4.7) to give

|||wh(p)−w̃h(p)|||1,Ω ≤ c‖uh
2−u2‖0,Ω ≤ cαh3/2, (4.30)

|||wh(p)−w̃h(p)|||0,Ω ≤|||wh(p)−w̃h(p)|||1,Ω ≤ cαh3/2. (4.31)

Then combining (4.27)-(4.28), (4.30)-(4.31) and using the triangle inequality,

|||wh(p)−w(p)|||1,Ω ≤|||wh(p)−w̃h(p)|||1,Ω+|||w̃h(p)−w(p)|||1,Ω ,

|||wh(p)−w(p)|||0,Ω ≤|||wh(p)−w̃h(p)|||0,Ω+|||w̃h(p)−w(p)|||0,Ω ,

we obtain (4.24) and (4.25). The proof is completed.

We can prove sharper estimates about the imaginary part of wh(p)−w(p), given in
the following lemma.

Lemma 4.3. For any p ∈ Q0, let w(p) and wh(p) be defined in Lemma 4.2. In addition, let
w(p)=w1(p)+iw2(p) and wh(p)=wh

1(p)+iwh
2(p). Then we have

‖wh
2(p)−w2(p)‖1,Ω ≤ cα2h, (4.32)

‖wh
2(p)−w2(p)‖0,Ω ≤ cα2h3/2. (4.33)

Proof. Recall that w̃h(p)= w̃h
1(p)+iw̃h

2(p) solves (4.26). Then w̃h
2 := w̃h

2(p) satisfies

aΩ(w̃
h
2,vh)+αbΓ(w̃

h
1,vh)=0 ∀vh ∈Vh. (4.34)

Similarly, wh
2 :=wh

2(p)∈Vh satisfies

aΩ(w
h
2,vh)+αbΓ(w

h
1,vh)=0 ∀vh ∈Vh. (4.35)

Subtract (4.34) from (4.35), take vh=wh
2−w̃h

2 in the resulting equation, and using (4.31) as
well as (4.5) to get

||wh
2(p)−w̃h

2(p)||1,Ω ≤ cα‖wh
1(p)−w̃h

1(p)‖0,Γ ≤ cα2h3/2. (4.36)

Combining (4.27)-(4.28) and (4.36), and applying the triangle inequality, we obtain (4.32)
and (4.33).
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Next we give an error estimate for the light source function pε with respect to h as
follows.

Theorem 4.2. For fixed ε>0 and δ≥0, let pδ
ε ∈Qad be the solution of Problem 2.2 and ph

ε ∈Qh
ad

be the solution of Problem 4.1. Then

‖ph
ε −pδ

ε‖0,Ω0
≤ c(α2 ε−1h3/2+αε−1/2h1/2 Eh(pε)

1/2), (4.37)

where Eh(pδ
ε )=‖Π

h pδ
ε −pδ

ε‖0,Ω0
= infqh∈Qh

ad
‖qh−pδ

ε‖0,Ω0
.

Proof. Let p̂h
ε ∈ Qh

ad be the unique solution of Problem 4.1 with Jh
ε (·) replaced by Jε(·).

Then
(w2( p̂h

ε )+ε p̂h
ε ,qh− p̂h

ε )0,Ω0
≥0 ∀qh ∈Qh

ad, (4.38)

where w2( p̂h
ε ) is the imaginary part of the weak solution of the BVP (2.14) with uδ

2 being
replaced by u2( p̂h

ε ), which is the imaginary part of the solution u( p̂h
ε ) of (2.12). We can

verify p̂h
ε → pδ

ε as h→0.
Replace q in (2.13) with p̂h

ε and qh in (4.38) with Π
h pδ

ε , and add the resulting inequali-
ties to get

ε‖p̂h
ε −pδ

ε‖2
0,Ω0

≤ (w2( p̂h
ε )+ε p̂h

ε ,Πh pδ
ε −pδ

ε )0,Ω0
+(w2( p̂h

ε )−w2(pδ
ε ),p

δ
ε − p̂h

ε )0,Ω0
. (4.39)

Using (4.20), (4.21), and noticing w2( p̂h
ε )χΩ0

∈H1(Ω0), we have

(w2( p̂h
ε )+ε p̂h

ε ,Πh pδ
ε −pδ

ε )0,Ω0
=(w2( p̂h

ε )−Π
hw2( p̂h

ε )χΩ0
,Πh pδ

ε −pδ
ε )0,Ω0

≤ c‖w2( p̂h
ε )‖1,Ω Eh(pδ

ε)≤ cα2 hEh(pδ
ε ), (4.40)

where we apply (3.17) and use the uniform boundedness of p̂h
ε with respect to h since

p̂h
ε → pδ

ε as h→0.
Moreover, with arguments similar to those in [4, Theorem 4.4], we can prove

