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Abstract. Using the incompressible isotropic turbulent fields obtained from direct nu-
merical simulation and large-eddy simulation, we studied the statistics of oscillation
structures based on local zero-crossings and their relation with inertial-range inter-
mittency for transverse velocity and passive scalar. Our results show that for both
the velocity and passive scalar, the local oscillation structures are statistically scale-
invariant at high Reynolds number, and the inertial-range intermittency of the overall
flow region is determined by the most intermittent structures characterized by one
local zero-crossing. Local flow patterns conditioned on the oscillation structures are
characterized by the joint probability density function of the invariants of the filtered
velocity gradient tensor at inertial range. We demonstrate that the most intermittent
regions for longitudinal velocity tend to lay at the saddle area, while those for the trans-
verse velocity tend to locate at the vortex-dominated area. The connection between the
ramp-cliff structures in passive scalar field and the corresponding saddle regions in the
velocity field is also verified by the approach of oscillation structure classification.

PACS: 47.27.eb, 47.27.Gs
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1 Introduction

Inertial-range intermittency is a well-known feature in turbulent flows quantified by the
anomalous scaling of structure functions Sp(r). In isotropic velocity field, Sp(r) can be
either the longitudinal structure function Sp(r)=〈|δru|p〉, or the transverse structure func-
tion ST

p (r)=〈|δrv|p〉. Here 〈···〉 denotes the ensemble average, δru=u(x+r/2)−u(x−r/2)
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and δrv=v(x+r/2)−v(x−r/2), where u and v are the velocity components in the same
and normal directions to the separation r, respectively. Kolmogorov’s similarity the-

ory [1,2] predicted the simple scaling behavior that Sp(r)∼rζp and ST
p (r)∼rζT

p , with both

ζp and ζT
p equal to p/3. Experimental measurements and numerical simulations showed

that the scaling exponents ζp and ζT
p depart from p/3 when p 6=3 [3–10]. The intermittent

behavior has also been observed in the passive scalar field θ [5, 11, 12], that the structure
function Sθ

p(r) has a scaling ξp departing from p/3 as predicted by the KOC theory of

Obukhov [13] and Corrsin [14], where Sθ
p(r)= 〈|δrθ|p〉 and δrθ= θ(x+r/2)−θ(x−r/2).

Many models have been proposed to describe the anomalous scaling of structure
functions of velocity [3, 15–19] and passive scalar [20–24]. These models present more
and more accurate depiction of the scaling exponents, however the essence of intermit-
tence remains to be an open issue, and the corresponding debates are briefly summarized
as follows:

(1) For the longitudinal velocity structure function, it was predicted that the intense
vortex structures are responsible for the inertial-range intermittency [18, 25, 26], while
Sain et al. [27] argued that the existence of vortex filaments is not crucial for the anoma-
lous scaling.

(2) For the transverse velocity structure function, plenty of works have been de-
voted to clarify whether ζT

p should be equal to ζp. Biferale and Procaccia [28] stated

that ζT
p should be equal to ζp theoretically, and this relation appears to be supported

by some experimental measurements [29, 30]. On the other hand, many experimental
results [6,31,32] and numerical simulations [4,33] suggest that these two scalings are dif-
ferent. It is argued that anisotropy [34,35] and finite Reynolds number effects [34,36] have
large contribution to the difference between the ζT

p and ζp, while the discrepancy can still

be observed in the experimental measurement at Reynolds number of about 104 [6] and
DNS fields where the isotropy can be welly maintained [7–10]. Boratav and Pelz [33] in-
ferred that the difference of ζT

p and ζp is due to an imbalance contribution to intermittency
of the enstrophy-dominated and the strain-dominated regions. Chen et al. [19] studied
the relation between enstrophy and ST

p (r), and proposed the refined similarity hypoth-
esis for transverse velocity increments, which is verified by their DNS data and further
supported by the experimental measurement of Zhou et al. [37].

(3) For the passive scalar field, it was shown that when a mean gradient of passive
scalar was imposed, the ramp-cliff structures would cause the isotropy to be violated at
very small scales [11,12,38,39]. Warhaft conjectured that the departure from local isotropy
at the small scales and the internal intermittency are intimately related [11]. However, to
the best of our knowledge, no work has provided a clear description about the connection
between the flow structures and the inertial-range intermittency of passive scalar.

In the companion paper [40], the effect of the geometric properties on the anomalous
scaling of longitudinal velocity structure function was studied, using the newly devel-
oped oscillation structure (OS) classification based on local zero-crossings. It was found



K. Yang et al. / Commun. Comput. Phys., 19 (2016), pp. 251-272 253

that the oscillation structure with only one local zero-crossing is the main contribution
for inertial-range intermittency. In the present work, the same procedure is applied to
the transverse velocity and passive scalar to study the relation of oscillation structures
and inertial-range intermittency for these two fields. To further explore the flow struc-
ture property in the most intermittent regions of longitudinal velocity, transverse velocity
and passive scalar, the OS classification is combined with the topological approach de-
veloped by Chong et al. [41]. This topological approach is based on the relations of three
invariants of the deformation rate tensor of the velocity field, and it can discern the vor-
tex and saddle patterns in the flow field. The combination of these two methods is a more
intuitive approach compared with the statistical analysis in previous studies.

