
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 4, No. 2, pp. 156-174

DOI: 10.4208/aamm.11-m1192
April 2012

The Eulerian-Lagrangian Method with Accurate
Numerical Integration

Kun Li∗

LMAM & School of Mathematical Sciences, Peking University, Beijing 100080, China

Received 8 May 2011; Accepted (in revised version) 21 June 2011

Available online 26 March 2012

Abstract. This paper is devoted to the study of the Eulerian-Lagrangian method
(ELM) for convection-diffusion equations on unstructured grids with or without
accurate numerical integration. We first propose an efficient and accurate algo-
rithm to calculate the integrals in the Eulerian-Lagrangian method. Our approach
is based on an algorithm for finding the intersection of two non-matching grids. It
has optimal algorithmic complexity and runs fast enough to make time-dependent
velocity fields feasible. The evaluation of the integrals leads to increased precision
and the unconditional stability. We demonstrate by numerical examples that the
ELM with our proposed algorithm for accurate numerical integration has the fol-
lowing two features: first it is much more accurate and more stable than the ones
with traditional numerical integration techniques and secondly the overall cost of
the proposed method is comparable with the traditional ones.

AMS subject classifications: 65D18, 65D30, 65M25, 65N30

Key words: Eulerian-Lagrangian method, intersection of non-matching grids, exact integra-
tion.

1 Introduction

The Eulerian-Lagrangian Method (ELM), also called Semi-Lagrangian Method (SLM),
is known as an efficient numerical method for both pure convection and convection-
diffusion problems. It works by interpreting the convection term and the time deriva-
tive as a material derivative. An implicit discretization based on this approach results
in an unconditionally stable scheme that leads to a symmetric positive definite system.
The price is a more complicated implementation. In particular, it is noted that inner
products of test functions with the solution of the previous time step propagated along

∗Corresponding author.
URL: http://dsec.pku.edu.cn/∼kli/index ch.htm

Email: kli@math.pku.edu.cn (K. Li)

http://www.global-sci.org/aamm 156 c⃝2012 Global Science Press

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 157

the integral lines of the velocity field. However, the inner products generally can not
be evaluated exactly.

The convergence analysis for the Eulerian-Lagrangian method has been estab-
lished in [8] for the pure convection problem, and in [2,9] for the convection-diffusion
problem. In these works it is assumed that the underlying integrals are evaluated
exactly. As demonstrated in [7], ELM may not converge if numerical integration is
not accurate enough. Indeed, both theoretical and numerical results show that the
numerical approximation of the integration may lead to numerical instability, unless
quadrature rules of sufficiently high order are used. Finite element interpolation has
been often used for numerical integration, but this approach is known to introduce
too much numerical diffusion [5, 6, 11].

In the implementation of ELM method, inner products that involve two finite
element functions on two different grids need to be evaluated. How to accurately
evaluate these integration accurately is the main topic of this paper. For two dimen-
sional rectangular grids, an approach called ”area weighting” was introduced in [7].
For two dimensional triangular grids, a special algorithm for ”exact projection” was
introduced in [10]. Attaining the information needed by integration is still a time-
consuming task and the algorithm to find the intersection of two non-matching grids
is output-sensitive or intersection-sensitive (see [1]).

In this paper we introduce a more general and more efficient algorithm to evaluate
the inner products. We followed and improved an algorithm proposed by [4] (which
was designed for mortar finite element computations) to find the intersection of two
non-matching grids. This type of algorithms work for conforming grids of any space
dimensions and for all element types and they appear to be more general and more
effective than the earlier methods proposed in the literature (e.g., [3] designed for the
moving mesh method).

Using the accurate integration method mentioned above, we will use numerical
examples to show the resulting ELM can achieve the optimal convergence rate and
we will also demonstrate the accurate integration will improve the precision of the
numerical solution with only marginal extra computational complexity and such an
improvement is more significant for solution with singularities.

The rest of this paper is organized as follows. In Section 2, we introduce ELM
for convection-diffusion equations. In Section 3, we describe a specific algorithm of
accurate integration with details of the algorithm for finding the intersection of two
non-matching grids in arbitrary dimensional case. We then show how to improve this
algorithm. We will also report a number of numerical tests to validate our algorithm
in Section 4. In addition, we will also show the importance of the exact integration for
the solution space with weak regularity.