(w2( p̂h
ε )−w2(pδ

ε ),p
δ
ε − p̂h

ε )0,Ω0
=−‖u2( p̂h

ε )−u2(pδ
ε )‖2

0,Ω. (4.41)

Combine (4.39)-(4.41) to obtain

‖u2( p̂h
ε )−u2(pδ

ε )‖2
0,Ω+ε‖p̂h

ε −pδ
ε‖2

0,Ω0
≤ cα2hEh(pδ

ε ). (4.42)

Similarly, replace qh in (4.22) with p̂h
ε and qh in (4.38) with ph

ε , and add the resulting
inequalities to get

ε‖ph
ε − p̂h

ε ‖2
0,Ω0

≤ (w2( p̂h
ε )−wh

2(ph
ε ),p

h
ε − p̂h

ε )0,Ω0

≤ (w2( p̂h
ε )−w2(ph

ε ),p
h
ε − p̂h

ε )0,Ω0
+(w2(ph

ε )−wh
2(ph

ε ),p
h
ε − p̂h

ε )0,Ω0
. (4.43)

Applying (4.33), we have

|(w2(ph
ε )−wh

2(ph
ε ),p

h
ε − p̂h

ε )0,Ω0
|≤ c‖w2(ph

ε )−wh
2(ph

ε )‖0,Ω‖ph
ε − p̂h

ε ‖0,Ω0

≤ cα2h3/2‖ph
ε − p̂h

ε ‖0,Ω0
. (4.44)
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Using arguments similar to those in the proof of [4, Theorem 4.4], there holds

(w2( p̂h
ε )−w2(ph

ε ),p
h
ε − p̂h

ε )0,Ω0
=−‖u2(ph

ε )−u2( p̂h
ε )‖2

0,Ω. (4.45)

Then combine (4.43)-(4.45) to give

‖u2(ph
ε )−u2( p̂h

ε )‖2
0,Ω+ε‖ph

ε − p̂h
ε ‖2

0,Ω0
≤ cα2h3/2‖ph

ε − p̂h
ε ‖0,Ω0

. (4.46)

Consequently, from (4.42) and (4.46) as well as triangle inequality

‖ph
ε −pδ

ε‖0,Ω0
≤‖ph

ε − p̂h
ε ‖0,Ω0

+‖p̂h
ε −pδ

ε‖0,Ω0
,

we obtain the error bound (4.37).

Corollary 4.1. For fixed ε>0 and δ≥0, let pδ
ε ∈Qad be the solution of Problem 2.2 and ph

ε ∈Qh
ad

be the solution of Problem 4.1. Furthermore, assume pδ
ε ∈ H1(Ω0) and set α =O(

√
εhk) with

k≥0. Then
‖ph

ε −pδ
ε‖0,Ω0

≤ c(h2k+3/2+hk+1‖pδ
ε‖1,Ω0

). (4.47)

Proof. Applying (4.21) and substituting α=O(
√

εhk) in (4.37) to give (4.47).

5 Numerical results

We present in this section some numerical results based on our parameter dependent
CCBM. The goal is to illustrate the theoretical results presented in the previous sections,
i.e., the uniform stability of the regularized solutions in Q0 with respect to the regulariza-
tion parameter ε, the first order convergence of the regularized solutions with respect to
the noise level δ, and the finite element error estimate of the regularized solutions with
respect to the meshsize h.

Given Ω, let Th,h,Vh,Qh
0 and Π

h be defined as in Section 4. For a triangulation Th, let
E and N denote the numbers of its elements and nodes. We assume the source function p
is sought in the natural set Qad :={q∈Q0 |q≥0 a.e. in Ω0}. In this situation, the projection
Πad of (3.11) reduces to

pδ
ε =max

{

− 1

ε
wδ

2χΩ0
,0
}

.