In this paper, a forced isotropic turbulence obtained by direct numerical simulation
(DNS) is used to study the relation between OS subclasses, inertial-range intermittency
and topological structures in both the velocity and passive scalar field. The relation
between the OS subclasses and intermittency is also verified in a flow field obtained
by large-eddy simulation (LES) to examine the Reynodes number effect on the results.
Meanwhile, a self-similar field, i.e. the fractal Brownian motion (FBM) [42] is also stud-
ied by the same approach as a comparison.

The outline of this paper is as follows. In Section 2, the numerical methods on the
generation of the turbulent fields and the fractal Brownian motion, and the procedure of
oscillation structure classification are briefly described. The detailed results are presented
and discussed in Section 3. Some concluding remarks are finally addressed in Section 4.

2 Numerical methods

2.1 DNS and LES

The governing equations for the DNS of velocity uj and the corresponding passive scalar
θ can be written as

∂uj

∂t
+ui

∂uj

∂xi
=−1

ρ

∂p

∂xj
+ν

∂2uj

∂xi∂xi
, (2.1)

∂uj

∂xj
=0, (2.2)

∂θ

∂t
+ui

∂θ

∂xi
=D

∂2θ

∂xi∂xi
. (2.3)

Here ν and D are kinetic viscosity and the diffusivity for passive scalar, respectively.
Eqs. (2.1)-(2.3) are solved in a cubic box of side LB =2π. A standard pseudo-spectral al-
gorithm is adopted with periodic boundary conditions in all three coordinates directions.
The flow domain is discretized on N3 = 10243 grid points, and kmaxη is kept to be 1.5 to
resolve the smallest scale motions of the velocity field, where kmax =

√
2N/3 and η is the

Kolmogorov length scale. The second-order Adams-Bashforth scheme is implemented
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for temporal integration. A statistically steady state is obtained by using a low Fourier
mode forcing for both the velocity and scalar fields, and a total of 20 snapshots are ex-
tracted to analyze the flow statistics. The Taylor Reynolds number is Rλ=410, defined as
Rλ=urmsλ/ν with

urms=

(
2

3

∫
E(k)dk

)1/2

, λ=

(
15

u2
rmsν

ε

)1/2

, ε=2ν
∫ ∞

0
k2E(k)dk. (2.4)

Here E(k)=∑k |uF(k)|2, k−0.56|k|<k+0.5 is the spectrum of velocity field, where uF(k)
is the velocity vector in Fourier space at wavenumber k. The spectrum for passive scalar
field, denoted as Eθ(k), can be defined analogically. The Prandtl number (Pr = ν/D) is
chosen to be 0.7 to ensure adequate resolution for the scalar field.

An LES with 5123 grid points is carried out to obtain the higher Reynolds number
field, and the governing equations for the filtered velocity uj and passive scalar θ are

∂uj

∂t
+ui

∂uj

∂xi
=−1

ρ

∂p

∂xj
+ν

∂2uj

∂xi∂xi
− ∂τij

∂xi
, (2.5)

∂uj

∂xj
=0, (2.6)

∂θ

∂t
+ui

∂θ

∂xi
=D

∂2θ

∂xi∂xi
− ∂τiθ

∂xi
. (2.7)

Eqs. (2.5)-(2.7) are solved with the same numerical method as the DNS. The small scale
motions below the grid resolution (the LES filter width ∆) are modelled by the dynamic
Clark model [43, 44], which can be written as

τij =−Cd∆2S Sij+
1

12
∆2 ∂ui

∂xk

∂uj

∂xk
, (2.8)

τiθ =−Cθ
d∆2S

∂θ

∂xi
+

1

12
∆2 ∂ui

∂xj

∂θ

∂xj
, (2.9)

where Sij = (∂ui/∂x j+∂uj/∂xi)/2 and S = (2SijSij)
1/2. The coefficients Cd and Cθ

d are
determined dynamically with the least-squares approach:

Cd=
〈Mij(Lij−Hij)〉

〈MijMij〉
, Cθ

d =
〈Miθ(Liθ−Hiθ)〉

〈Miθ Miθ〉
, (2.10)

Mij =−∆̂2Ŝ Ŝij+∆2Ŝ Sij, Lij= ûiuj−ûiûj, Hij =
1

12
∆̂2 ∂ûi

∂xk

∂ûj

∂xk
− 1

12
∆2 ∂̂ui

∂xk

∂uj

∂xk
, (2.11)

Miθ =−∆̂2Ŝ
∂θ̂

∂xi
+∆2

̂
S

∂θ

∂xi
, Liθ = ûiθ−ûi θ̂, Hiθ =

1

12
∆̂2 ∂ûi

∂xj

∂θ̂

∂xj
− 1

12
∆2

̂∂ui

∂xj

∂θ

∂xj
. (2.12)

