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Abstract. In this paper, we propose an iterative two-grid method for the edge finite
element discretizations (a saddle-point system) of Perfectly Matched Layer(PML)
equations to the Maxwell scattering problem in two dimensions. Firstly, we use
a fine space to solve a discrete saddle-point system of H(grad) variational prob-
lems, denoted by auxiliary system 1. Secondly, we use a coarse space to solve the
original saddle-point system. Then, we use a fine space again to solve a discrete
H(curl)-elliptic variational problems, denoted by auxiliary system 2. Furthermore,
we develop a regularization diagonal block preconditioner for auxiliary system 1
and use H-X preconditioner for auxiliary system 2. Hence we essentially trans-
form the original problem in a fine space to a corresponding (but much smaller)
problem on a coarse space, due to the fact that the above two preconditioners are
efficient and stable. Compared with some existing iterative methods for solving
saddle-point systems, such as PMinres, numerical experiments show the competi-
tive performance of our iterative two-grid method.
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1 Introduction

An early paper of Bérenger [3] proposed a perfectly matched layer (PML) method for
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time-dependent Maxwell equations. The idea is to construct a fictitious absorbing
layer outside the ”region of interest” so that plane waves passed into the layer with-
out reflection. This approach was then applied to various time domain problems
(cf. [1, 4, 8, 9]). PML methods were also developed in terms of a complex change of
variable (or stretching) for frequency domain Maxwell problems (cf. [5, 10, 17]). Es-
pecially, Bramble and Pasciak [5] have proved existence and uniqueness of the so-
lutions to the infinite domain and truncated domain PML equations provided that
the truncated domain is sufficiently large. Furthermore, they also showed the PML
reformulation preserves the solution in the layer while decaying exponentially out-
side of the layer. However, the corresponding edge finite element discretization is an
indefinite saddle-point system which is usually large and higher ill-condition. Hence
constructing the corresponding fast algorithms is necessary for realistic computational
electromagnetism.

Nowadays, there are only few research results for fast algorithms of PML equa-
tions. For example, Botros and Volakis [6] presented a generalized minimal residual
(GMRES) solver which coupled with an approximate inverse preconditioner. Botros
and Volakis [7] given an optimal selection of the PML parameters and tested the GM-
RES solver.

The two-grid methods are developed originally for nonsymmetric or indefinite
linear elliptic partial differential equations (PDEs) [15, 18–20], and the basic idea is
first to solve the original problem in a coarse mesh space with mesh size H and then
solve a symmetric positive definite (SPD) problem on a fine mesh space with mesh size
h. This method was later extended to other problems (cf. [13,16,21,22]). However, the
extension of the two grid method to the Maxwell equations is not straightforward,
since the leading term curl for Maxwell’s equations has a large kernel. Noting that the
behaviors of the system PML problems in our paper are different in different regions
and the parameter before the operator curl don’t maintain sign in some regions, so the
system is more complex and then the usual multigrid methods for Maxwell problem
won’t work.

In this paper, we will propose an iterative two-grid method for the edge finite
element discretizations (a saddle-point system) of PML equations for a Maxwell scat-
tering problem in two dimensions. Unlike the traditional two-grid method for elliptic
problems, we need to take care of the kernel of operator curl. In detail, we first use
a fine space to solve a discrete saddle-point system of H(grad) variational problems,
denoted by auxiliary system 1. Secondly, we use a coarse space to solve the original
saddle-point system. At last, we use a fine space again to solve a discrete H(curl)-
elliptic variational problems, denoted by auxiliary system 2. Furthermore, we design
a regularization diagonal block preconditioner for auxiliary system 1 since its alge-
braic system is still an indefinite saddle-point system. In view of the algebraic system
of auxiliary system 2 it is a diagonal block matrix with each diagonal elements is a
H(curl)-elliptic operator, we choose PCG method based on H-X preconditioner [14]
as a solver. Numerical experiments show that the above two preconditioners are effi-
cient and stable. With this method, the solution of the original problem in a fine grid is
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essentially reduced to the solution of a corresponding (but much smaller) problem on
a coarser grid. Compared with some iterative methods to solve saddle-point systems,
such as PMinres, numerical experiments show that our iterative two-grid method is
much more efficient.

The rest of the paper is organized as follows. In Section 2, we introduce the
Maxwell PML equations and the corresponding edge finite element discretization. In
Section 3, we construct an iterative two-grid method and two preconditioners for aux-
iliary systems. Finally, we report several numerical examples to illustrate the compet-
itive behavior of the method in Section 4.