2 The Eulerian-Lagrangian method

Let Ω be a domain in Rd and let T > 0. For a function u : Ω× [0, T]→ R we consider

158 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

the linear model convection-diffusion equation

∂u
∂t

+ b · ∇u− ϵ∆u = f , on Ω× [0, T], (2.1)

with initial condition u(x, 0) = u0(x) on Ω and suitable boundary conditions. The
vector field b : Ω× [0, T] → Rd is called the velocity field. For simplicity we assume
that it is divergence-free

∇ · b = 0. (2.2)

The parameter ϵ is nonnegative. If it is zero, (2.1) is called a pure convection equation.
By the assumption, the velocity field b is integrable, i.e., there exists a flow map-

ping

y(·, s, t) : Ω→ Ω,

such that

dy
ds

= b(y(x, s, t), s), ∀x ∈ Ω, s, t ∈ (0, T), (2.3a)

y(x, t, t) = x, ∀x ∈ Ω, t ∈ (0, T). (2.3b)

The Eulerian-Lagrangian method treats (2.1) by interpreting the term ∂u/∂t+ (b · ∇)u
as the material derivative Du/Dt,

Du
Dt

:= lim
k→0

u(x, t)− u
(
y(x, t− k, t), t− k

)
k

=
∂u
∂t

+ b · ∇u.

Using the material derivative, (2.1) becomes

Du
Dt
− ϵ∆u = f . (2.4)

Among the many possible implicit schemes for time discretization, we take the back-
ward Euler scheme as an example. For simplicity we assume a constant time step size
τ. Call un and f n the discrete solution and right-hand side at time step n. We obtain
the time-stepping procedure

un+1 − un ◦ y(x, tn, tn+1)

τ
− ϵ∆un+1 = f n. (2.5)

Let V be a suitable space of test functions. Multiplying (2.5) by a function v ∈ V and
applying integration by parts, we obtain the usual weak form

(un+1, v) + τϵ(∇un+1,∇v) = τ(f n, v) +
(
un ◦ y(x, tn, tn+1), v

)
, ∀v ∈ V. (2.6)

At this point, the first advantage of the Eulerian-Lagrangian method becomes evident.
The bilinear form

a(v, w) = (v, w) + τϵ(∇v,∇w),

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 159

is symmetric and positive definite. Hence solvers for symmetric systems can be used,
resulting in an increase in efficiency. This is not true if the spatial derivative b · ∇u is
used in the discretization of (2.1).

The second advantage is the unconditional stability of the time-stepping method.

Theorem 2.1. ELM is unconditionally stable.

Proof. This can be shown by the following argument quickly. Taking v = un+1 in
(2.6) gives

∥un+1∥2 =(un ◦ y(x, tn, tn+1), un+1)− τε∥∇un+1∥2 + τ(f n, un+1)

≤∥un ◦ y(x, tn, tn+1)∥∥un+1∥+ τ∥ f n∥∥un+1∥.

Using the divergence free velocity condition (2.2) leads to

∥un ◦ y(x, tn, tn+1)∥ = ∥un∥,

i.e.,

∥un+1∥ ≤ ∥un∥+ τ∥ f n∥.

Here ∥ · ∥ is the L2 norm. �
Assume that Ω is a polygon and let G be a conforming, quasi-uniform grid resolv-

ing Ω. On G, define the finite element space

Vp
h =

{
vh ∈ C(Ω)| vh|T ∈ Pp for all elements T ∈ G

}
,

where Pp is the space of all p-th order polynomials in d variables. Using Vp
h to dis-

cretize the spatial problems (2.6), several error bounds have been obtained, for rele-
vant theoretical results, we refer to [5, 7, 8]. Let us first cite the following theoretical
result.

Theorem 2.2. For the pure convection problem (ϵ=0 in (2.1)), with finite element of degree p
and exact time evolution, it converge with order p in L∞(0, T; (L2)d) provided u0 ∈ (Hp+1)d,
b ∈ L∞(0, T; (W1,∞)d) and u ∈ H1(0, T; (Hp+1)d).

Higher convergence rate results are valid for some special elements on uniform
grid, for example piecewise constant element with the first order convergence rate
(see e.g. [8]).

The theoretical result of this method for convection-diffusion problem (ε > 0) can
be found in [2, 10] under the exact integration assumption.

Theorem 2.3. For the convection-diffusion problem, with finite element of degree p in scheme
(2.6), the convergence rate in L∞(0, T; (L2)d) is τ + hp+1 provided

u ∈ L∞(
0, T; (Hp)d),

∂u
∂t
∈ L2(0, T; (Hp−1+θ)d),

∂2u
∂t2 ∈ L2(0, T; (L2)d),

and

b ∈ L∞(
0, T; (W1,∞)d), ϵ > ϵ0 > 0.

160 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

Here θ = 1 when q = 2 and θ = 0 when q > 2 (the convergence rate will be reduced to
τ + hp+1/τ or τ + hp for arbitrary ε > 0).