The hat (·̂ ··) in Eqs. (2.11)-(2.12) denotes a test filter with filter width ∆̂=2∆.
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Figure 1: Spectra of velocity and passive scalar for (a) DNS field and (b) LES field.
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Figure 2: Inertial-range of the transverse velocity and passive scalar. (a) Normalized ST
3 (r) and Sθ

2(r) of the

DNS field. Here χ=2D〈(∂θ/∂xi)
2〉 is the dissipation for the passive scalar field; η=(ν3/ε)1/4. (b) ST

2 (r) and

Sθ
2(r) of the LES field, normalized with the root-mean-square of velocity fluctuation urms and passive scalar

fluctuation θrms, respectively.

Fig. 1 shows the spectra of velocity and passive scalar for both the DNS and LES
fields. The Taylor Reynolds number of the LES field, estimated using Eq. (2.4) and the
energy spectrum shown in Fig. 1(b), is about 8300, which is much larger than that of the
DNS field. As a result, the E(k) and Eθ(k) of the LES field have a longer range close to the
k−5/3 power-law than those of the DNS field. The normalized ST

3 (r) and Sθ
2 are plotted

in Fig. 2(a), and plateaus can be clearly observed in the interval 80. r/η .300, which is
selected as the inertial range for transverse velocity and passive scalar of the DNS field.
The normalized second-order structure functions for velocity and passive scalar of the
LES field are shown in Fig. 2(b). It is seen that both ST

2 (r) and Sθ
2(r) fit the r2/3 scaling-

law fairly well in the interval 25. r/∆x.150 (∆x is the smallest grid width), which can
be selected as the inertial range of the LES field in the following analysis.
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2.2 Fractal Brownian motion

An FBM series X(t) with N = 2×108 samples is generated using the subroutine wfbm in
MATLAB, which employs the algorithm of Abry and Sellan [45]. The Hurst parameter is
chosen to be H=1/3, such that the scaling of the structure function Sp(τ) can reproduce
the K41 law, where Sp(τ)= 〈|X(t+τ/2)−X(t−τ/2)|p〉. It is clearly seen from Fig. 3, as
expected, that the scaling relation of the FBM series satisfies Sp(τ)∼ τζp with ζp = p/3
fairly well for p=1∼10 at all scales.

τ
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100 101 102 103 10410-2

100
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1010
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1014
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p=10

Figure 3: The structure functions of the FBM series. The Hurst parameter is chosen to be H=1/3. Solid lines
represent the scaling-laws of τp/3.

2.3 Oscillation structure classification

The oscillation structure classification method is based on the local zero-crossing, which
is a modification of the classical zero-crossing that has been studied extensively [46–51].
This OS classification method can be employed in any fluctuation field φ, where φ can be
either the velocity or passive scalar fluctuations. Since the turbulence signal contains both
large-scale and small-scale structures, the dissipative-scale motions may serve as noise to
the identification of inertial-range structures. We first apply a low-pass filter on φ to get

the coarse-grained φ̃(x) and define the local mean φ̃r(x) as φ̃r(x)= 1
r

∫ x+r/2
x−r/2

φ̃(y)dy. In the
present study, the Gaussian low-pass filter with filter width αr is used, where α depends
on the ratio of the smallest/largest inertial-range lengths, and should be properly chosen
to remove the effect of small-scale motions in the inertial range. Here, α is chosen to be
1/8 for both the DNS and LES fields; see Appendix for detailed discussion about the
effect of filter width. Then we denote Nr(φ̃) as the number of the zero points of φ̃(x)−φ̃r

in the interval [x−r/2,x+r/2] (local zero crossings). The use of φ̃r instead of the global
mean value 〈φ〉 can avoid the influence of large-scale motions on the local structures. As a
result, the oscillation structures at the characteristic scale r can be discerned by counting
Nr(φ̃) in the interval [x−r/2,x+r/2]. We define the oscillation structure classification
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Figure 4: The oscillation structure classification for the DNS velocity field at Rλ = 410 and r = 128η. (a)
Upper: a segment of original velocity (red line) and filtered velocity (blue line). Lower: the corresponding OS

subclasses; (b) The detailed illustration of u(x), ũ(x) and CL
i (x) at the neighbor of position b in (a); (c) The

detailed illustration of u(x), ũ(x) and CL
i (x) at the neighbor of position c in (a). The dashed lines represent

ũr at x=0. Symbols denote the local zero-crossings.

and the subclasses for φ as

Ci(r)≡{i |Nr(φ̃(x))= i}. (2.13)

We use CL
i , CT

i and Cθ
i to denote the OS subclasses for the longitudinal velocity, trans-

verse velocity and passive scalar, respectively. Fig. 4(a) shows a segment of longitudinal
velocity component before and after the filtered process along x direction of a DNS field,
as well as the corresponding OS subclasses. The u(x), ũ(x) and CL

i (x) around position b
and c are shown in details in Fig. 4(b) and Fig. 4(c). When CL

i = 1, it usually means that
a large drop-off structure (ramp-cliff) is formed, as shown in Fig. 4(b). When CL

i = 3, a
zigzag structure exist in the interval [x−r/2,x+r/2] as shown in Fig. 4(c). Obviously the
larger the value of CL

i is, the faster the structure oscillates and more local zero-crossings
are recognized. The relation between the value of Ci and the corresponding oscillation
structure is the same for the transverse velocity and passive scalar.