To focus on the test of our theoretical results, assume we know exactly the location
of the true source function which means Ω0 = Ω∗, the support of the true light source
function, so that the fast method suggested in [10] can be applied. Specifically, we solve
first the system of equations:



























aΩ(∇uh
1,vh)−αbΓ(u

h
2,vh)+ 1

ε bΩ0
(wh

2,vh)=bΓ(gδ
1,vh) ∀vh ∈Vh,

αbΓ(u
h
1,vh)+aΩ(u

h
2,vh)=αbΓ(gδ

2,vh) ∀vh ∈Vh,

−bΩ(u
h
2,vh)+aΩ(w

h
1,vh)−αbΓ(w

h
2,vh)=0 ∀vh ∈Vh,

αbΓ(w
h
1,vh)+aΩ(w

h
2,vh)=0 ∀vh ∈Vh,

(5.1)
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and then compute

ph
ε =Π

h

(

−1

ε
wh

2χΩ0

)

. (5.2)

5.1 Example 1

Data preparation In the first example, let the problem domain Ω={(x,y)∈R
2 | x2+y2

<

1}. The absorption and reduced scattering coefficients in Ω are µa=0.0088 and µ′=1.001
respectively. Then the diffusion coefficient D=[3(µa+µ′)]−1 ≈0.3301. Let the refractive
index on Γ be γ= 1.3924. So A= 3.2. Place a light source with an intensity p∗= 1 in the
region Ω∗= {(x,y)∈Ω | (x−0.4)2+(y−0.25)2 ≤ 0.22}. Solve the forward BVP (1.1) with
finite element method:

aΩ(u
h,vh)+

1

2A
bΓ(u

h,vh)=bΩ∗(p∗,vh), ∀vh ∈Vh, (5.3)

on a fine mesh with h= 0.0124, E= 296960, N = 139025, and compute measurement g=

−D ∂uh

∂n on Γ. For a noise level δ, a uniformly distributed random noise is added to g to
get gδ. Set gδ

1=−gδ and gδ
2 =2Agδ.

Reconstruction For given Ω, Ω0 = Ω∗, D, µa, A, gδ
1 and gδ

2, (5.1) and (5.2) are imple-
mented to recover ph

ε for different regularization parameter ε, noise level δ and grid pa-
rameter h. Recalling Theorems 3.2, 3.3 and 4.2, in this example, we set the parameter
α=

√
ε.
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Figure 2: A sketch of mesh.
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Table 1: The uniformity of the approximate solutions with respect to ε.

ε δ=4−1 δ=4−2 δ=4−3 δ=4−4 δ=4−5

10−1 5.9321e-1 5.1651e-1 4.9734e-1 4.9254e-1 4.9134e-1

10−2 2.0796e-1 5.8470e-2 2.1110e-2 1.1783e-2 9.4567e-3

10−3 1.9997e-1 4.8964e-2 1.1225e-2 1.8771e-3 8.6123e-4

10−4 1.9989e-1 4.8864e-2 1.1222e-2 1.7779e-3 9.3312e-4

10−5 1.9988e-1 4.8863e-2 1.1220e-2 1.7766e-3 9.3409e-4

10−6 1.9988e-1 4.8863e-2 1.1220e-2 1.7765e-3 9.3412e-4

10−7 1.9988e-1 4.8863e-2 1.1220e-2 1.7763e-3 9.3411e-4

10−8 1.9988e-1 4.8863e-2 1.1220e-2 1.7765e-3 9.3409e-4

10−9 1.9988e-1 4.8863e-2 1.1220e-2 1.7765e-3 9.3413e-4

10−10 1.9988e-1 4.8863e-2 1.1220e-2 1.7766e-3 9.3410e-4

10−11 1.9985e-1 4.8863e-2 1.1220e-2 1.7766e-3 9.3411e-4

10−12 1.9988e-1 4.8875e-2 1.1220e-2 1.7763e-3 9.3203e-4

10−13 1.9988e-1 4.8863e-2 1.1220e-2 1.7765e-3 9.3427e-4

10−14 1.9989e-1 4.8863e-2 1.1220e-2 1.7766e-3 9.3403e-4

10−15 1.9989e-1 4.8863e-2 1.1220e-2 1.7765e-3 9.3439e-4

10−16 1.9988e-1 4.8897e-2 1.1220e-2 1.7767e-3 9.3476e-4

10−17 1.9988e-1 4.8896e-2 1.1221e-2 1.7764e-3 8.7232e-4

10−18 1.9988e-1 4.8863e-2 1.1220e-2 1.7743e-3 9.3976e-4

10−19 1.9988e-1 4.8863e-2 1.1221e-2 1.7786e-3 9.3404e-4

10−20 1.9989e-1 4.8863e-2 1.1118e-2 1.7770e-3 9.4008e-4

We first examine the uniform stability of the approximate source functions with re-
spect to ε when δ and h are fixed. Specifically, for fixed but different δ=4−1, 4−2, 4−3, 4−4

