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Abstract. This paper is concerned with numerical solutions of the LDG method for
1D wave equations. Superconvergence and energy conserving properties have been
studied. We first study the superconvergence phenomenon for linear problems when
alternating fluxes are used. We prove that, under some proper initial discretization, the
numerical trace of the LDG approximation at nodes, as well as the cell average, con-
verge with an order 2k+1. In addition, we establish k+2-th order and k+1-th order
superconvergence rates for the function value error and the derivative error at Radau
points, respectively. As a byproduct, we prove that the LDG solution is superconver-
gent with an order k+2 towards the Radau projection of the exact solution. Numerical
experiments demonstrate that in most cases, our error estimates are optimal, i.e., the
error bounds are sharp. In the second part, we propose a fully discrete numerical
scheme that conserves the discrete energy. Due to the energy conserving property, af-
ter long time integration, our method still stays accurate when applied to nonlinear
Klein-Gordon and Sine-Gordon equations.
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1 Introduction

We study the local discontinuous Galerkin (LDG) method for the following 1D wave
equations
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utt=uxx+ f (u), (x,t)∈ [a,b]×[0,T],

u(x,0)=u0(x), ut(x,0)=u1(x)
(1.1)

with the periodic boundary condition. We investigate superconvergence property of the
LDG method for the linear problem, and an energy conserving fully discrete scheme for
the nonlinear problem.

The superconvergence of DG, especially LDG methods has been one of the hot re-
search spots in recent years. We refer to [1, 2, 7, 16, 22, 24, 28] for the investigation re-
lated to ordinary and delay differential equations, [3, 8, 11, 26] for hyperbolic equations
and [9, 12, 21, 27] for convection-diffusion equations. Superconvergence of the LDG
method for wave equations has also been investigated. In particular, Baccouch proved
a local superconvergence rate of k+2 and a global superconvergence rate of k+3/2 at
Radau points for 1D wave equations [5] and [6]. Xing et al. presented an energy conserv-
ing LDG method for wave propagation and also proved a k+3/2-th superconvergence
rate of the LDG approximation to a special projection of the exact solution [25]. How-
ever, numerical experiments for wave equations indicated that aforementioned theoret-
ical rates were not sharp. In order to establish the optimal superconvergence results for
LDG methods, some new analysis tools were developed very recently. The main idea
was to construct, in the discrete space, a special function, which was used to correct the
error between the LDG solution and the Gauss-Radau projection of the exact solution.
Thanks to the correction function, we established the optimal superconvergence rate
of the LDG method for the hyperbolic problems [8] and parabolic problems [9], respec-
tively. Now, we try to complete the jigsaw puzzle and continue the study of the optimal
superconvergence results for wave equations.

The first part of this paper is to revisit superconvergence properties of the LDG method
for wave equations. We provide a rigorous mathematical proof of the optimal supercon-
vergence rate for the LDG method. On one hand, for the first time we show that the
numerical trace of the LDG approximation at nodes, as well as the cell average, is su-
perconvergent with the order 2k+1. On the other hand, the function value approxima-
tion and the derivative approximation are superconvergent with orders k+2 and k+1 at
Radau points, respectively. The superconverge results at the Radau points improve these
in [6] and [25]. As a byproduct, a k+2-th superconvergence order of the LDG solution
towards a particular Gauss-Radau projection of the exact solution is obtained. Moreover,
our analysis also leads to some interesting numerical discoveries, which will be reported
in the numerical experiments.

The analysis of this paper is based on the correction function idea, which is motivated
from its successful application to hyperbolic [8] and parabolic equations [9]. But the con-
struction of the correct functions for wave equations is more technical and complicated.
It is different from the DG method for hyperbolic equations [8] due to the interplay be-
tween two correction functions. We have to rewrite the wave equation as a system of first
order partial differential equations with respect to the spacial variable x. The correction
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functions for both variables (the exact solution u and an auxiliary variable q=ux) have to
be constructed simultaneously. The construction is also different from the LDG method
for parabolic problems [9] due to the second order time derivative and the source linear
term.

The second part is devoted to developing a fully discrete numerical scheme that con-
serves the discrete energy of the nonlinear wave equation. As is well-known, many
numerical schemes are developed to achieve the energy conserving property of wave
equations, such as the finite difference method [17, 19], spectral element method [4, 18],
DG method [13–15, 23]. However, very few explicit time marching algorithms on un-
structured grids can preserve energy for nonlinear wave equations. In this study, the
LDG method is used on an unstructured grid for the spatial variable, and the time dis-
cretization is achieved by an explicit multi-step method. With a special treatment of the
nonlinear term, we prove the energy conservation property of the fully discrete scheme.
Numerical tests reveal that without the special treatment of the nonlinear term, the algo-
rithm may result in substantial phase and shape errors after a long time integration.

The rest of the paper is organized as follows. In Section 2, we present a seme-discrete
LDG method for (1.1) when alternating fluxes are used. In Section 3, we first intro-
duce some preliminaries and then construct special correction functions and interpola-
tion functions. With the specially designed correction functions, we provide supercon-
vergence results for the linear viscous wave equations. In Section 4, we present a fully
discrete energy conserving LDG schemes for (1.1). Finally, numerical illustrations are pre-
sented in Section 5 and future works and concluding remarks are presented in Section 6,
respectively.

Throughout this paper, we use the standard notations for Sobolev spaces such as
Wm,p(D) on sub-domain D⊂Ω equipped with the norm ‖·‖m,p,D and semi-norm |·|m,p,D.
When D=Ω, we omit the index D; if p=2, we set Wm,p(D)=Hm(D), ‖·‖m,p,D = ‖·‖m,D

and |·|m,p,D = |·|m,D.

2 Local discontinuous Galerkin spatial discretization

For the spatial discretization of the one-dimensional problem (1.1), we divide the domain
Ω = [a,b] with a mesh: a = x 1

2
< x 3

2
< ··· < xN+ 1

2
= b and denote the intervals by τj =

(xj− 1
2
,xj+ 1

2
). Let hj = xj+ 1

2
−xj− 1

2
, h̄j =hj/2 and h=max1≤j≤N hj, and suppose the mesh is

quasi-uniform. Define a k-degree discontinuous finite element space

Vh={υ : υ|τj
∈P

k(τj), j∈ZN},

where P
k(τj) denotes the set of all polynomials of degree no more than k on τj, and

Zr = {1,2,··· ,r} for any positive integer r. Here and below, to simplify the notation, we
will make the following substitutions if needed

v(x,t)=v(t)=v,
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where v=u,uh,q,qh. We also denote by v+
j− 1

2

=v(x+
j− 1

2

,t) and v−
j− 1

2

=v(x−
j− 1

2

,t) the right and

left limits of the discontinuous function v at the boundary point xj− 1
2
, respectively.