3 Results

3.1 Intermittency and oscillation structures

To study the connection between the inertial-range intermittence and oscillation struc-
tures, we first apply the OS classification on the transverse velocity of DNS and LES fields
and check the general statistics of the OS subclasses. Fig. 5(a) shows the probability den-



258 K. Yang et al. / Commun. Comput. Phys., 19 (2016), pp. 251-272

CT
i (r)

P
(C

T i (
r)

)

0 5 10 1510-10

10-8

10-6

10-4

10-2

100

r/η=32
r/η=64
r/η=128
r/η=256
r/η=512

(a)

CT
i (r)

P
(C

T i (
r)

)

0 5 10 1510-10

10-8

10-6

10-4

10-2

100

r/∆x=16
r/∆x=32
r/∆x=64
r/∆x=128
r/∆x=256

(b)

Figure 5: The probability density functions of oscillation structure subclasses for transverse velocity at different
cover lengths r. (a) The DNS field. (b) The LES field on 5123 grid points.

sity functions (PDFs) of OS subclasses in the DNS field. It is seen that when r/η664, the
PDFs depend on r strongly. In the range r/η > 128, the PDFs of the CT

1 ∼CT
5 subclasses

can nearly collapse with each other at different cover lengths, illustrating that the PDFs
of these five OS subclasses are scale-invariant at these scales. The faster oscillating sub-
classes, such as CT

6 ∼CT
15, show a slower convergent rate to an asymptotic distribution.

We postulate that if the flow field had a higher Reynolds number and a longer inertial
range, the scale-invariant feather of P(CT

i (r)) could be satisfied better. This conjecture is
verified in the LES field, and the corresponding PDFs of CT

i (r) are shown in Fig. 5(b). It
is observed that the PDFs at different r can collapse with each other fairly well, except for
the r=16∆x case which might be affected by the subgrid-scale model. A similar result has
been reported in the companion paper [40], which is based on the statistics of longitudi-
nal velocity from DNS and experimental measurement in an atmosphere boundary layer
at Rλ = 19500. These results indicate that when the slower OS subclasses (CT

1 ∼CT
5 ) are

considered, which occupy the majority of the flow field, the statistical scale-invariance
can sustain for transverse velocity at both moderate and high Reynolds numbers; and
P(CT

i (r)) is independent of r in high Reynolds number field for all OS subclasses.

The next step is to study the inertial-range intermittent level in each OS subclass by in-
vestigating the scalings of conditional structure functions ST

p,i on different CT
i subclasses:

ST
p (r)|CT

i (r)≡〈|δrv|p|CT
i (r)〉. Due to the limited length of the inertial range, the extended-

self similarity (ESS) [52] is utilized to estimate the relative scalings, and the ESSs of the CT
1

and CT
7 subclasses are shown in Fig. 6. It is seen that the relative scaling law, ST

p,i∼(ST
3,i)

ζE
p,i ,

can be satisfied fairly well in both subclasses. This well-matched relationship is also ob-
served in other subclasses and the results are not shown here to avoid redundancy. The
(lnST

p,i,lnST
3,i) curves are least squares fitted with straight lines to extract the slope ζE

p,is,

and we fit the (lnST
3,i,lnr) curves in different subclasses using the same approach to get

the absolute scaling ζT
3,is. The scaling exponents ζT

p,is for p 6=3 are obtained by ζT
p,i=ζT

3,iζ
E
p,i,



K. Yang et al. / Commun. Comput. Phys., 19 (2016), pp. 251-272 259

〈 |δrv|3|CT
1〉 /u

3
rms

〈|δ
rv

|p |C
T 1〉

/u
p rm

s

10-1 100 101
10-1

100

101

102

103

104

105(a)
p=1
p=2
p=4
p=6
p=8

〈 |δrv|3|CT
7〉 /u

3
rms

〈|δ
rv

|p |C
T 7〉

/u
p rm

s

10-2 10-1 100 101
10-2

10-1

100

101

102

103

104(b)
p=1
p=2
p=4
p=6
p=8

Figure 6: The extended self similarity for transverse structure functions of DNS field in different transverse OS
subclasses, including the least squares fits to measure the relative scalings (solid lines). Data symbols and lines

are shifted vertically by different amounts for better recognition. (a) CT
1 subclass; (b) CT

7 subclass.

p

ζT p,
i

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0

2.5

3.0
CT

1

CT
3

CT
5

CT
7

ζT
p

(a)