Now a challenging problem is how to calculate the last integration (un ◦
y(x, tn, tn+1), v) on the right hand side of (2.6) exactly since un ◦ y(x, tn, tn+1) and v
are not on the same grid. All of above theoretical results are under the assumption
that this integration is exactly calculated.

We now consider the evaluation of the term

l2(v) =
(
un ◦ y(x, tn, tn+1), v

)
. (2.7)

The difficulty is that while v and un are finite element functions on G, the composite
function un ◦ y(x, tn, tn+1) is not. Instead, it can be interpreted as a finite element
function that has been transported along the integral lines of the velocity field b .

We discretize the ordinary differential equation (2.3) that defines y by a backward
Euler scheme.

Call yn(x) the numerical approximation to y(x, s, tn+1) at time s = tn. We obtain

yn+1(x)− yn(x)
τ

= b
(
yn+1(x), tn+1).

Using this approximation in (2.7) gives

l̃2 =
∫

Ω
un(x− τb(x, tn+1)

)
· v(x)dx.

This expression is still algorithmically intractable unless further assumptions on

bn+1 := b(·, tn+1),

are made. We therefore further simplify the problem by replacing bn+1 by its q-th order
finite element interpolant

b̃n+1 := Iq(bn+1) ∈ (Vq
h)

d.

In this article we focus on the case q = 1. In this case, un(x − τb̃n+1(x)) is a finite
element function on an affine grid Gn which results from moving each vertex vi of G
by the vector b̃n+1(vi). The product

l̃2 =
∫

Ω
un(x− τI1bn+1)vdx, (2.8)

is then the product of two p-th order finite element functions on two grids G and Gn,
where Gn results from G by a vertex displacement (refer to Figs. 1 and 2).

The approach described above is closely related to the ”area weighting” designed
for rectangle grid in [7] and also for triangular grid in [10] called ”exact projection”,
although they did not intend for exact integration. As shown in [10], ”the error caused
by the approximation of the feet of the trajectories does not alter the error estimate of
the exactly integrated method”.

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 161

Figure 1: The element in a triangular grid G1 (solid line) and its image of the mapping y(x, tn, tn+1) (dash
line). The result of a general mapping is shown in left one and that of an affine mapping in right one. an
affine mapping.

Figure 2: Two triangular grids G1 (solid line) and G2 (dash line) with the same topology.

3 Calculating the inner product of two finite element
functions on two non-matching grids

In the previous section we have seen that the Eulerian-Lagrangian method involves
integrals of the form

(v, w)ELM =
∫

Ω
vwdx, (3.1)

where v and w are both p-th order finite element functions, but on unrelated grids.
In this section, we propose an algorithm that computes integrals like (3.1) exactly.

For this, note that overlaying the grids G1 and G2 results in a set of intersections

Iij = Ti ∩ Tj, Ti ∈ G1, Tj ∈ G2.

By the additivity of integration we can rewrite (3.1) as a sum over the intersections∫
Ω

vwdx = ∑
i,j

∫
Iij

vwdx.

The restrictions of v and w to any intersection Iij are both p-th order polynomials,
and hence their product is a 2p-th order polynomial on each Iij. Since Iij is a convex
polyhedron, the integral

∫
Iij

vwdx can be computed exactly by numerical quadrature,
possibly after a further splitting of Iij into elements.

162 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

The inner product (3.1) (and hence (2.8)) can be computed exactly if the set of
intersections can be constructed. For this, an algorithm with optimal complexity is
proposed in [4].

3.1 Finding the intersection of two non-matching grids

We now briefly describe the algorithm of [4] for the construction of all intersections
of two grids G1 and G2. The algorithm works for all element types and in all space
dimensions. One 2-dimensional example is shown in Fig. 3. It is of optimal time-
complexity, meaning thatO(NI) operations are necessary to compute all intersections
if NI is the number of intersections. It is easy to construct pathological examples where
every element of G1 intersects every element of G2. In that case, O(N1N2) operations
are necessary. Here Ni is the number of elements in Gi. However, in regular cases each
element of G1 will only intersect a constant number of elements of G2, and vice versa.
Then the number of operations will be O(N1) = O(N2).

Computing the intersections of two grids remains expensive even if the algorithm
is of optimal complexity. If the velocity field b depends on time then the intersections
have to be recomputed at each time step. In addition to the asymptotic complexity
one is therefore also interested in obtaining a low constant in O(NI).

For simplicity we assume that the grids are conforming and that all elements are
convex.

The algorithm consists of two parts. The first one is a mechanism that, given two
elements S1 and S2, computes their intersection I12. A simple algorithm that does this
is the following.

Algorithm 3.1. Compute intersection of two elements Sπi
1 and Swait

2 .