To obtain the LDG scheme, we first rewrite (1.1) as

utt−qx = f (u), q−ux =0. (2.1)

The semi-discrete LDG method is to find uh,qh∈Vh, such that, for all test functions v,p∈Vh

and 1≤ j≤N,

((uh)tt− f (uh),v)j+(qh,vx)j− q̂hv−|j+ 1
2
+ q̂hv+|j− 1

2
=0, (2.2)

(qh,p)j+(uh,px)j−ûh p−|j+ 1
2
+ûh p+|j− 1

2
=0, (2.3)

where (u,v)j=
∫

τj
uvdx and q̂h,ûh are the numerical fluxes. These fluxes, which in general

are dependent on the values of the discontinuous numerical solution from both sides,
play an important role in assuring numerical stability of the method. In this paper, we
consider the alternating fluxes:

q̂h =q+h , ûh=u−
h , (2.4)

or

q̂h =q−h , ûh=u+
h . (2.5)

3 Superconvergence of the LDG method for the linear case

This section is devoted to the superconvergence of the LDG method for the linear wave
equation, i.e., we consider Eq. (1.1) with

f (u)=αu,

where α is a constant.

3.1 Preliminaries

We first define

D(ξ,η; ξ̂)=
N

∑
j=1

Dj(ξ,η; ξ̂),

where
Dj(ξ,η; ξ̂)=(ξ,ηx)j− ξ̂η−|j+ 1

2
+ ξ̂η+|j− 1

2
.

Then the LDG schemes (2.2)-(2.3) can be rewritten as

((uh)tt−αuh,v)j+Dj(qh,v;q̂h)=0, (qh,p)j+Dj(uh,p;ûh)=0, ∀v,p∈Vh. (3.1)
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Taking the time derivative of the second equation of (3.1) yields

((qh)t,p)j+Dj((uh)t,p;(ûh)t)=0.

Hence, by denoting

Aj(ξ,η;v,p)=(ξtt−αξ,v)j+Dj(η,v;η̂)+(ηt,p)j+Dj(ξt,p;(ξ̂)t)

and

A(ξ,η;v,p)=
N

∑
j=1

Aj(ξ,η;v,p),

where (ξ̂,η̂) are taken as the alternating fluxes (2.4) or (2.5), we obtain

A(uh,qh;v,p)=0, ∀v,p∈Vh.

Obviously, the exact solutions u,q also satisfy

A(u,q;v,p)=0, ∀v,p∈Vh.

Let

H1
h ={v : v|τj

∈H1(τj), j∈ZN},

and for any given function v∈H1
h , we define two special projections P−

h v, P+
h v as follows:

(P−
h v,w)j =(v,w)j, ∀w∈P

k−1(τj) and P−
h v(x−

j+ 1
2

)=v(x−
j+ 1

2

),

(P+
h v,w)j =(v,w)j, ∀w∈P

k−1(τj) and P+
h v(x+

j− 1
2

)=v(x+
j− 1

2

).

Note that the two projection operators are commonly used in the analysis of DG methods.

For any function v∈H1
h , we have the following Legendre expansion in each element

τj, j∈ZN ,

v(x)=
∞

∑
m=0

vj,mLj,m(x), vj,m =
2m+1

hj
(v,Lj,m)j,

where Lj,m denotes the normalized Legendre polynomial of degree m on τj. Then by the
definitions of P−

h ,P+
h ,

(v−P−
h v)(x)= v̄j,k Lj,k+

∞

∑
m=k+1

vj,m Lj,m(x),

(v−P+
h v)(x)= ṽj,k Lj,k+

∞

∑
m=k+1

vj,m Lj,m(x),
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where

v̄j,k =−v(x−
j+ 1

2

)+
1

hj

∫

τj

v(x)
k

∑
m=0

(2m+1)Lj,m(x)dx, (3.2)

ṽj,k =(−1)k+1v(x+
j− 1

2

)+
1

hj

∫

τj

v(x)
k

∑
m=0

(−1)k+m(2m+1)Lj,m(x)dx. (3.3)

Apparently, the orthogonal properties of Legendre polynomials give

(v−P−
h v,w)j = v̄j,k(Lj,k,w)j, (v−P+

h v,w)j = ṽj,k(Lj,k,w)j, ∀w∈Vh. (3.4)

To end this subsection, we would like to introduce a class of special functions, which
play an important role in our superconvergence analysis. In each element τj, j∈ZN , we
define

F1,1=P+
h D−1

s Lj,k, F1,i+1=P+
h D−1

s F2,i, 1≤ i≤ k−1, (3.5)

F2,1=P−
h D−1

s Lj,k, F2,i+1=P−
h D−1

s F1,i, 1≤ i≤ k−1. (3.6)

Here the integral operator D−1
s is defined by

D−1
s v(x)=

1

h̄j

∫ x

x
j− 1

2

v(x′)dx′=
∫ s

−1
v̂(s′)ds′ , x∈τj, j∈ZN

with

s=(x−xj)/h̄j ∈ [−1,1], v̂(s)=v(x).

We have the following properties of Fr,i,(r,i)∈Z2×Zk (see [9], Lemma 3.1)

F1,i(x+
j− 1

2

)=0, ‖F1,i‖0,∞,τj
.1, (F1,i,v)j =0, ∀v∈P

k−i−1, (3.7)

F2,i(x−
j+ 1

2

)=0, ‖F2,i‖0,∞,τj
.1, (F2,i,v)j =0, ∀v∈P

k−i−1. (3.8)

Here and below, the notation A. B means that A can be bounded by B multiplied by
a constant independent of the mesh size h. By the orthogonal properties of Legendre
polynomials, it is easy to show that

D−1
s Lj,m(x−

j+ 1
2

)=D−1
s Lj,m(x+

j− 1
2

)=0, ∀m≥1, (3.9)

which yields (together with the third formulas of (3.7)-(3.8)),

D−1
s Fr,i(x−

j+ 1
2

)=D−1
s Fr,i(x+

j− 1
2

)=0, (r,i)∈Z2×Zk−1. (3.10)
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3.2 Construction of special interpolation functions

To study superconvergence properties, our basis idea is to construct special interpola-
tion functions (uI ,qI) such that (uI ,qI) are superclose to (uh,qh). By the supercloseness
between (uI ,qI) and (uh,qh), we obtain superconvergence properties of the LDG solution
at some special points. our analysis is along this line.

We denote
ev=v−vh, ξv =vh−vI , ηv =v−vI , v=u,q.

Note that if we choose test functions (v,p)=((ξu)t,ξq) in the formula of A(ξu,ξq;v,p) and
use the periodic boundary condition, we derive

1

2

d

dt

(

‖(ξu)t‖2
0+‖ξq‖2

0−α‖ξu‖2
0

)

=A(ξu,ξq;(ξu)t,ξq)

=A(ηu,ηq;(ξu)t,ξq), (3.11)

where in the last step, we have used the orthogonal properties A(eu,eq;v,p)=0, v,p∈Vh.
Therefore, to achieve the supercloseness goal, the functions (uI ,qI) should be carefully
designed such that A(ηu,ηq;v,p), ∀v,p∈Vh, is of high order.