SL94

K41

p

ζT p,
i

0 2 4 6 8 100

0.5

1

1.5

2

2.5

3
CT

1

CT
3

CT
5

CT
7

ζT
p

(b)
K41

SL94

Figure 7: The absolute scalings of transverse structure functions in each transverse OS subclass as well as ζT
p of

the overall field for (a) DNS field and (b) LES field on 5123 grid points. The error bar denotes for the standard

derivation of ζT
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and they are shown in Fig. 7(a). The scaling exponent of ST
p (r) of the overall field (de-

noted by ζT
p ) is also plotted in the same figure, and it is found that for p=1∼8, ζT

p is ap-

proximately equal to ζT
p,1, which is the minimum of scalings in all the OS subclasses. This

demonstrates that the inertial-range intermittency of the overall field is determined by
the most intermittent oscillating structure, i.e., the CT

1 OS subclass. The relation ζT
p = ζT

p,1

can also be deduced analytically provided the statistical invariance of the PDFs of CT
i (r),

as presented in details in the companion paper [40], and will not be repeated here. The
absolute scalings of transverse structure functions in different OS subclasses of the LES
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Figure 8: The probability density functions of oscillation structure subclasses for passive scalar at different cover
lengths r for (a) the DNS field and (b) the LES field on 5123 grid points.

field are shown in Fig. 7(b), and the results are very close to that of the DNS field. To
check the applicability of the LES approach, we performed another LES with 1283 grid
points and the same flow parameters of the DNS field, and the corresponding results are
comparable to those of the DNS field (results are not shown here). It indicates that the
results obtained in the LES field of 5123 grid points are not trivial. We infer that the rela-
tion between the oscillation structures and the inertial-range intermittency for transverse
velocity is valid for both moderate and high Reynolds number field.

The routine of classification based on oscillation structures and conditional statistics is
also applied to passive scalar field. Fig. 8(a) shows that the PDFs of Cθ

i has an asymptotic
form as r becomes larger in the inertial range at moderate Reynodes number. At high-
Reynoldes number, all the P(Cθ

i (r))s can collapse very well as shown in Fig. 8(b). The
intermittent levels of different OS subclasses are also investigated in the passive scalar
field. We study the scaling-law of structure function conditional on different Cθ

i sub-

classes: Sθ
p,i ∼ rξp,i , where Sθ

p(r)|Cθ
i (r) = 〈|δrθ|p|Cθ

i (r)〉. The ESS approach for obtaining

ζT
p,i is employed to calculate the ξp,i, and the result is shown in Fig. 9. It is seen that the

relation ξp=ξp,1 can be satisfied in both DNS and LES fields, which is also consistent with
the results of the velocity field presented in the companion paper [40] and Fig. 7.

One manifestation of inertial-range intermittency is the non-Gaussian behavior of ve-
locity increment in the inertial-range scale. Fig. 4 gives a qualitative illustration that the
CT

1 subclass contains the large jumps of velocity fluctuations, which are usually contained
in the non-Gaussian tail part of PDF for δrv. This property for CT

1 subclass is verified in
a more quantitative way in Fig. 10(a), which plots the joint PDF of the transverse veloc-
ity increment and OS subclasses (denoted by P(δrv,CT

i )) as well as the PDF of δrv of the
overall field (denoted by P(δrv)) when r=128η, and we have ∑i P(δrv,CT

i )=P(δrv). It is
seen that the probability of δrv in the CT

1 subclass has the longest tails on both the pos-
itive and negative sides, indicating that the velocity increments with large values, such
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Figure 9: The absolute scalings of structure functions of passive scalar field in each OS subclass as well as ξp of

the overall field for (a) DNS field and (b) LES field on 5123 grid points. The error bar denotes for the standard
derivation of ξp of time average. Dashed lines (KOC) represent the scaling ξp= p/3 predicted by KOC theory.
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Figure 10: (a) The joint PDF of the transverse velocity increment and OS subclasses as well as P(δrv) of the
overall field at r=128η. σ is the r.m.s of δrv. The dotted line is the Gaussian distribution. (b) The RCDF of
the transverse velocity increment.

as δrv/σ > 3, have the highest probability in the CT
1 subclass. Meanwhile, it is remark-

able that the tails of P(δrv,CT
1 ) are almost overlap with P(δrv) of the overall field, while

other OS subclasses have much smaller probability at the tail parts. To measure the con-
tribution of CT

1 subclass more preciously, we define the ratio of cumulative probability
function (RCDF) of δrv in CT

1 subclass and the overall field as

RCDF(δ, δrv)=
P(|δrv|/σ>δ,CT

1 )

P(|δrv|/σ>δ)
, (3.1)

and plot it in Fig. 10(b). It is seen that when δ=3, RCDF=0.84, meaning that more than
80% of regions with |δrv|/σ>3 are captured by the CT

1 subclass. And this ratio can exceed
90% when the events of |δrv|/σ>5.75 are considered. It shows that the extreme velocity
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Figure 11: (a) The probability density functions of oscillation structure subclasses of the FBM series. (b) The
scalings of Sp(τ)|Ci and Sp(τ) of the FBM series.

increments that cause the non-Gaussian part of the PDF locate mostly in the CT
1 subclass

regions. The results of the passive scalar field are similar to those of the velocity field,
and will not be shown here.