2 A Model PML Problem

Let
ΩM = Ω1 ∪ Ω2 ∪ Ω3 ⊂ R2,

be a bounded computational domain with the inner boundary Γ and the outer bound-
ary ΓM (see Fig. 1), where

Ω1 = [−a, a]2 \ [−1, 1]2, Ω2 = [−b, b]2 \ [−a, a]2 and Ω3 = [−M, M]2 \ [−b, b]2,

with 1 < a < b < M.

Figure 1: Computational domain ΩM.

We define an even function σ ∈ C0(R) as follows (see [5])

σ(t) =


0, for |t| ≤ a,
σ0(|t| − a), for a < |t| < b,
σ0, for |t| ≥ b.

(2.1)

Here σ0 > 0 is a parameter (the PML strength). Furthermore, we need to introduce
another function [5, 11]

d(t) = 1 + iσ(t).
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For any given complex function g ∈ L2(Γ), we define the Sobolev space

Hg(curl; ΩM) =
{

u :u = ur + iui, curlur ∈ L2(ΩM), curlui ∈ L2(ΩM),

u · t|ΓM = 0, u · t|Γ = g · t|Γ
}

.

In this paper, we consider the following variational problem of PML equations [5]:
find u ∈ Hg(curl; ΩM) such that

a(u, ψ) = 0, ∀ψ ∈ H0(curl; ΩM), (2.2)

where

a(u, ψ) =
∫

Ω
S−1(∇× u)(∇× ψ)dx −

∫
Ω
(µu) · ψdx.

Here

S = d(x)d(y), µ = diag
(d(y)

d(x)
,

d(x)
d(y)

)
.

For simplicity, let

S−1 = Sr + iSi, µ = Dr + iDi.

We also write complex function u as u = ur + iui for the purpose of computation, and
still use the notation Hg(curl; ΩM) for the Sobolev space of real functions.

A straightforward computation gives the equivalent weak formulation of (2.2):
Find ur ∈ Hgr

(curl; ΩM), ui ∈ Hgi
(curl; ΩM) such that

a(ur, ui; ψr,−ψi) = 0, ∀ψr, ψi ∈ H0(curl; ΩM), (2.3)

where

a(ur, ui; ψr,−ψi) =
∫

ΩM

(Sr(∇× ur)(∇× ψr)− Sr(∇× ui)(∇× ψi))dx

−
∫

ΩM

(Si(∇× ui)(∇× ψr) + Si(∇× ur)(∇× ψi))dx

−
∫

ΩM

(uT
r Drψr − uT

i Drψi)dx +
∫

ΩM

(uT
i Diψr + uT

r Diψi)dx. (2.4)

Assume that ΩM is covered by a quasi-uniform mesh of tetrahedron Th, where h is
the maximum diameter of the tetrahedrons in Th. We introduce the lowest order edge
elements of the first family

Vh,g(Th) =
{

uh ∈ Hg(curl; ΩM) : uh|τ ∈ R1, ∀τ ∈ Th
}

, (2.5)

where
R1 = (P0)

2 ⊕
{

p ∈ (P̃1)
2 : x · p = 0

}
,
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P0 denotes the space of constants, P̃1 denotes the space of homogeneous linear poly-
nomials.

Then the algebraic system of weak formulation (2.3) can be described as

MX = F, (2.6)

where

M =

(
A B
B −A

)
. (2.7)

Here the corresponding bilinear forms of matrices A and B are a(ur, 0; ψr, 0) and
a(0, ui; ψr, 0), respectively.

Noting that the matrix M in (2.7) is a symmetric indefinite matrix and has signif-
icantly deteriorate condition number if the mesh size becomes small. Hence conver-
gence of the iterative solver is substantially affected and construction of fast solver is
necessary.

3 An iterative two-grid method

In this section, we first introduce some preliminaries which will be used in two-grid
algorithm, then present an iterative two-grid method for solving (2.6) and discuss
some corresponding solvers.

Assume the coarse mesh TH is a nested mesh of the fine mesh Th, which implies

VH,0(TH) ⊂ Vh,g(Th).

We define the following Lagrange finite element space S1
h,0 corresponding to H1

0(ΩM):

Sh,0 =
{

vh ∈ C(ΩM) : vh|Γ∪ΓM = 0, vh|τ ∈ P1, ∀τ ∈ Th
}

.