In the rest of this subsection, we will first construct the special functions (uI ,qI), and
then analyze their properties. We first consider the fluxes choice (2.4), in which case,

(u−P−
h u,v)j = ūj,k(t)(Lj,k,v)j, (q−P+

h q,v)j = q̃j,k(t)(Lj,k,v)j, ∀v∈Vh, (3.12)

where ūj,k and q̃j,k are given by (3.2)-(3.3). Let

G1= q̃j,k, Q1=(∂2
t −α)ūj,k, Gi+1=Qi, Qi+1=(∂2

t −α)Gi, i≥1. (3.13)

Then for any given l,1≤ l≤ k, we define correction functions in each element τj, j∈ZN as

wl
u=

l

∑
i=1

wu,i, wl
q=

l

∑
i=1

wq,i, (3.14)

where
wu,i=(h̄j)

iGiF2,i, wq,i=(h̄j)
iQiF1,i, 1≤ i≤ l (3.15)

with Fr,i defined by (3.5)-(3.6). Apparently, we have from (3.7)-(3.8)

∂r
t wu,i(x−

j+ 1
2

)=0, wq,i(x+
j− 1

2

)=0, r=0,1, 1≤ i≤ l,

which yields
∂r

t wl
u(x−

j+ 1
2

)=0, wl
q(x+

j− 1
2

)=0, r=0,1. (3.16)

With the correction functions wl
u,wl

q,1≤l≤k, we define the special interpolation functions

(uI ,qI)=(ul
I ,q

l
I)=(P−

h u−wl
u,P+

h q−wl
q). (3.17)
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The procedure of constructing interpolation functions (uI ,qI) for fluxes (2.5) is similar
to that for fluxes (2.4). For fluxes (2.5), we define

(uI ,qI)=(ul
I ,q

l
I)=(P+

h u−wl
u,P−

h q−wl
q), (3.18)

where

wl
u=

l

∑
i=1

wu,i=
l

∑
i=1

(h̄j)
iGiF1,i, wl

q=
l

∑
i=1

wq,i=
l

∑
i=1

(h̄j)
iQiF2,i (3.19)

with
G1= q̄j,k, Q1=(∂2

t −α)ũj,k, Gi+1=Qi, Qi+1=(∂2
t −α)Gi, i≥1. (3.20)

Lemma 3.1. Let the interpolation functions (uI ,qI) be defined by (3.17) and (3.18) for fluxes
(2.4) and (2.5), respectively. Then for both fluxes (2.4)-(2.5),

∂r
t ûI(xj− 1

2
)=u(xj− 1

2
), q̂I(xj− 1

2
)=q(xj− 1

2
), r=0,1. (3.21)

Moreover, there holds for any v∈Vh

((∂tt−α)ηu,v)+(ηq,vx)=((∂tt−α)wu,l,v), (ηq,v)+(ηu,vx)=(wq,l,v). (3.22)

Proof. We only consider the flux choice (2.4) since the same argument can be applied to
flux (2.5). By (3.16) -(3.17), and the properties of P−

h ,P+
h , we get (3.21) directly for the flux

(2.4).
We next show (3.22). By (3.12)-(3.13), (3.9), and the integration by parts, there hold for

all v,p∈Vh

((∂2
t −α)(u−P−

h u),v)j =−h̄jQ1(D−1
s Lj,k,vx)j=−(wq,1,vx), (3.23)

((q−P+
h q),p)j =−h̄jG1(D−1

s Lj,k,px)j =−h̄jG1(F2,1,px)j =−(wu,1,px). (3.24)

On the other hand, by the integration by parts, (3.10), (3.13), and (3.5)-(3.6), we have for
all 1≤ i≤ l−1,

((∂2
t −α)wu,i,v)j =(h̄j)

i(∂2
t −α)Gi(F2,i,v)j =−(h̄j)

i+1Qi+1(D−1
s F2,i,vx)j

=−(h̄j)
i+1Qi+1(F1,i+1,vx)j =−(wq,i+1,vx)j,

(wq,i,v)j =(h̄j)
i∂tQi(F1,i,v)j =−(h̄j)

i+1Gi+1(D−1
s F1,i,vx)j

=−(h̄j)
i+1Gi+1(F2,i+1,vx)j =−(wu,i+1,vx)j.

Consequently,

((∂2
t −α)wl

u,v)+(wl
q,vx)=((∂2

t −α)wu,l,v)+(wq,1,vx),

(wl
q,p)+(wl

u,px)=(wq,l,p)+(wu,1,px),

which yields, together with (3.23)-(3.24), the desired result (3.22). This finishes our proof.
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Lemma 3.2. For any given l, where 1≤ l≤ k, let u∈Wk+l+2,∞(Ω), and wl
v (v=u,q) be defined

by (3.14) or (3.19). Then

‖wl
u‖0,∞+‖wl

q‖0,∞.hk+2‖u‖k+l+2,∞. (3.25)

Moreover, if u∈Wk+l+3,∞(Ω),∂tu∈Wk+l+2,∞(Ω), then for both fluxes (2.4) and (2.5),

A(ηu,ηq;v,p).hk+l+1
(

‖u‖k+3+l,∞+‖∂tu‖k+2+l,∞

)(

‖v‖0,1+‖p‖0,1

)

. (3.26)

Proof. If wl
v,v=u,q is defined by (3.14), then a direct calculation from (3.13) yields

Gi=(∂2
t −α)rūj,k, Qi=(∂2

t −α)r q̃j,k, if i=2r,

Gi=(∂2
t −α)r q̃j,k, Qi=(∂2

t −α)r+1ūj,k, if i=2r+1.

Since ūj,k= q̃j,k =0 when u,q∈P
k(τj), we have, from the Bramble-Hilbert lemma

|ūj,k|.hk+1‖∂k+1
x u‖0,∞,τj

, |q̃j,k|.hk+1‖∂k+1
x q‖0,∞,τj

,

Consequently, by using the fact that ∂2
t u= ∂2

xu+αu and q=ux, we have for any positive
integer r

|∂r
t Gi|0,∞,τj

.hk+1‖∂r
t u‖k+1+i,∞,τj

, |∂r
t Qi|0,∞,τj

.hk+1‖∂r
t u‖k+2+i,∞,τj

,

which yields

‖∂r
t wu,i‖0,∞,τj

.hk+1+i‖∂r
t u‖k+1+i,∞,τj

, ‖∂r
t wq,i‖0,∞,τj

.hk+1+i‖∂r
t u‖k+2+i,∞,τj

. (3.27)

Hence, the desired result (3.25) follows. If wl
v,v=u,q is defined by (3.19), (3.25) still holds

true by using the same argument.
By (3.21), the orthogonalities of P−

h ,P+
h , and (3.22), we get

A(ηu,ηq;v,p)=((∂2
t −α)ηu,v)+(ηq,vx)+(∂tηq,p)+(∂tηu,px)

=((∂2
t −α)wu,l,v)+(∂twq,l,p), ∀v,p∈Vh.

Then (3.26) follows from (3.27).

3.3 Superconvergence results

We first analyze the supercloseness between the LDG solution (uh,qh) and the specially
designed interpolation functions (uI ,qI) defined by (3.17) or (3.18). Without loss of gen-
erality, we only consider three special cases. That is,

f (u)=αu, α=0,±1.