In contrast to the turbulent fields which have the intermittent feature, the fractal
Brownian motion is a self-similar Gaussian process without intermittency at all scales.
The PDFs of Ci(τ) from the FBM series at different scales are shown in Fig. 11(a). It is
seen that P(Ci(τ)) is independent of τ. Thus the scale-invariant feature of the PDFs of
OS subclasses can be satisfied in the FBM field for a wide range of scales, which is also a
reflection of the self-similarity. The scalings of structure functions in each OS subclasses
and the overall FBM series are shown in Fig. 11(b). It is clear that ζp,i = ζp = p/3 for
all i = 1 ∼ 7. This demonstrates that the OS classification will not induce any artificial
intermittent structure.

3.2 Topology and oscillation structures

The topological structure of the local streamlines is determined by the eigenvalues (de-
noted as λi, i=1,2,3) of the velocity gradient tensor Aij=∂ui/∂xj, which satisfy

λ3
i +Pλ2

i +Qλi+R=0, (3.2)

where P, Q and R are the first, second and third invariants of the tensor Aij, respectively,
and they are given by

P=−Sii, (3.3)

Q=
1

2
(P2−SijSij+ΩijΩij), (3.4)

R=
1

3
(−P3+3PQ−SijSjkSki−3ΩijΩjkSki), (3.5)
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Figure 12: Isocontour lines of log10 P(Q∗,R∗). Five contour lines at −1, −2, −3, −4 and −5 are shown for (a)

the original velocity field and (b) the filtered velocity field. Black curves in (a) and (b) are for 27R∗2+4Q∗3=0.

and Sij = (Aij+Aji)/2, Ωij = (Aij−Aji)/2. In the incompressible field, P = 0, and the
discriminant ∆(u) of Eq. (3.2) is

∆(u)=27R2+4Q3. (3.6)

According to Chong et al. [41], if ∆(u)<0, the three eigenvalue of Aij are all real, corre-
sponding to the non-focal region (the saddle region); On the other hand, when ∆(u)>0,
only one eigenvalue is real and the other two ones are complex conjugate pairs, corre-
sponding to the focal region (the vortex region).

The joint PDF of (Q,R) of the DNS field at Rλ = 410 is shown in Fig. 12(a), where
Q∗ = Q/Ω3, R∗ = R/Ω2 and Ω = |∇×u|/

√
2. The teardrop shape of the joint PDF of

(Q,R) is consistent with the results reported by Martin et al. [53] and Meneveau [54].
However, the classic topological analysis can only discern the flow patterns at very small
scales. To analyze the inertial-range motions, the DNS field is filtered by a low-pass
filter with width ∆ = r, where r is the cover length scale used in the OS classification,
and (Q(u),R(u)) of the filtered velocity field u is analyzed to study the flow topologies
at the scale r. The joint PDF of (Q(u),R(u)) at r = 128η is shown in Fig. 12(b), where

Q∗=Q(u)/Ω
3
, R∗=R(u)/Ω

2
, Ω=|∇×u|/

√
2. It is seen that the joint PDF of (Q(u),R(u))

still has the teardrop shape, but covers a smaller area.
Since the topological analysis is a three-dimensional (3D) classification method and

the OS subclasses for different directions are weakly correlated, the one-dimensional OS
subclasses Ci(u1), Ci(u2) and Ci(u3) are summed as C3d=Ci(u1)+Ci(u2)+Ci(u3) to be a
measure of 3D oscillation structures. A special emphasis should be placed on positions
where C3d = 3, since it means at these positions all the u1, u2 and u3 belong to the C1

subclass. The topological characteristics in the CL
3d = 3 subdomains of the longitudinal

velocity is investigated and the joint PDF of (Q(u),R(u)) is shown in Fig. 13(a). It is seen
that P(Q(u),R(u))CL

3d=3 has a smaller probability in the Q(u)> 0,R(u)> 0 region, and a
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Figure 13: The local flow topology related to the OS subclass of longitudinal velocity at r=128η. (a) Isocontour
lines of log10 P(Q∗,R∗) for the filtered velocity in the C3d=3 subdomains (the red lines) and the overall field (the
blue lines). Five contour lines at −1, −2, −3, −4 and −5 are shown; (b) Contour of P(Q∗,R∗)CL

3d=3−P(Q∗,R∗).

Black curves in (a) and (b) are for ∆(u)=27R∗2+4Q∗3=0.

significant larger probability around the right branch of the ∆(u)=0 curve compared with
the joint PDF of (Q(u),R(u)) of the overall field. The difference between the joint PDF
of (Q(u),R(u)) conditional on the CL

3d = 3 subdomains and that of the overall field, i.e.
P(Q(u),R(u))CL

3d=3−P(Q(u),R(u)), is shown in Fig. 13(b). It is seen that the difference of

the two joint PDFs has a large area of positive value around the right branch of ∆(u)=0
curve as well as a large area of negative value in the Q(u)>0 region. This illustrates that
CL

3d=3 subdomains have a higher probability to lay in the saddle or degenerated saddle
regions and a lower probability in the vortex-dominated region.