and 4−5, ph
ε are computed for different ε on a mesh with meshsize h=0.03837, E=18560

and N=9417, and the relative errors of ph
ε in L2-norm, defined as

L2Err :=
‖ph

ε −p∗‖0,Ω0

‖p∗‖0,Ω0

, (5.4)

are listed in Table 1. We conclude from Table 1 that for a fixed meshsize and a noise level,
the approximate source functions obtained from our new parameter dependent CCBM
are uniformly stable with respect to the regularization parameter.

We then test the error estimates in Theorem 4.2 and Corollary 4.1. Recall that the error
estimates in Theorem 4.2 and Corollary 4.1 are about ‖ph

ε −pδ
ε‖0,Ω0

. However, in practice,
we cannot compute it because we do not know pδ

ε . Due to

‖ph
ε −pδ

ε‖0,Ω0
≤‖ph

ε −p∗‖0,Ω0
+‖p∗−pδ

ε‖0,Ω0
,

we can use L2Err in (5.4) to estimate ‖ph
ε −pδ

ε‖0,Ω0
when ‖p∗−pδ

ε‖0,Ω0
is small enough.

According to the convergence of pδ
ε to p∗ as δ,ε→0, ‖p∗−pδ

ε‖0,Ω0
can be very small as long
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Table 2: Convergence order in h.

h 0.2187 0.1185 0.06743 0.03837

(E,N) (190,163) (1160,615) (4640,2389) (18560,9417)

L2Err 1.0243e-1 2.4537e-2 5.4780e-3 9.4008e-4

Conv. order - 2.3320 2.6594 3.1261

as both δ and ε are small enough. In conventional methods, the regularization parameter
can not be very small because of the ill-posedness of the problems. However, with our
method, ε can be very small due to the uniform stability of the solutions with respect to
ε. Specifically, in this example, we set δ=2−10 and ε=10−20, for instance. We reconstruct
the source functions for h=0.2187, 0.1185, 0.06743 and 0.03837. The corresponding L2Err
and convergence order with respect to h are reported in Table 2. We can see from Tables
2 that in this example, the numerical convergence orders of the discrete solutions with
respect to h are better than those claimed in Corollary 4.1.

Finally, we test the convergence order of solutions with respect to the noise level δ
under the assumption of the source condition (A1). Specifically, given z∗(x,y)=−|x+y|
in Ω, we solve,

{

aΩ(w
h
1,vh)−αbΓ(w

h
2,v̄h)=bΩ(z

∗,vh) ∀vh ∈Vh,

αbΓ(w
h
1,v̄h)+aΩ(w

h
2,vh)=0 ∀vh ∈Vh,

(5.5)

and then set

p∗(α)=wh
2 χΩ0

. (5.6)

Here we use p∗(α) rather than p∗ to show the dependence of true source function on
the parameter α. For a given δ, the Neumann and Dirichlet data gδ

1 and gδ
2 are obtained

again through solving (5.3), with p∗ replaced by p∗(α). As suggested by Theorem 3.3, set
ε= δ2. Let δ=4−k, k=1,2,··· ,5, and the approximate source functions denoted by ph

ε (α)
are constructed from (5.1)-(5.2), on the mesh with h=0.03837, E=18560 and N=9417. The
corresponding relative errors and convergence orders are listed in Table 3. It is shown in
Table 3 that the convergence order of ph

ε (α) with respect to δ approaches to 1 when δ is
getting smaller. This confirms the result stated in Theorem 3.3.

Table 3: Convergence order in δ.

δ 4−1 4−2 4−3 4−4 4−5

L2Err 1.1383e-1 5.5533e-2 1.4290e-2 3.5741e-3 8.9353e-4

Conv. order – 0.5177 0.9792 0.9997 1.0000
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5.2 Example 2

Data preparation In the second example, we consider a 3D problem with a boundary
Γ that is not C1,1 smooth. Specifically, let Ω= {(x,y,z)∈R

3 | x2+y2
<1,0< z<2}. In Ω,

let µa =0.0052, µ′=1.081 and thus D=0.3069. The refractive index on the boundary Γ is
γ=1.3314 and thus A=2.8. Place a light source with an intensity p∗(x,y,z)=1+(x−0.5)2+
(y−0.5)2+(z−1)2 in the region Ω∗={(x,y,z)∈Ω | (x−0.5)2+(y−0.5)2+(z−1)2≤0.22}.
Then (5.3) is solved again on a mesh with h=0.1130, E=314982 and N=55269 to obtain
light flux density g on the boundary. Uniformly distributed random noise with δ is also
added to g to get gδ. Let gδ

1=−gδ and gδ
2=2Agδ.