The same arguments can be applied to a general case in which α is an arbitrary constant.
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Theorem 3.1. Let u ∈Wk+l+3,∞(Ω),∂tu ∈Wk+l+2,∞(Ω), and (ul
I ,q

l
I) be defined by (3.17) or

(3.18). Let (uh,qh) be the solution of (3.1) with initial values uh(x,0) = ul
I(x,0), ∂tuh(x,0) =

∂tu
l
I(x,0). Then for fluxes (2.4) and (2.5),

(

‖(ul
I−uh)t‖0+‖ul

I−uh‖0+‖ql
I−qh‖0

)

(t).hk+l+1c(u). (3.28)

Here c(u)=‖u‖k+l+3,∞+‖∂tu‖k+l+2,∞.

Proof. By (3.11) and (3.26), we have

1

2

d

dt

(

‖(ξu)t‖2
0+‖ξq‖2

0−α‖ξu‖2
0

)

.hk+l+1c(u)
(

‖(ξu)t‖0+‖ξq‖0

)

. (3.29)

When α=−1, by Gronwall’s inequality and the special choice of initial values,

(

‖(ξu)t‖0+‖ξq‖0+‖ξu‖0

)

(t).hk+l+1c(u)+‖ξq‖0(0).

At the initial time t=0, thanks to the special choice of the initial solution and (3.21),

(ηq,p)(0)−(ξq,p)(0)=(eq,p)(0)=−D(eu,p; êu)|t=0=−(ηu,px)(0).

By choosing p= ξq and using (3.22) and (3.27), we obtain

‖ξq‖0(0).‖wq,l‖0,∞(0).hk+l+1‖u‖k+l+2,∞.

Then (3.28) follows.

Similarly, when α=0, we first obtain, from (3.29) and the estimate for ‖ξq‖0(0),

(

‖(ul
I−uh)t‖0+‖ql

I−qh‖0

)

(t).hk+l+1c(u).

To estimate ‖ξu‖0, we integrate both sides of (3.1) from t to τ and use the orthogonality
to obtain

(∂tteu,v)+D(eq,v, êq)+
∫ τ

t
(eq,p)+

∫ τ

t
D(eu,p, êu)=0. (3.30)

On the other hand, noticing that (3.22) holds true for all v∈Vh, then

∫ τ

t

(

(ηq,v)+(ηu,vx)
)

=
∫ τ

t
(wq,l,v)=(El

q,v),

where El
q=
∫ τ

t wq,l(t)dt. Let

Eu =
∫ τ

t
ξu(t)dt, Eq=

∫ τ

t
ξq(t)dt.



W. Cao, D. Li and Z. Zhang / Commun. Comput. Phys., 21 (2017), pp. 211-236 221

Choosing (v,p)=(Eu,ξq) in (3.30) and using (3.22) gives

1

2

d

dt
(‖ξu‖2

0−‖Eq‖2
0)=− d

dt
(∂tξu,Eu)+(∂ttηu,Eu)+(ηq,(Eu)x)+(El

q,ξq)

=− d

dt
(∂tξu,Eu)+(∂ttwu,l,Eu)+(El

q,ξq)

=− d

dt
(∂t(ξu−wu,l),Eu)+(∂twu,l,ξu)+(El

q,ξq).

Integrating the inequality from 0 to τ and using the fact that Ev(τ)=0,v=u,q, we get

1

2
‖ξu(τ)‖2− 1

2
‖ξu(0)‖2 ≤|(∂t(ξu−wu,l),Eu)(0)|+CT max

t∈[0,T]

(

‖El
q‖0‖ξq‖0+‖(wu,l)t‖0‖ξu‖0

)

≤|(∂tξu,Eu)(0)|+C(T+1)2h2(k+l+1)c(u)2+
1

4
max

t∈[0,T]
‖ξu‖2

0.

Here in the last step, we have used (3.27). Consequently, if the initial solution satisfies
ξu(0)=∂tξu(0)=0, then

max
t∈[0,T]

‖ξu‖0.hk+l+1c(u).

Then (3.28) follows.

Now we consider α = 1. By (3.29), Gronwall’s inequality and the special choice of
initial values,

‖(ξu)t(τ)‖2
0+‖ξq(τ)‖2

0≤Ch2(k+l+1)c(u)2+2‖ξu(τ)‖2
0, ∀τ≥0. (3.31)

Following the same argument as in the case α=0, we obtain

1

2

d

dt
(‖ξu‖2

0+‖Eu‖2
0−‖Eq‖2

0)=− d

dt
(∂tξu,Eu)+((∂tt−1)wu,l,Eu)+(El

q,ξq).

For any fixed t0 ≥ 0, integrating the above equation from t0 to τ, and using Cauchy-
Schwartz inequality, we get

1

2
‖ξu(τ)‖2

0−
1

2
‖ξu(t0)‖2

0≤‖Eu(t0)‖2
0+

1

2
‖(ξu)t(t0)‖2

0+
1

16
max

t∈[t0,τ]
(‖ξu‖2

0+‖ξq‖2
0)

+C(τ−t0)
2h2(k+l+1)c(u)2

≤‖ξu(t0)‖2
0+
(

(τ−t0)
2+

3

16

)

max
t∈[t0,τ]

‖ξu‖2
0+C(τ−t0)

2h2(k+l+1)c(u)2,

where in the last step, we have used (3.31) and the fact

‖Eu(t0)‖2
0≤ (τ−t0)

2 max
t∈[t0,τ]

‖ξu(t)‖2
0.
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Therefore, for any τ satisfying (τ−t0)≤ 1
4 , we get

‖ξu(τ)‖2
0.‖ξu(t0)‖2

0+h2(k+l+1)c(u)2.

Then for all t∈ [0,T],

‖ξu(t)‖2
0.‖ξu(0)‖2

0+h2(k+l+1)c(u)2.h2(k+l+1)c(u)2.

Plugging the above estimate into (3.31) yields

‖(ξu)t‖0+‖ξq‖0.hk+l+1c(u).

Then (3.28) follows. The proof is complete.

As a direct consequence of (3.28) and (3.25), we have the following superconvergence
results for the Gauss-Radau projection of the exact solution.

Corollary 3.1. Let u ∈ Wk+4,∞(Ω), ∂tu ∈ Wk+3,∞(Ω), and (uh,qh) be the solution of (3.1).
Suppose the initial values are chosen as uh(x,0) = ul

I(x,0), ∂tuh(x,0) = ∂tu
l
I(x,0) with l = 1.

Then for fluxes (2.4) and (2.5),

‖uh−Phu‖0+‖qh−Phq‖0.hk+2 (‖u‖k+4,∞+‖∂tu‖k+3,∞), (3.32)

where (Phu,Phq)=(P−
h u,P+

h q) for fluxes (2.4) and (Phu,Phq)=(P+
h u,P−

h q) for fluxes (2.5).

We first use the supercloseness result (3.28) to study the superconvergence for cell
averages.