The topological analysis is also combined with the OS classification of the transverse

velocity. Since each velocity component have two transverse OS subclass, we define CT
i

for velocity component uk as

CT
i (uk)=min{CT

i (rj1 ,uk),C
T
i (rj2 ,uk)}, j1 6= k, j2 6= k, k=1,2,3, (3.7)

and define the measure of 3D transverse OS as

CT
3d=CT

i (u1)+CT
i (u2)+CT

i (u3). (3.8)

The joint PDF of (Q(u),R(u)) conditional on the CT
3d = 3 subdomains is shown in

Fig. 14(a). It is seen that the CT
3d = 3 subdomains have a much larger probability for

the vortex region than the overall field, while the probabilities for the saddle region are
almost the same. The difference between the joint PDFs of (Q(u),R(u)) conditional on the
CT

3d=3 subdomains and that of the overall field, i.e. P(Q(u),R(u))CT
3d=3−P(Q(u),R(u)),

is shown in Fig. 14(b). It is seen that the difference of two joint PDFs has a large positive
area in the Q(u)> 0 region, and it also has a small portion of positive value around the
right branch of ∆(u)= 0 curve. The negative value for the difference of two joint PDFs
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Figure 14: The local flow topology related to the OS subclass of transverse velocity at r=128η. (a) Isocontour

lines of log10 P(Q∗,R∗) for the filtered velocity in the CT
3d=3 subdomains (the red lines) and the overall field (the

blue lines). Five contour lines at −1, −2, −3, −4 and −5 are shown. (b) Contour of P(Q∗,R∗)CT
3d=3−P(Q∗,R∗).

Black curves in (a) and (b) are for ∆(u)=27R∗2+4Q∗3=0.
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Figure 15: The two-dimensional streamlines for (u1,u3) and the OS subclass distribution at r = 128η on a

selected (x,z) plane around a saddle point. The contour is (a) CL
3d and (b) CT

3d.

is around the (Q(u),R(u))→ (0,0) region, which means that the weak rotation/strain
regions are less probable to produce a C1 subclass for the transverse velocity.

One typical saddle point with its surrounding flow structures extracted from the DNS
field is shown in Fig. 15, where the contours of CL

3d and CT
3d are shown as the backgrounds

in panel (a) and (b), respectively. The longitudinal velocity components in both the x and
z directions change their signs when they cross the saddle point, and large jumps (or the
cliff structure with CL

3d = 3) can be observed near the saddle point at the center of the
figure. Meanwhile, CL

3d is usually larger than 3 near the vortex structures. On the other
hand, as shown in Fig. 15(b), CT

3d = 3 regions are mostly at the neighbourhood or center
of vortex structures (A and B), since the transverse velocity components change their
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Figure 16: The local flow topology related to the OS subclass of passive scalar at r=128η. (a) Isocontour lines

of log10 P(Q∗,R∗) for the filtered velocity in the Cθ
3d=3 subdomains (the red lines) and the overall field (the blue

lines). Five contour lines at −1, −2, −3, −4 and −5 are shown. (b) Contour of P(Q∗,R∗)Cθ
3d=3−P(Q∗,R∗).

Black curves in (a) and (b) are for ∆(u)=27R∗2+4Q∗3=0.

signs when they cross the center of a vortex. These results show that the intermittency
of longitudinal structure function is related to the strain dominated region (the saddle
region), while that of transverse structure function is related to the rotation dominated
region (the vortex region). Our findings are consistent with the conclusions of Chen
et al. [19] and Boratav and Pelz [33], and we would like to emphasize that the relation
between the intermittency and the flow structures can be illuminated more clearly by our
OS classification approach.

The topological analysis is also applied on the passive scalar field. We define the
three-dimensional OS subclass for passive scalar as Cθ

3d =Cθ
i (r1)+Cθ

i (r2)+Cθ
i (r3), where

Cθ
i (r1), Cθ

i (r2) and Cθ
i (r3) are one-dimensional OS subclasses in x, y and z directions, re-

spectively. The joint PDF of (Q(u),R(u)) of the Cθ
3d=3 subdomains of the passive scalar

is shown in Fig. 16(a). It has a similar behavior as the joint PDF of (Q(u),R(u)) in CL
3d=3

subdomains of the longitudinal velocity, which can be seen more clearly from Fig. 16(b),
that a smaller probability exists in the Q(u)> 0 region, and a larger probability exhibits
around the right branch of the ∆(u) = 0 curve. To further demonstrate the relation be-
tween the passive scalar structure and flow pattern of velocity field, we show the distri-
bution of Cθ

3d and θ/θrms in Fig. 17(a) and (b) at the same flow region as that of Fig. 15.
It is seen that a Cθ