1. Find the intersection of all the (n − 1)-elements of Sπi
1 ’s boundary and all the (n − 1)-

elements of Swait
2 ’s boundary. Record all the vertices of the intersection’s boundary in set V.

2. Add the vertices of Sπi
1 in the interior of Swait

2 to the set V.

3. Add the vertices of Swait
2 in the interior of Sπi

1 to the set V.

4. The intersection is now the convex hull of V.

The second part is an advancing-front type algorithm that repeatedly calls the
above algorithm to compute all intersections. We now describe this algorithm in two
steps and show why it is optimal.

1. Find one pair of elements Sπ0
1 ∈ G1 and S2 ∈ G2 that intersect. That can usually be

done by picking any one element Sπ0
1 of G1 and then iterating over the elements of

G2 until an element intersecting Sπ0
1 is found.

2. Find all elements of G2 that intersect Sπ0
1 . This is done by a breadth-first search on

G2 starting from S2, formally described by Algorithm 3.2. Refer to Fig. 4.

In this algorithm, elements are neighbors if they share a common boundary face.

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 163

Algorithm 3.2. Find the intersection of Sπi
1 and G2 with optimal complexity.

Require: Provide S
πj0
2 (has nonempty with Sπi

1)

1. Initialize list L of elements on G2 waiting for checking by S
πj0
2 .

2. Initialize all tags T j of the elements S
πj
2 with ”not checked” and S

πj0
2 with ”checked”.

3. while L is nonempty do
Move the first one in L to Swait

2 .

Find the intersection Sint of Sπi
1 and Swait

2 .

if Sint is nonempty then

Find Swait
2 ’s neighbors ”not checked” before, add them to L and change their tags to

”checked”.

end if
4. end while

We could now compute the set of all intersections by repeating Steps 1 and 2 for all
elements S

πj
2 of G2. Step 1 has linear complexity, and hence we can only call it a con-

stant number of times if we want to retain linear complexity of the overall algorithm.
We need a faster way to get a new pair of elements Sπi

1 and S
πj0
2 with

Sπi
1 ∩ S

πj0
2 ̸= ∅.

A simple way is to pick Sπi+1
1 as a neighbor of Sπi

1 and note that it is very likely that an
element of G2 that has been checked for intersection with Sπi

1 will also intersect Sπi+1
1 .

If this is not true there is a cascade of fall-back strategies:

1. Pick another neighbor of Sπi
1 .

2. Do a brute-force search of all elements of G2. If that fails we can conclude that Sπi+1
1

does not intersect any elements of G2 and mark it as done.

Unfortunately, the number of elements tested that way to find a valid seed for
a given neighbor Sπi+1

1 can still be fairly large. To lower the number, [4] used the
following observation.

Figure 3: Two grids G1 (left), G2 (middle) and their intersections (right).

164 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

Figure 4: The elements in grid G2 (with bold blue lines, the ones in grey are the neighbor of the ones in G2
that have nonempty intersection with S1 in G1) should be checked with the element in grid G1 (with bold
red lines).

Figure 5: The first step in the processing of finding the intersection of the second element S2
1 in G1 (the

neighbor of S1
1, with bold blue red lines) and G2. This step starts with the element in G2 (with bold blue

lines) having nonempty intersection with S2
1.

Lemma 3.1. (i) If Sπi
1 ’s boundary (n− 1)-element E1 and Swait

2 ’s boundary (n− 1)-element
E2 have nonempty intersection, Swait

2 must have nonempty intersection with Sπi
1 ’s neighbor

element shared E1 with Sπi
1 .

(2) If n or more vertices of Sπi
1 are located in the interior of Swait

2 , all Sπi
1 ’s neighbors have

no empty intersection with Swait
2 .

This lemma implies that we can, while computing the intersection of two elements
Sπi

1 and Swait
2 , obtain some information on whether a neighbor S̃ of Sπi

1 also intersects
Swait

2 . This new pair can then be used as a starting value for Step 2. Please refer to
Fig. 5. The algorithm with this technique is described in Algorithm 3.3 and the whole
algorithm is described in Algorithm 3.4.

Remark 3.1. A similar algorithm is provided in [3] recently. It records all the elements
S

πj
2 having nonempty intersection with Sπi

1 , and search in these S
πj
2 to find S

πj0
2 having

nonempty intersection with Sπi
1 ’s neighbor. Compared with the algorithm to provide

S
πj0
2 directly, it will take much more store space and cost of time.

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 165

Algorithm 3.3. Modified Algorithm 3.2 and provide S
πj0
2 for Sπi

1 ’s neighbor.

Require: Provide S
πj0
2 (has nonempty intersection with Sπi

1)

1. Initialize list L of elements on G2 waiting for checking by S
πj0
2 .

2. Initialize all the tags T j of the elements S
πj
2 with ”not checked” and the S

πj0
2 with ”checked”.