Theorem 3.2. Let u ∈W2k+3,∞(Ω), ∂tu ∈W2k+2,∞(Ω), and (uh,qh) be the solution of (3.1).
If the initial values are chosen as uh(x,0)= ul

I(x,0), ∂tuh(x,0)= ∂tu
l
I(x,0) with l = k, then for

fluxes (2.4) and (2.5),

‖eu‖c+‖eq‖c.h2k+1(‖u‖2k+3,∞+‖∂tu‖2k+2,∞), (3.33)

where ‖ev‖c,v=u,q denotes the cell average of function v, i.e.,

‖ev‖c=

(

1

N

N

∑
j=1

( 1

hj

∫

τj

ev

)2
)

1
2

.

Proof. Let vI =vk
I ,v=u,q. It is straightforward to deduce from (3.7)-(3.8) that

wv,i⊥P
0, 1≤ i≤ k−1,

which yields, together with the properties of P−
h ,P+

h ,
∫

τj

ev=
∫

τj

(ηv−ξv)=
∫

τj

wv,k−
∫

τj

ξv.

Consequently, by (3.27) and (3.28),

‖ev‖c.‖ξv‖0+‖wv,k‖0,∞.h2k+1 (‖u‖2k+3,∞+‖∂tu‖2k+2,∞) .

This finishes our proof.
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Next we analyze the superconvergence properties at nodal points.

Theorem 3.3. Suppose all the conditions of Theorem 3.2 hold. Then for both fluxes (2.4) and
fluxes (2.5),

‖eu‖∗+‖eq‖∗.h2k+1 (‖u‖2k+3,∞+‖∂tu‖2k+2,∞), (3.34)

where

‖ev‖∗=
(

1

N

N

∑
j=1

(

v− v̂h

)2(
xj− 1

2
,t
)

)
1
2

, v=u,q.

Proof. For any v∈Vh, the inverse inequality gives

1

N

N

∑
j=1

‖v‖2
0,∞,τj

.
1

N

N

∑
j=1

h−1
j ‖v‖2

0,τj
.‖v‖2

0.

By choosing v= uI−uh,qI−qh, where (uI ,qI) is defined by (3.17) or (3.18) with l = k, we
immediately have

‖uI−uh‖∗+‖qI−qh‖∗.‖uI−uh‖0+‖qI−qh‖0.

Then the desired result (3.34) follows from (3.28) and (3.21).

Remark 3.1. Following the same line as in [10], we can prove the (2k+1)-th supercon-
vergence rate for the pointwise error of numerical fluxes at nodes, that is,

max
j∈ZN

∣

∣

∣
(v− v̂h)(xj+ 1

2
,t)
∣

∣

∣
.h2k+1, v=u,q.

However, the proof is more sophisticated and the regularity requirement for u is more
stronger.

Let Rl
j,m,Rr

j,m,m∈Zk denote the k interior left and right Radau points in the interval

τj, j∈ZN , respectively. That is, Rl
j,m,m∈Zk are zeros of Lj,k+1+Lj,k except the point x=xj− 1

2
,

and Rr
j,m,m∈Zk are zeros of Lj,k+1−Lj,k except the point x= xj+ 1

2
. We have the following

superconvergence results at these interior Radau points.

Theorem 3.4. Let u∈Wk+5,∞(Ω), ∂tu∈Wk+4,∞(Ω), and (uh,qh) be the solution of (3.1). If the
initial values are chosen as uh(x,0)=ul

I(x,0), ∂tuh(x,0)= ∂tu
l
I(x,0) with l =2, then for fluxes

(2.4), there holds

eu,r+eq,l .hk+2c(u), eux,l+eqx,r.hk+1c(u), (3.35)

and for fluxes (2.5)

eu,l+eq,r.hk+2c(u), eux,r+eqx,l.hk+1c(u). (3.36)
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Here c(u)=‖u‖k+5,∞+‖∂tu‖k+4,∞, and for v=u,q,

ev,r =max
j,m

∣

∣

∣
(v−vh)(Rr

j,m,t)
∣

∣

∣
, ev,l =max

j,m

∣

∣

∣
(v−vh)(Rl

j,m,t)
∣

∣

∣
,

evx,l =max
j,m

∣

∣

∣
∂x(v−vh)(Rl

j,m,t)
∣

∣

∣
, evx,r =max

j,m

∣

∣

∣
∂x(v−vh)(Rr

j,m,t)
∣

∣

∣
.

Proof. We only consider the fluxes (2.4) since the same argument can be applied to fluxes
(2.5). For all v∈Wk+2,∞(Ω), it is shown in [8, 9] that

∣

∣

∣
(v−P−

h v)(Rr
j,m)
∣

∣

∣
+
∣

∣

∣
(v−P+

h v)(Rl
j,m)
∣

∣

∣
.hk+2‖v‖k+2,∞, (3.37)

∣

∣

∣
∂x(v−P−

h v)(Rl
j,m)
∣

∣

∣
+
∣

∣

∣
∂x(v−P+

h v)(Rr
j,m)
∣

∣

∣
.hk+1‖v‖k+2,∞. (3.38)

Meanwhile, we choose l=2 in (3.28) and use the inverse inequality to obtain

‖uI−uh‖0,∞+‖qI−qh‖0,∞.h−
1
2 (‖uI−uh‖0+‖qI−qh‖0).hk+ 5

2 c(u).

Here uI =ul
I ,qI = ql

I with l =2. Recalling the definition of (uI ,qI) in (3.17), together with
(3.25), we immediately have

‖uh−P−
h u‖0,∞+‖qh−P+

h q‖0,∞.hk+2c(u). (3.39)

Then the first inequality of (3.35) follows by using (3.37), (3.39), and the triangular in-
equality. Similarly, we have, from the inverse inequality,

‖uh−P−
h u‖1,∞+‖qh−P+

h q‖1,∞.h−1
(

‖uh−P−
h u‖0,∞+‖qh−P+

h q‖0,∞

)

.hk+1c(u).

This completes the proof.

In light of (3.38), the second inequality of (3.35) follows.

Remark 3.2. In Corollary 3.1 and Theorems 3.2-3.4, we choose different initial discretiza-
tions to achieve our superconvergence goals. However, all the superconvergence re-
sults in Corollary 3.1 and Theorems 3.3-3.4 are valid if we choose a unified initial values
uh(x,0)=uk

I(x,0),∂tuh(x,0)= ∂tu
k
I(x,0). The proof is the same as that in [8], which is due

to the fact that the initial errors of the LDG solution are small enough to be compatible
with the superconvergence error estimate.

4 Energy conservation

This section is devoted to developing energy conserving numerical methods for the non-
linear wave equations.
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4.1 A semi-discrete energy conserving algorithm

The semi-discrete LDG method conserves the energy in the following sense.

Theorem 4.1. Let F(u)=
∫

f (u)du. Then the energy

Eh(t)=
1

2

∫

Ω

(

(uh)
2
t +q2

h−2F(uh)
)

dx,

which is derived by the semi-discrete LDG method, is conserved for all time.

Proof. For the sake of brevity, we omit the detailed proof here since it follows along the
same analysis in proving the first equality of (3.11).