Reconstruction Again, for given Ω, Ω0=Ω∗, D, µa, A, gδ
1 and gδ

2 above, equations (5.1)
and (5.2) are solved to obtain approximate source functions ph

ε for different ε, δ and h.
Like in the first example, set α=

√
ε.

For given δ, ph
ε is recovered on a mesh with meshsize h=0.2285, E=26885, N=5023,

and the errors L2Err of ph
ε are reported in Table 4. Again, we can see from Table 4 that for

constant h and δ, the approximate source functions are uniformly stable with respect to
the regularization parameters ε.

To examine the error estimates of ph
ε with respect to meshsize h, fix δ= 2−10 and ε=

10−20. We reconstruct source functions on the meshes with h=0.5293, 0.4162, 0.2828 and
0.2285, respectively. The corresponding L2Err and convergence orders with respect to
h are computed and shown in Table 5. Tables 5 indicates that the convergence order is
bigger than 1 when the mesh is not fine, and it decreases as h is getting smaller. The

Figure 3: A sketch of mesh.
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Table 4: Relative L2-norm error in reconstructed source function.

ε δ=4−1 δ=4−2 δ=4−3 δ=4−4 δ=4−5

10−1 8.8401e-1 8.9116e-1 8.9295e-1 8.9340e-1 8.9351e-1

10−2 5.0832e-2 1.0935e-1 1.2740e-1 1.3198e-1 1.3313e-1

10−3 1.5898e-1 7.5833e-2 5.9676e-2 5.6410e-2 5.5658e-2

10−4 1.6098e-1 7.7325e-2 6.0802e-2 5.7403e-2 5.6615e-2

10−5 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−6 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−7 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−8 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−9 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−10 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−11 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−12 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−13 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−14 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−15 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−16 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−17 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−18 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−19 1.6100e-1 7.7338e-2 6.0810e-2 5.7410e-2 5.6621e-2

10−20 1.6100e-1 7.7338e-2 6.0810e-2 3.1570e-2 5.6621e-2

Table 5: Convergence order in h.

h 0.5293 0.4162 0.2828 0.2285

(E,N) (2212,488) (4836,998) (13895,2666) (26885,5023)

L2Err 1.6891e-1 1.0913e-1 6.8126e-2 5.6621e-2

Conv. order - 1.8172 1.2193 0.8676

reason is that when h is small enough, the finite element error is not the main component
in the total error which also contains other errors such as error in data and error from
regularization etc.

For δ= 4−k, k= 1,2,··· ,5, set ε= δ2. Assume the source condition (A1) holds. Given
z∗=−1 in Ω, solve (5.5)-(5.6) to give p∗(α). Again, the Neumann and Dirichlet data gδ

1,
gδ

2 are obtained by solving (5.3), with p∗ replaced by p∗(α). The experiments are repeated
on the mesh with h=0.2285, and the results are shown in Table 6. Again, Table 6 indicates
the convergence order of ph

ε (α) with respect to δ in this example confirms the result stated
in Theorem 3.3 as δ is getting smaller.
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Table 6: Convergence order w.r.t. δ.

δ 4−1 4−2 4−3 4−4 4−5

L2Err 8.1246e-1 2.2345e-2 1.2801e-2 3.2289e-3 8.0735e-4

Conv. order – 2.5921 0.4018 0.9936 0.9999

6 Conclusions

In this paper, we propose a parameter dependent CCBM-based Tikhonov regularization
method for an inverse source problem arising from bioluminescence tomography. As
shown by theory and numerical examples, one major strength of our method is that the
approximate source functions are uniformly stable with respect to the regularization pa-
rameter. This is advantageous because otherwise one will have to pay careful attention
on the choice of the regularization parameter for trade off between the solution accuracy
and stability. Moreover, with the help of the small parameter α, we improve the exist-
ing work on the convergence order of the regularized solutions with respect to the noise
level and the error estimates of finite element solutions with respect to the meshsize. We
note that the method explored here can be applied directly to general real elliptic inverse
source problems with boundary conditions and measurements which can be transformed
into Dirichlet and Neumann data.
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