3. Initialize all the start element tags (SST) of the neighbors of Sπi
1 with ”NULL”.

4. while L is nonempty do
Move the first one in L to Swait

2 .

Find the intersection Sint of Sπi
1 and Swait

2 providing whether Swait
2 has nonempty intersection

with the neighbors of Sπi
1 .

if Sint is nonempty then

Find Swait
2 ’s neighbors ”not checked” before, add them to list L and change their tags

to ”checked”.

Find Sπi
1 ’s neighbors having nonempty intersection with Swait

2 and ”NULL” start ele-

ment tags, and update their SST ← Swait
2 .

end if

5. end while

6. reture SST.

Algorithm 3.4. Find the intersection of G1 and G2.

Require: Provide S0
1 and S0

2 which have nonempty intersection

1. Initialize list L1 = {S0
1}.

2. Initialize list L2 = {S0
2}.

3. Initialize all the tags Ti of the elements Sπi
1 (i > 0) with ”not arrived” and T0 ← ”arrived”.

4. while L1 is nonempty do
Swait

1 ← the first one in L1 and remove the first one in L1.

Sstart
2 ← the first one in L2 and remove the first one in L2.

Call Algorithm 3.3 with Swait
1 and Sstart

2 and achieve SST of Swait
1 ’s neighbors.

Find Swait
1 ’s neighbors not arrived at before, add them to L1, add their SST to L2 and

change their tags Tneighbors to ”arrived”.

5. end while

3.2 An improved algorithm

The most important technique in above algorithm is that in the step of finding the in-
tersection of two elements, it is free to know whether they have nonempty intersection
with each other’s neighbor. An natural improvement, not noticed in [4], is that only
Swait

2 ’s neighbor having nonempty intersection with Sπi
1 need be checked in Algorithm

166 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

3.3 with the help of the information provided by checking Sπi
1 and Swait

2 . For exam-
ple, the elements in grey shown in Fig. 4 are not necessary to be checked. Thus the
algorithm can be updated as Algorithm 3.5.

Algorithm 3.5. Improved Algorithm 3.3 and provide S
πj0
2 for Sπi

1 ’s neighbor.

Require: Provide S
πj0
2 (has nonempty intersection with Sπi

1)

1. Initialize list L of elements on G2 waiting for checking with S
πj0
2 .

2. Initialize all the tags T j of the elements S
πj
2 with ”not checked” and the S

πj0
2 with ”checked”.

3. Initialize all the start element tags SST of the neighbors of Sπi
1 with ”NULL”.

4. while L is nonempty do
Swait

2 ← the first one in L and remove the first one in L.

Find the intersection Sint of Sπi
1 and Swait

2 providing whether Swait
2 has nonempty intersection

with the neighbors of Sπi
1 and whether Sπi

1 has nonempty intersection with the neighbors

of Swait
2 .

Find Swait
2 ’s neighbors ”not checked” before and has nonempty intersection with Sπi

1 , add
them to list L and change their tags to ”checked”.

Find Sπi
1 ’s neighbors having nonempty intersection with Swait

2 and ”NULL” start element

tags, and update their SST ← Swait
2 .

5. end while

6. return SST.

Obviously with this improvement, the two elements checked each time must have
nonempty intersection. Now the complexity of this algorithm is O(NI), here NI is
the number of intersections. This result corresponds to the statement that the algo-
rithm for finding the intersection of two non-matching grids is output-sensitive or
intersection-sensitive. The benefit of this improvement in complexity is obvious, how-
ever cost of time will depend on the efficiency of the operation for finding the inter-
section of two elements, which is usually expensive in high dimensional case. Some
results of comparison are shown in Table 1. The improved algorithm saves plenty of
operations for finding the intersection of two elements. We can state that more distinct
benefit is found in Code in MATLAB, modified from the sample provided in [4]. This
result can be explained by the efficiency of the function to check two simplex is not
as high as Code in C. So it saves about 25% cost of time and the version of Code in C
saves about near 10%.

Remark 3.2. The operation that finding the intersection of two given (n− 1)-elements
from different grids has been done two times in the algorithm. If this step is time-
consuming, it will be valuable to avoid this duplication by storing the information in
the first place. In two dimensional case, finding the intersection of two line segment is
very fast. In three dimensional case, finding the intersection of two triangles seems to
be so expansive that introducing this technique becomes valuable.