4.2 A fully discrete energy conserving scheme

We divide the time interval [0,T] uniformly with the time step size ∆t=T/M, where M
is a given positive integer. Then, our fully discrete numerical scheme for problem (1.1) is
as follows: for m=1,··· ,M−1,

∫

τj

um+3
h −um+2

h −um+1
h +um

h

2△t2
vdx+

∫

τj

qm+2
h +qm+1

h

2
vxdx−

(

q̂m+2
h + q̂m+1

h

2
v−
)

j+ 1
2

+

(

q̂m+2
h + q̂m+1

h

2
v+
)

j− 1
2

−
∫

τj

F(um+2
h )−F(um+1

h )

um+2
h −um+1

h

vdx=0, (4.1)

∫

τj

qm
h pdx+

∫

τj

um
h pxdx−(ûm

h p−)j+ 1
2
+(ûm

h p+)j− 1
2
=0, (4.2)

where um
h and qm

h are numerical approximations to u(·,tm) and q(·,tm), respectively, and
v,p∈Vh.

The above explicit scheme has second-order accuracy in time according to the Taylor
expansion at the time (m+ 1

2)∆t. In addition, we have the following energy preserving
property.

Theorem 4.2. The numerical solution that derived by the fully discrete numerical method (4.1)-
(4.2) conserves the following discrete energy

Em+1
h =

∫

Ω

(

(um+2
h −um+1

h )(um+1
h −um

h )

2∆t2
+

1

2
(qm+1

h )2−F(um+1
h )

)

dx

for all m.
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Proof. Taking the test function v=um+2
h −um+1

h in Eq. (4.1), we have

∫

τj

um+3
h −um+2

h −um+1
h +um

h

2△t2
(um+2

h −um+1
h )dx+

∫

τj

qm+2
h +qm+1

h

2
(um+2

h −um+1
h )xdx

−
( q̂m+2

h + q̂m+1
h

2
(um+2

h −um+1
h )−

)

j+ 1
2

+
( q̂m+2

h + q̂m+1
h

2
(um+2

h −um+1
h )+

)

j− 1
2

−
∫

τj

(

F(um+2
h )−F(um+1

h )
)

dx=0, (4.3)

Consider Eq. (4.2) at different time levels (m+2)∆t and (m+1)∆t, subtract the two and

take the test function p=
qm+2

h +qm+1
h

2 gives

∫

τj

(qm+2
h −qm+1

h )
qm+2

h +qm+1
h

2
dx+

∫

τj

(

um+2
h −um+1

h

)( qm+2
h +qm+1

h

2

)

x
dx

−
(

(

ûm+2
h −ûm+1

h

)(qm+2
h +qm+1

h

2

)−)

j+1
2

+

(

(

ûm+2
h −ûm+1

h

)( qm+2
h +qm+1

h

2

)+
)

j−1
2

=0.

(4.4)

Adding (4.3) and (4.4) and summing over for j from 1 to N, we obtain

∫

τj

um+3
h −um+2

h −um+1
h +um

h

2△t2
(um+2

h −um+1
h )dx+

∫

τj

(qm+2
h −qm+1

h )
qm+2

h +qm+1
h

2
dx

−
∫

τj

(

F(um+2
h )−F(um+1

h )
)

dx=0, (4.5)

where we have used that fact that the other terms at the boundary cells vanish.

Eq. (4.5) can be rewritten as

∫

Ω

( (um+3
h −um+2

h )(um+2
h −um+1

h )

2∆t2
+

1

2
(qm+2

h )2−F(um+2
h )

)

dx

−
∫

Ω

( (um+2
h −um+1

h )(um+1
h −um

h )

2∆t2
+

1

2
(qm+1

h )2−F(um+1
h )

)

dx=0 (4.6)

Therefore,

Em+2
h =Em+1

h ,

which completes the proof.

Remark 4.1. Our fully discrete numerical scheme is explicit. Meanwhile, the conserva-
tion of the discrete energy is a numerical simulation of the energy conservation at the
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continuous level. On the contrary, some classical difference methods, e.g.,

∫

τj

um+2
h −2um+1

h +um
h

△t2
vdx+

∫

τj

qm+1
h vxdx−(q̂m+1

h v−)j+ 1
2

+(q̂m+1
h v+)j− 1

2
−
∫

τj

f (um+1
h )vhdx=0, (4.7)

may not conserve the discrete energy for nonlinear problems. This will be illustrated by
a sequence of numerical experiments. Another widely used finite difference method, i.e.,

∫

τj

um+2
h −2um+1

h +um
h

△t2
vdx+

∫

τj

qm+1
h vxdx−(q̂m+1

h v−)j+ 1
2

+(q̂m+1
h v+)j− 1

2
−
∫

τj

F(um+2
h )−F(um

h )

um+2
h −um

h

vhdx=0, (4.8)

also conserves energy. However, the method is implicit. The computational cost is rather
high.

Remark 4.2. Since the proposed numerical method (4.1) requires initial conditions for
three time steps, we apply the following strategies. First, we rewrite (1.1) as

ut=w, wt−qx = f (u), q−ux =0, (4.9)

with initial conditions u(x,0) = u0(x,0) and w(x,0) = ut(x,0). Then, we apply a high-
order TVD Runge-Kutta method to compute the numerical solutions at the first three
time steps.

Remark 4.3. In the case of homogeneous Dirichlet boundary condition u(a,t)=0, u(b,t)=
0, we can still have the discrete conserved energy. The only difference is that the numeri-
cal fluxes at the boundaries should be defined by

(q̂h) 1
2
=qh(x+1

2

), (ûh) 1
2
=u(a,t)=0,

(q̂h)N+ 1
2
=qh(x−

N+ 1
2

), (ûh)N+ 1
2
=u(b,t)=0.

The proof is similar to that in the periodic boundary condition.

5 Numerical experiments

In this section, we present several numerical experiments to illustrate our theoretical find-
ings.
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5.1 Superconvergence

We will test the superconvergence results in Section 3. If not otherwise stated, the initial
discretizations are chosen as uh(x,0)=uk

I(x,0), ∂tuh(x,0)=∂tu
k
I(x,0).

Example 1. We consider the following equation

utt+u=uxx, (x,t)∈ (0,2π)×(0,1)

with the periodic boundary condition u(0,t)=u(2π,t) and initial conditions

u(x,0)=sin(x), ut(x,0)=
√

2cos(x).

The exact solution is
u(x,t)=sin(x+

√
2t).

We apply the scheme (3.1) with polynomial degree k=2,3,4. Numerical fluxes are chosen
as (2.4). Piecewise uniform meshes are constructed by equally dividing each interval,
[0, 3π

4 ] and [ 3π
4 ,2π], into N/2 subintervals with N = 2m, where m= 3,4,··· ,8 for k= 2,3,

and m=3,4,··· ,7 for k=4. To reduce the time discretization error, we use the ninth-order
strong-stability preserving (SSP) Runge-Kutta method [20] with time step ∆t=0.001hmin ,
hmin =

3π
2N .