From the exact sequence property of discrete finite element space, we know that

gradSh,0 :=
{
∇vh : vh ∈ Sh,0

}
,

is the kernel of operator curl in the fine space V
1,1
h,0(Th), and

gradSh,0 ⊂ V
1,1
h,0(Th),

holds.
In order to discuss the algorithm conveniently, let us introduce another bilinear

form ag(·, ·; ·, ·) that is defined by

ag(ϕr, ϕi; φr,−φi) = a(∇ϕr,∇ϕi;∇φr,∇φi), ∀ϕr, ϕi, φr, φi ∈ Sh,0. (3.1)
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Similar to the standard two-grid method, we need to introduce the decomposition of
bilinear form a(·, ·; ·, ·) given by (2.4) as follows

a(ur, ui; ψr,−ψi) = â(ur, ui; ψr,−ψi) + N(ur, ui; ψr,−ψi),

where

â(ur, ui; ψr,−ψi) =
∫

ΩM

|Sr|(∇× ur)(∇× ψr)dx +
∫

ΩM

uT
r Drψrdx

−
∫

ΩM

|Sr|(∇× ui)(∇× ψi)dx −
∫

ΩM

uT
i Drψidx, (3.2a)

N(ur, ui; ψr,−ψi) =
∫

ΩM

(Sr − |Sr|)
(
(∇× ur)(∇× ψr)

)
dx − 2

∫
ΩM

uT
r Drψrdx

−
∫

ΩM

(Sr − |Sr|)
(
(∇× ui)(∇× ψi)

)
dx + 2

∫
ΩM

uT
i Drψidx

−
∫

ΩM

(Si(∇× ui)(∇× ψr)− uT
i Diψr)dx

+
∫

ΩM

(Si(∇× ur)(∇× ψi)− uT
r Diψi)dx. (3.2b)

3.1 Iterative two-grid method

Using the above preparation, we present an iterative two-gird method for approximat-
ing the finite element solution of original variational problem (2.3). We also provide
the corresponding algebraic system in the meantime.

Algorithm 3.1 (Iterative two-grid method). For given positive integer J, let u0
r = 0, u0

i =

0. Assume that uj
r ∈ Vh,gr

(Th) and uj
i ∈ Vh,gi

(Th) have been obtained, uj+1
r ∈ Vh,gr

(Th)

and uj+1
i ∈ Vh,gi

(Th) (1 ≤ j + 1 ≤ J) defined as follows:

• Find ϕ
j
r ∈ S1

h,0 and ϕ
j
i ∈ S1

h,0 such that

ag(ϕ
j
r, ϕ

j
i ; φr,h,−φi,h) =( fr,g, fi,g;∇φr,h,−∇φi,h)

− a(uj
r, uj

i ;∇φr,h,−∇φi,h), ∀φr,h ∈ S1
h,0, φi,h ∈ S1

h,0, (3.3)

where ag(·, ·; ·, ·) and a(·, ·; ·, ·) are defined by (3.1) and (2.4), respectively.

Let
Xg = (Xr,g, Xi,g)

T and X j = (X j
r, X j

i )
T,

where XT
r,g, XT

i,g, (X j
r)

T and (X j
i )

T are column vectors formed by freedoms of ϕ
j
r, ϕ

j
i , uj

r

and uj
i , respectively. The algebraic system of weak formulation (3.3) can be described as

MgXg = Pg(F − MX j), (3.4)
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with

Mg =

(
Ag Bg
Bg −Ag

)
, (3.5)

Pg is a restricted matrix from (Vh,0(Th))
2 to (S1

h,0)
2, F is the right side vector of (2.6)

and the matrix M is defined by (2.7).

• Find ej
r,H ∈ VH,0(TH) and ej

i,H ∈ VH,0(TH) such that

a(ej
r,H, ej

i,H ; ψr,H,−ψi,H)

=( fr,H, fi,H ; ψr,H,−ψi,H)− a(uj
r +∇ϕ

j
r,h, uj

i +∇ϕ
j
r,h; ψr,H,

− ψi,H), ∀ψr,H ∈ VH,0(TH), ψi,H ∈ VH,0(TH). (3.6)

Let XH = (Xr,H , Xi,H)
T, where (Xr,H)

T and (Xi,H)
T are column vectors formed by

freedoms of ej
r,H and ej

i,H, respectively. The algebraic system of (3.6) can be written as

MHXH = RH(F − M(PT
g Xg + X j)), (3.7)

with

MH =

(
AH BH
BH −AH

)
,

RH is a restricted matrix from (Vh,0(Th))
2 to (VH,0(Th))

2.

• Find uj+1
r ∈ Vh,gr

(Th) and uj+1
i ∈ Vh,gi

(Th) such that

â
(
uj+1

r , uj+1
i ; ψr,h,−ψi,h

)
=− N

(
uj

r +∇ϕ
j
r,h + ej

r,H , uj
i +∇ϕ

j
i,h + ej

i,H ;

ψr,h,−ψi,h
)
, ∀ψr,h ∈ Vh,0(Th), ψi,h ∈ Vh,0(Th), (3.8)

where gr and gi are the real part and the imaginary part of g, â(·, ·; ·, ·) and N(·, ·; ·, ·)
defined by (3.2a) and (3.2b), respectively.