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 167

Table 1: The result of comparison of original and improved algorithm on a pair of grids and their regular
refined ones. Code in MATLAB is provided in [4] and modified by us. Code in C is implemented by us.
Test on Intel(R) Core(TM) 2 Duo CPU P8600@2.40GHz.

algorithm number of checking Code in MATLAB (1 time) Code in C (50 times)
Improved 1529 1.085s 0.842s
Original 2604 1.477s 0.913s

Improved 6633 4.896s 3.423s
Original 11984 6.504s 3.735s

4 Numerical experiments

We will verify the good numerical properties of ELM with exact integration by several
numerical tests. We will also show that the integration algorithm can be implemented
efficiently enough to be usable even when the velocity field is time-dependent and
the intersections have to be recomputed at each time step. So we will compute the
intersections at each time step even when the velocity field is steady.

We have implemented the original algorithm of [4] in the C/C++ programming
language and added our modification. The original article [4] contains a MATLAB
implementation and we have added our modification.

4.1 Investigation of the convergence rate

We begin by studying the convergence rate of the discretization error using a bench-
mark problem given in [12]. Let Ω = [0, 1]2 be the unit square in R2 and b : Ω → R2

the velocity field

b = (y,−x).

We consider the general linear convection-diffusion equation

∂u
∂t

+ b · ∇u− ϵ∆u = 0, on Ω, (4.1)

and zero boundary condition.
If the initial condition at t = 0 is chosen as

u0(x, y) = exp
[
− x̂2 + ŷ2

2λ2

]
,

the exact solution of (4.1) is given by

u(x, y, t) =
λ2

λ2 + 2ϵt
exp

[
− x̂2 + ŷ2

2(λ2 + 2ϵt)

]
.

Here and above we have set

x̂ = x− x0 cos t− y0 sin t and ŷ = y + x0 sin t− y0 cos t.

168 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

Figure 6: Left: coarse grid. Right: coarse grid together with grid moved one backward Euler step of size
τ = 0.1 along the integral lines of b.

The numbers λ, x0, and y0 are constants and in this example we have used

λ =
1
8

and (x0, y0) =
(
− 1

2
, 0
)

.

We discretize (4.1) and the flow equation (2.3) in time using a backward Euler scheme.
For discretization in space we use first-order finite elements on the grid given in Fig. 6.
In this example, if backward Euler scheme is used to solve the equation of character-
istic foot in scheme (2.5), our algorithm will generate exactly the same as the exact in-
tegration. The coarsest grid in our numerical study and its deformed grid are shown
in Fig. 6.

As described in Section 2, the linear functional

l̃2 =
∫

Ω
un(x− I1bn+1)vdx, (4.2)

now involves two piecewise linear functions on two different grids. Our algorithm
presented in Section 3 can integrate this exactly. We now run our algorithm for 200
time steps of time step size τ = 10−6 on various levels of global grid refinement. For
each run we compute the error

∥uh − u∥L∞([0,T],L2(Ω)) = max
0≤n≤200

∥uh(tn)− u(tn)∥L2(Ω).

The results are plotted in Fig. 7.
Since we integrate the term (4.2) exactly, from Theorem 2.3 we expect a conver-

gence order of O(τ) +O(h2). One does indeed observe the quadratic dependence on
the mesh size.

To also check the dependence of the error on the time step size τ we redo the
computations, this time on a fixed time interval [0, 1]. We fix a diffusion coefficient
ϵ = 10−3 and first select a time step size of τ = 0.5h. From Theorem 2.3 one would
then expect linear convergence of the discretization error.

As a second test we set τ = h2 Then we expect a quadratic decrease of the dis-
cretization error as a function of the mesh size. This is confirmed numerically, as can
be seen from Fig. 8.

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 169

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

L
∞

(L
2
)

Numerical Result

h
2

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

L
∞

(L
2
)

Numerical Result

h
2

Figure 7: L∞(L2) norm of u− uh on triangular grid with space size h = 0.4, 0.2, 0.1, 0.05, 0.025, time step

τ = 10−6 in 200 steps of time marching. The diffusion coefficient is 10−3 (left) and 10−6 (right).

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

L
∞

(L
2
)

Numerical Result

h
2

h

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

L
∞

(L
2
)

Numerical Result

h
2

h

Figure 8: L∞(L2) norm of u− uh on triangular mesh with space size h = 0.4, 0.2, 0.1, 0.05, 0.025, time step

τ = 0.5h (left) and τ = h2 (right) in time interval [0, 1]. The diffusion coefficient is 10−3.

4.2 Comparison with other numerical quadratures

In the next example we compare our method to an approach where the integrals l̃2
are approximated by Gaussian quadrature rules on the elements of G. It was reported
that such schemes can achieve optimal convergence order if the finite element solution
is continuous [5]. However it is only numerical study and cannot be proved theoreti-
cally. Here we show that achieving optimal convergence rate by numerical quadrature
is not true in general and stress the importance of accurate integration.