In Tables 1-3, we list numerical data for various errors defined in Theorems 3.2-3.4.
We also plot in Figs. 1-3 the corresponding error curves with log-log scale. We observe a
2k+1 convergence rate for ‖ev,n‖∗,‖ev‖c,v=u,q, and a k+2 rate for eu,r,eq,l, as predicted
by Theorems 3.2-3.4. Moreover, we also observe a convergence rate of k+2 for eux,l,eqx,r,
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Figure 1: Error curves for k=2.
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Figure 2: Error curves for k=3.
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Figure 3: Error curves for k=4.

which implies that the derivative errors ∂x(u−uh) and ∂x(q−qh) are superconvergent at
all interior left and right Radau points, respectively, with an order k+2. Note that the
convergence rate k+2 for the derivative approximation is one-order higher than the one
given in (3.35).

To show the influence of the initial discretization on the convergence rate, we also dis-
cretize the initial solution with the L2-projection, i.e., ∂i

tuh(x,0)=Rh∂i
tu(x,0),i=0,1. Here

Rhu denotes the L2-projection of u. The results and the corresponding convergence rates
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Table 1: Various errors for k=2.

N eu,r eux,l ‖eu‖∗ ‖eu‖c eq,l eqx,r ‖eq‖∗ ‖eq‖c

8 5.43e-04 7.10e-04 1.71e-04 7.45e-05 7.10e-04 1.93e-03 1.24e-04 1.71e-04

16 2.49e-05 3.44e-05 4.66e-06 2.41e-06 3.44e-05 9.91e-05 3.80e-06 4.80e-06

32 1.41e-06 1.17e-06 1.23e-07 7.30e-08 1.17e-06 4.83e-06 9.86e-08 1.31e-07

64 8.66e-08 9.71e-08 4.00e-09 2.22e-09 9.71e-08 3.76e-07 3.41e-09 4.16e-09

128 5.37e-09 5.68e-09 1.21e-10 6.81e-11 5.68e-09 3.48e-08 1.95e-10 1.25e-10

256 3.35e-10 3.35e-10 3.74e-12 2.11e-12 3.35e-10 9.06e-10 3.24e-12 3.85e-12

Table 2: Various errors for k=3.

N eu,r eux,l ‖eu‖∗ ‖eu‖c eq,l eqx,r ‖eq‖∗ ‖eq‖c

8 1.20e-05 1.05e-05 9.51e-08 3.29e-07 1.05e-05 1.19e-05 4.22e-07 1.81e-07

16 3.42e-07 3.38e-07 5.21e-10 2.49e-09 3.38e-07 3.21e-07 2.45e-09 1.15e-09

32 1.07e-08 1.07e-08 3.50e-12 1.93e-11 1.07e-08 1.05e-08 1.92e-11 8.27e-12

64 3.35e-10 3.35e-10 2.55e-14 1.50e-13 3.35e-10 3.48e-10 1.88e-13 6.47e-14

128 1.05e-11 1.05e-11 2.00e-16 1.17e-15 1.05e-11 1.04e-11 1.25e-15 4.97e-16

256 3.27e-13 3.27e-13 1.54e-18 9.15e-18 3.27e-13 3.30e-13 1.31e-17 3.86e-18

Table 3: Various errors for k=4.

N eu,r eux,l ‖eu‖∗ ‖eu‖c eq,l eqx,r ‖eq‖∗ ‖eq‖c

8 3.28e-07 3.60e-07 3.16e-09 2.16e-09 3.60e-07 3.58e-07 2.86e-09 2.51e-09

16 5.45e-09 5.47e-09 6.21e-12 4.70e-12 5.47e-09 5.59e-09 6.13e-12 5.09e-12

32 8.63e-11 8.64e-11 1.25e-14 9.72e-15 8.64e-11 8.68e-11 1.26e-14 1.05e-14

64 1.35e-12 1.35e-12 2.49e-17 1.95e-17 1.35e-12 1.35e-12 5.32e-17 2.16e-17

128 2.11e-14 2.11e-14 4.95e-20 3.85e-20 2.11e-14 2.11e-14 4.84e-20 4.37e-20

for k=3,4 are given in Tables 4-5. We can hardly observe the desired superconvergence
phenomenon for all the four errors in Theorems 3.2-3.4.

We also consider another way of initial discretization, the Radau projection P−
h u. Nu-

merical data are given in Tables 6-7. It seems that the convergence rate of function value
approximation at the right Radau points and derivative approximation at the interior left
Radau points for the variable u is k+2 and k+1, respectively. However, we do not see
the same convergent rates for the variable q. Moreover, we do not observe the (2k+1)-th
superconvergence rate at nodes and for the cell average in both variables u and q.

The numerical comparison of initial discretization with the L2-projection and the
Radau projection indicates that the proposed correction scheme for the initial condition
is necessary in order to achieve the best possible superconvergent rate in our theory.
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Table 4: Various errors for k=3 with initial solutions chosen as L2-projection.

N eu,r order eux,l order ‖eu‖∗ order ‖eu‖c order

8 1.45e-04 – 1.71e-03 – 1.91e-04 – 2.21e-05 –

16 5.77e-06 4.65 1.37e-04 3.64 3.74e-06 5.67 7.45e-07 4.89

32 2.98e-07 4.28 5.25e-05 1.39 1.06e-06 1.82 4.52e-08 4.05

64 2.83e-08 3.39 3.82e-06 3.78 4.75e-08 4.48 1.76e-09 4.68

128 1.33e-09 4.41 4.50e-07 3.09 2.48e-09 4.26 8.47e-11 4.38

256 1.75e-10 2.92 6.35e-08 2.82 1.03e-10 4.59 4.06e-12 4.38

N eq,l order eqx,r order ‖eq‖∗ order ‖eq‖c order

8 1.71e-03 – 6.24e-02 – 4.76e-03 – 2.07e-04 –

16 1.37e-04 3.64 9.22e-03 2.76 1.96e-04 4.60 1.16e-05 4.16

32 5.25e-05 1.39 3.40e-03 1.44 7.74e-05 1.34 1.88e-06 2.63

64 3.82e-06 3.78 5.86e-04 2.54 5.81e-06 3.74 1.23e-07 3.93

128 4.50e-07 3.09 1.38e-04 2.09 8.09e-07 2.84 1.10e-08 3.49

256 6.35e-08 2.85 3.59e-05 1.94 6.86e-08 3.60 1.04e-09 3.41

Table 5: Various errors for k=4 with initial solutions chosen as L2-projection.