3d = 3 area exists near the saddle point. A sharp front of passive scalar
field is found near the z=0 line, and it passes two counter-rotating vortexes located at A
and B. It has been reported by Antonia et al. [55] and Holzer and Siggia [39] that when
a mean gradient is imposed on the passive scalar field, a scalar front (ramp-cliff struc-
ture) will occur at the diverging separatrix formed between two counter-rotating flowing
structures. Our flow visualization clearly illustrates this physical picture, and shows that
this relation between the passive scalar fonts and saddles of velocity field also exists in
isotropic scalar field.
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Figure 17: The two-dimensional streamlines for (u1,u3) and the OS subclass distribution and fluctuation of

passive scalar at r = 128η on a selected (x,z) plane around a saddle point. The contour is (a) Cθ
3d and (b)
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4 Summary

In this paper, we extend the oscillation structure classification method and conditional
statistics tool developed in the longitudinal velocity to the transverse velocity, passive
scalar field and the fractal Brownian motion. Flow fields obtained by DNS and LES
are used to verify the relation between oscillation structure and inertial-range intermit-
tency in moderate and high Reynolds number fields. We find that the probability of OS
subclasses are scale-invariant in the inertial range at high Reynolds number for trans-
verse velocity and passive scalar. Meanwhile, the inertial-range intermittency for the
transverse velocity and passive scalar are both determined by the OS subclass with only
one local zero-crossing. This OS subclass captures most positions with large increments
which cause non-Gaussian PDFs of δrv and δrθ. These results are consistent with the
findings about the essence of the inertial-range intermittence for the longitudinal veloc-
ity. Meanwhile, by examination on fractal Brownian motion field, we also prove that
our OS classification method is physical and will not introduce any artificial intermittent
structure.

The topological approach based on the distribution of the invariants for the filtered
velocity gradient tensor at inertial range is combined with the oscillation structure clas-
sification. We construct the measure for three-dimensional oscillation structures using
one-dimensional OS subclasses, and investigate the dominating topological feature of
the most intermittent subdomains in both the velocity and passive scalar field. It is found
that the most intermittent subdomains for the longitudinal velocity tend to lay at the sad-
dle region, while those for the transverse velocity tend to locate at the vortex-dominated
region. Meanwhile, the connection between the intermittency of passive scalar and the
saddles of velocity field is also confirmed in our study.
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Appendix

A proper filter width plays an important role to extract the statistical scale-invariant prop-
erty for oscillations structures, i.e. to ensure the precondition P(Ci) = P(Ci(r)), which
results in ζp = ζp,1. This relation can be deduced analytically, which has been addressed
in the companion paper [40] and will not be repeated here. In the following we will show
the role of filter process in the numerical approach.

Take the passive scalar field obtained by DNS as an example. We consider three dif-
ferent filter widths, i.e. ∆ = r/4, r/8 and r/16, and plot the results in Figs. 18-19 (the
results of ∆= r/8 has been presented in Fig. 8 and Fig. 9). When ∆= r/4 and ∆= r/8,
the PDFs of Cθ

i (r) can converge in the inertial range, and the relation ξp,1 ≈ ξp can be

satisfied fairly well under both filter widths; when ∆ = r/16, the PDFs of Cθ
i (r) exhibit

a poorer convergent property and the diversity between ξp,1 and ξp is larger, since too
much dissipative-scale motions are retained in the filtered signal.

If a fixed filter width ∆ is used, as the cover length r becomes larger, the motions
close to ∆ are more likely to be the noise-like structures. Fig. 20(a) shows the PDFs of
Cθ

i (r) for a fixed filter width ∆=16η. It is seen that the PDFs show little scale-similarity
even for inertial-range scales. The corresponding scalings of structure functions in Cθ
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Figure 18: Statistical results of OS subclasses of passive scalar at filter width ∆= r/4. (a) Probability density
functions of OS subclasses. (b) Absolute scalings of structure functions in each OS subclass and the overall
field.
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Figure 19: Statistical results of OS subclasses of passive scalar at filter width ∆=r/16. (a) Probability density
functions of OS subclasses. (b) Absolute scalings of structure functions in each OS subclass and the overall
field.
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Figure 20: Statistical results of OS subclasses of passive scalar at filter width ∆=16η. (a) Probability density
functions of OS subclasses. (b) Absolute scalings of structure functions in each OS subclass and the overall
field.

subclass depart from ξp significantly, as shown in Fig. 20(b). We have also tested filter
width ∆ = 32η and the results are similar. Thus when a fixed filter width is used, no
scale-invariant property can be observed and the relation ξp,1 ≈ ξp can not be satisfied
either.

In summary, the filter process is important for discerning the inertial-range oscillation
structures clearly. A proper, scale-dependent filter width should be chosen to ensure the
scale-invariance for PDFs of these structures, which results in the relation that anomalous
scaling is determined by the C1 subclass. However, it does not mean that the collapse of
P(Ci(r))s is an artificial result, since only the existence of the scale-invariance can lead to
the same P(Ci(r)) at different r.
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