We use again the continuous problem setting of the previous section. However,
we focus on the pure convection case, that is we set ϵ = 0. Then the space of solutions
is L2(Ω), which we discretize using piecewise constant finite elements. The analysis
of convergence rate can be found in [8]. The optimal convergence rate is expected as
O(τ) +O(h), however this is only proved rigorously for the one-dimensional case.

The general processing of ELM using quadrature rule is(
un ◦ y(x, tn, tn+1), v

)
=

∫
Ωv

un ◦ y(x, tn, tn+1) · v ≈∑
i

un ◦ y(xi, tn, tn+1) · v(xi)Wi,

where Ωv is the support set of test function v and Wi is the weight of quadrature point.
When un is not smooth enough, discontinuous in this case, the quadrature rule will not
capture the right value of solution from the neighboring element. As shown in Fig. 9,

170 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

x
y

y’

Figure 9: The location of quadrature point’s characteristic foot, y′ when time step k is large and y when k
is small.

if time step k is not very large, no quadrature point’s images under flow mapping
y can arrive at the region of the neighboring element, where the convection comes
from. In the worst case, the finite element solution will always be the same as initial
solution. High order quadrature rule has more quadrature points and some of their
images can arrive at neighbor element, but it still will not catch the exact information
of convection.

A series of results are shown in Fig. 10. In small time step case, using quadra-
ture rule to calculate the integration may lead to a totally wrong solution (refer to
4 quadrature points case, the numerical solution is always the same as initial one).
Usual suggestion for this problem are using more quadrature points to improve the
results. That’s right but it has a slow improvement and will take terrible cost of time
especially in weak regularity case. Another choice is to take large time step. It also has
inherently shortcoming that lose some property of solution. For example, the peak
point of numerical solution runs far away from the trajectory of the exact peak point.

4.3 Comparison of time cost

The big advantage of this algorithm is to avoid the huge time cost of solving a lot of
the equations of characteristic feet in high order quadrature rule. Due to in each inter-
section of two grids, the low order quadrature rule can approach the exact integration.
It requires an assumption that the algorithm to find the intersection of two grids and
the relationship of them should be not time consuming. Otherwise it cannot be used
in evolution problem with time dependent velocity field. The result of time cost in the
numerical examples in last subsection is shown in Table 2. It can attain the smallest

Table 2: The result of time cost and L∞(L2) norm of error in last example (on the mesh h = 0.05, time
step k = 0.2h and the time interval [0, π/4]). Test on Intel(R) Core(TM) 2 Duo CPU P8600@2.40GHz. #
means number.

of points 4 6 12 33 73 new algorithm
Time cost (s) 1.67 2.26 3.92 8.69 19.13 9.61

L∞(L2) 0.298190 0.255570 0.132275 0.101159 0.0523266 0.0514938

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 171

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10: The result of the pure convection problem at t = π/4. Shown are the exact solution (row 1,
left), the solution with τ = 0.2h using 4 quadrature points (row 1, right), the same with 6 quadrature points
(row 2, the left pair), 12 quadrature points (row 2, the right pair) and the exact integration achieved by our
algorithm (row 3, the first pair), and the solution with τ = 2h using 6 quadrature points (row 3, the second
pair). The circle is the trajectory of solution’s peak point.

error with not much time cost. So this algorithm can be applied in time dependent
velocity field problem and provide better accuracy.

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 11: The deformed grid (dash) and its approach by lines (solid) with time step τ = 0.1, h = 0.04 and
velocity field (sin πy2, 0).

172 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

4.4 Inexact Integration

As we pointed out before, this scheme cannot achieve the exact integration in gen-
eral case. Here one example is used to show the effort of the approximation of the
deformed grid on the convergence rate.

The velocity field
b = (sin πy2, 0),

and the solution
u = u0(x− t sin πy2, y),

satisfy the pure convection equation on [−1, 1]× [−1, 1]. Here u0 is the initial solution
and the grids are shown in Fig. 11. The convergence rate is shown in Fig. 12 and
still O(h) for spatial discretization using piecewise constant element. It confirms the
statement that ”the error caused by the approximation of the feet of the trajectories
does not alter the error estimate of the exactly integrated method” in [10].

10
−2

10
−1

10
0

10
−2

10
−1

10
0

h

L
∞

(L
2
)

Numerical Result

h

Figure 12: L∞(L2) norm of u− uh on triangular mesh with space size h = 0.4, 0.2, 0.1, 0.05, 0.025, time step

τ = 0.1h in time interval [0, 1] with velocity field (sin πy2, 0).