N eu,r order eux,l order ‖eu‖∗ order ‖eu‖c order

8 1.50e-05 – 1.93e-04 – 8.39e-06 – 8.48e-07 –

16 4.00e-07 5.23 1.37e-05 3.82 2.34e-07 5.17 1.82e-08 5.54

32 6.43e-09 5.96 3.17e-07 5.43 4.40e-09 5.73 4.51e-10 5.33

64 4.04e-10 3.99 7.53e-08 2.07 4.00e-10 3.46 1.37e-11 5.08

128 1.10e-11 5.19 1.98e-09 5.25 3.20e-12 6.97 4.24e-13 4.98

N eq,l order eqx,r order ‖eq‖∗ order ‖eq‖c order

8 1.93e-04 – 1.78e-02 – 4.25e-04 – 1.09e-05 –

16 1.37e-05 3.82 1.76e-03 3.39 2.36e-05 4.17 8.76e-07 3.64

32 3.17e-07 5.43 9.49e-05 4.17 7.22e-07 5.03 2.13e-08 5.36

64 7.53e-08 2.07 2.46e-05 1.95 5.47e-08 3.72 1.89e-09 3.49

128 1.98e-09 5.25 1.03e-06 4.58 2.17e-09 4.65 5.22e-11 5.18

5.2 Energy conservation

Example 2. As the first nonlinear example, we consider the following Sine-Gordon equa-
tion

utt=uxx+sin(u), (x,t)∈ [0,2π]×[0,60] (5.1)

with the periodic boundary condition and initial conditions

u(x,0)=sin(x−2t), ut(x,0)=−6cos(x).

The equation appears frequently in variety of physical applications including relativistic
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Table 6: Various errors for k=3 with initial solutions chosen as P−
h u.

N eu,r order eux,l order ‖eu‖∗ order ‖eu‖c order

8 2.05e-05 – 1.16e-04 – 1.62e-05 – 2.96e-06 –

16 6.44e-07 4.99 1.35e-05 3.10 2.05e-07 6.31 9.95e-08 4.89

32 2.89e-08 4.48 5.44e-07 4.64 1.06e-08 4.27 2.65e-09 5.23

64 9.44e-10 4.94 3.42e-08 3.99 3.45e-10 4.95 7.46e-11 5.15

128 1.89e-11 5.64 2.41e-09 3.83 9.32e-12 5.21 1.88e-12 5.31

256 1.07e-12 4.15 2.02e-10 3.57 2.37e-13 5.30 4.52e-14 5.38

N eq,l order eqx,r order ‖eq‖∗ order ‖eq‖c order

8 1.16e-04 – 2.01e-03 – 2.42e-04 – 3.38e-05 –

16 1.35e-05 3.10 2.76e-04 2.86 5.65e-06 5.42 9.63e-07 5.13

32 5.44e-07 4.64 5.55e-05 2.32 1.18e-06 2.26 7.70e-08 3.65

64 3.42e-08 3.99 5.70e-06 3.29 5.63e-08 4.39 3.79e-09 4.34

128 2.41e-09 3.83 5.26e-07 3.44 2.70e-09 4.38 1.78e-10 4.42

256 2.02e-10 3.57 9.58e-08 2.46 1.25e-10 4.43 8.57e-12 4.37

Table 7: Various errors for k=4 with initial solutions chosen as P−
h u.

N eu,r order eux,l order ‖eu‖∗ order ‖eu‖c order

8 8.40e-07 – 8.37e-06 – 2.24e-07 – 4.59e-08 –

16 1.24e-08 6.08 3.61e-07 4.54 6.62e-09 5.08 6.01e-10 6.25

32 1.71e-10 6.18 4.96e-09 6.19 4.87e-11 7.08 9.28e-12 6.02

64 5.78e-12 4.88 2.86e-10 4.11 1.26e-12 5.27 1.39e-13 6.06

128 4.50e-14 7.00 6.91e-12 5.37 1.08e-14 6.86 1.85e-15 6.23

N eq,l order eqx,r order ‖eq‖∗ order ‖eq‖c order

8 8.37e-06 – 1.97e-04 – 7.96e-06 – 4.17e-07 –

16 3.61e-07 4.54 7.46e-06 4.72 1.54e-07 5.69 1.04e-08 5.33

32 4.96e-09 6.19 2.10e-07 5.15 4.11e-09 5.23 2.08e-10 5.64

64 2.86e-10 4.11 6.37e-08 1.72 3.47e-10 3.56 7.09e-12 4.87

128 6.91e-12 5.37 1.50e-09 5.41 2.73e-12 6.99 2.06e-13 5.10

field theory, mechanical transmission lines, and Josephson junctions. The equation has
the continuous conserved energy

E(t)=
∫

Ω

(1

2
u2

t +
1

2
u2

x+cos(u)
)

dx

for all time. Here we set the space step-size h=π/10, time step-size ∆t=0.01, and solve
the problem with our proposed method (4.1), the classical method (4.7), and the third
order TVD Runge-Kutta DG method, respectively. The errors between the continuous
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Figure 4: The errors of energy for problem (5.1).

and discrete energy are displayed in Fig. 4, where

Dn := |En
h −E(0)|.

Here En
h , defined in Theorem 4.2, is obtained by different methods. We observe that

energy errors of the classical method (4.7) and the third-order TVD Runge-Kutta DG
method increase almost linearly with respect to time, while the energy error from our
method remains the same.

Example 3. As the second nonlinear example, we consider the following Klein-Gordon
equation

utt=uxx+u−u3. (x,t)∈ [0,2π]×[0,T] (5.2)

with the periodic boundary condition and the following initial conditions

u(x,0)=cos(x), ut(x,t)=10sech(x).

The equation was first considered by Schrödinger as a quantum wave equation, which
was used to describe the de Broglie waves or to study the hydrogen atom. As is well-
known, the equation has the continuous conserved energy

E(t)=
∫

Ω

(1

2
u2

t +
1

2
u2

x−
1

2
u2+

1

4
u4
)

dx

for all time.
In this numerical experiment, we show further that the energy conserving property

of the numerical solution is due to the special treatment of the nonlinear term. Again, we
set the space step-size h=π/10, time step-size ∆t=0.01. We solve the problem on the time
interval [0,200]. Fig. 5 depicts errors between the continuous and discrete energy. Again,
we see that the energy errors of the proposed methods (4.1) and (4.2) remain unchanged,
while the energy error of the classical method (4.7) increases linearly with time.
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6 Conclusions

Superconvergence properties of the LDG method for linear wave equations in one space
dimension are studied under suitable initial discretization. We prove that, for fluxes
choice (2.4), the LDG solution (uh,qh) is (k+2)-th order superconvergent to the Gauss-
Radau projection (P−

h u,P+
h q); the function value error u−uh at right Radau points and

q−qh at left Radau points, converge with the same rate k+2; the nodal errors of u−uh at
downwind points and q−qh at upwind points, as well as their cell averages, all converge
with the same rate 2k+1. We prove the similar superconvergence results for fluxes choice
(2.5). A surprising numerical observation is the (k+2)-th order derivative error ∂x(u−uh)
at interior left Radau points and ∂x(q−qh) at interior right Radau points. Theoretical
explanation of this ultra-convergence (two-orders higher than the best possible global
rate) phenomenon is one of our on-going projects.

In addition, a fully discrete numerical scheme is proposed to achieve the goals of ex-
plicit time marching and energy conservation for a class of nonlinear wave equations.
We prove that our algorithm preserves the discrete energy. Numerical experiments on
the Klein-Gordon and Sine-Gordon equations demonstrate that our method not only pre-
serves the energy, but also provides good approximations to the continuous solutions.
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