5 Concluding remarks

In this special application of ELM, there is only one original grid and its deformed
grid. So if the time step is small enough, i.e., the vertices of a element will not go out
of the patch where they stay at, the number of pairs of elements from two different
grids having nonempty intersection can be estimated by CN. Here C is the maximum
number of elements in the patch and N is the number of elements in the grid. For

Table 3: Cost of time in finding the intersection of the grids used in last section using the new improved
algorithm (the ones before the parentheses) and special algorithm (the ones in the parentheses) for ELM (50

operations). Test on Intel(R) Core(TM) 2 Duo CPU P8600@2.40GHz and time step τ = 10−4. # means
number.

of elements 40 160 640 2560 10240
of intersections 190 776 3148 12692 50890

Cost of time 0.11(0.10) 0.33(0.32) 1.15(1.13) 4.35(4.37) 19.04(19.05)

K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174 173

the shape regular grid, C is finite. Of course, this is a very rough up-bound. In the
example shown in Table 3, C seems to be smaller than 5 and the maximum number of
elements in the patch for that grid is 15.

One possible improvement of the whole algorithm in this application is to provide
S

πj0
2 for Sπi

1 by the image of Sπi
1 under the flow mapping. Of course, it is only true

when the image of Sπi
1 has the none-empty intersection with Sπi

1 . This can be easily
satisfied when time step is small enough. In practice, it cannot show much obvious
help in time of cost (shown in Table 3). It can be understood by the fact that we can
provide S

πj0
2 for Sπi

1 without any additional cost. However, it still can convince us the
above whole algorithm will not destroy the property of ELM in parallel computation.

Now ELM using accuracy integration is available and effective. This algorithm
can achieve the optimal convergence rate, which has been proved in analysis with
the exact integration. The most important advantage of the algorithm now is that
it does not depend on the spatial dimension of the physical domain and the type of
finite elements used in discretization. Moreover the advantage of this type of ELM
becomes more prominent when the regularity of solution space becomes weaker. For
this reason, in our future works, we will especially apply this algorithm for using ELM
with H(curl), H(div) or L2 finite element discretization spaces.

Acknowledgments

The author wish to thank Dr. Oliver Sander for his many helpful discussions about the
relevant algorithms in the paper and for his great help for improving the exposition of
the paper. The author also wish to thank Professors Jinchao Xu and Pingwen Zhang
for helpful discussions and encouragement. Authors would like to thank referees for
valuable comments for improving this paper.

References

[1] M. DE BERG, O. CHEONG, M. VAN KREVELD AND M. OVERMARS, Computational Ge-
ometry: Algorithms and Applications, Springer Verlag, 2008.

[2] J. DOUGLAS JR AND T. F. RUSSELL, Numerical methods for convection-dominated diffusion
problems based on combining the method of characteristics with finite element or finite difference
procedures, SIAM J. Numer. Anal., 5 (1982), pp. 871–885.

[3] P. E. FARRELL AND J. R. MADDISON, Conservative interpolation between volume meshes by
local Galerkin projection, Comput. Methods Appl. Mech. Eng., accepted, 2010.

[4] M. J. GANDER AND C. JAPHET, An algorithm for non-matching grid projections with linear
complexity, Lect. Notes Comp. Sci. XVIII, (2009), pp. 185–192.

[5] J. JIA, X. HU, J. XU AND C. ZHANG, Effects of integrations and adaptivity for the Eulerian-
Lagrangian method, J. Comput. Math., accepted.

[6] K. W. MORTON AND R. B. KELLOGG, Numerical Solution of Convection-Diffusion Prob-
lems, Chapman & Hall London, 1996.

174 K. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 156-174

[7] K. W. MORTON, A. PRIESTLEY AND E. SÜLI, Stability of the Lagrange-Galerkin method with
nonexact integration, RAIRO Modél, Math. Anal. Numér., 4 (1988), pp. 625–653.

[8] K. W. MORTON AND E. SÜLI, Evolution-Galerkin methods and their supraconvergence, Nu-
mer. Math., 3 (1995), pp. 331–355.

[9] O. PIRONNEAU, On the transport-diffusion algorithm and its applications to the Navier-Stokes
equations, Numer. Math., 3 (1982), pp. 309–332.

[10] A. PRIESTLEY, Exact projections and the Lagrange-Galerkin method: a realistic alternative to
quadrature, J. Comput. Phys., 2 (1994), pp. 316–333.

[11] T. F. RUSSELL AND M. A. CELIA, An overview of research on Eulerian-Lagrangian localized
adjoint methods (ELLAM), Adv. Water Resour., 8-12 (2002), pp. 1215–1231.

[12] D. XIU AND G. E. KARNIADAKIS, An algorithm for non-matching grid projections with linear
complexity, J. Sci. Comput., 1 (2002), pp. 585–597.