Let Xj+1 = (Xr,j+1, Xi,j+1)
T, where XT

r,j+1 and XT
i,j+1 are column vectors formed by

freedoms of uj+1
r and uj+1

i , respectively. The algebraic system of weak formulation (3.8)
can be described as

M̂Xj+1 = F − (M − M̂)(Xg + X j + XH), (3.9)

here

M̂ =

(
Â

−Â

)
, (3.10)

is the corresponding matrix of bilinear form â(·, ·; ·, ·).
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In Algorithm 3.1, we need to solve three variational problems (3.3), (3.6) and (3.8).
Although the variational problem (3.6) on a coarse mesh space is an original weak for-
mulation, we can use some iterative methods (e.g., PMinres) since the corresponding
degrees of freedom are relatively small. So, we focus on the solvers of (3.3) and (3.8)
in the following.

For the sake of simplicity, the corresponding discrete algebraic system of varia-
tional problems (3.3) and (3.8) are called auxiliary systems 1 and 2, respectively.

3.2 Solver for auxiliary system 1

Although Eq. (3.4) is similar to original problem (2.6), it’s luck to find a corresponding
regularization diagonal block preconditioner K̂−1 given by

K̂ =

(
Âg 0
0 Âg

)
, (3.11)

where Âg is relative to the bilinear form

âg(ϕr, φr) =
∫

ΩM

(∇ϕr)
TDr(∇φr)dx. (3.12)

Noting that K̂ is a diagonal matrix, then using of PMinres method with preconditioner
K̂ is essentially translated to solve the following system twice

Âgw = g. (3.13)

Furthermore, it is easy to see that matrix Âg is relative to H(grad)-elliptical problem
by using (3.12). Hence we can also use Boomer AMG based on HYPRE and present
the corresponding numerical results as follows:

Here we set J = 2, the controlling accuracy in PMinres method and Boomer AMG
iterative method are both 10−6, iter1 and iter2 denote iteration number of PMinres
method and Boomer AMG iterative method, respectively.

Table 1 shows that iteration numbers of PMinres method with preconditioner K̂ are
independent of the mesh size, and average iteration number of Boomer AMG method
between 4 and 5.1, so the former is stable and the latter is basically stable.

Table 1: Iteration numbers of PMinres method and Boomer AMG iterative method.

j = 1 j = 2
H h iter1 iter2 iter1 iter2
8

16
8

32 47 4.00 53 4.00
8

32
8

64 47 4.97 55 4.38
8

64
8

128 45 5.01 55 4.92
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3.3 Solver for auxiliary system 2

By (3.10), we know that M̂ is a diagonal matrix and SPD matrix Â is corresponding to
the following bilinear form

âA(u, ψ) =
∫

ΩM

|Sr|(∇× u)(∇× ψ)dx +
∫

ΩM

uTDrψdx. (3.14)

Remark 3.1. Making use of the definitions of σ(t) and d(t), it can prove that the diag-
onal elements of diagonal matrix Dr are positive if σ0 > 0.

Remark 3.2. Bilinear form âg(·, ·) given by (3.12) can be viewed as a projection of
âA(·, ·) restricted on gradSh,0, and it’s also included in H-X precondition.

Now we can rewrite the Eq. (3.9) in the auxiliary system 2 as

M̂X̂ = F̂,

where M̂ given by (3.10), F̂ = (F̂1, F̂2)T and X̂ = (X̂1, X̂2)T can be reviewed as the
approximation of solution X of system (2.6). In order to solve the above algebraic
system, we need to solve the following system twice:

ÂX̂i = F̂i, i = 1, 2. (3.15)

We use the PCG method with H-X precondition in [14] to solve (3.15), since that Â
is correspond to a H(curl)-elliptic problem (see (3.14)). Now, we present the corre-
sponding numerical results in Table 2. Here we set J = 2 and the controlling accuracy
is 10−6. Table 2 shows that iteration number are independent of the mesh size.

Table 2: Iteration numbers of PCG method with H-X precondition.

H h j = 1 j = 2
8

16
8

32 13 13
8

32
8

64 13 13
8

64
8

128 13 13

Summing up, in view of Tables 1 and 2, our solvers for auxiliary systems 1 and 2 are
stable. Furthermore, the numerical experiments in the next section show that solving
auxiliary systems 1 and 2 requires a very small proportion of the time in our iterative
two-grid method (see Tables 10), hence we essentially translate the computation of
original problem on a fine space into the one on a coarse space.

4 Numerical experiments

In this section, we report the results of numerical experiments which illustrate the
efficiency of the iterative two-grid method in the previous section. In particular, we
consider a model problem (2.2) under the following conditions:

ΩM = [−4, 4]2 \ [−1, 1]2, a = 2, b = 3 and g = ∇×
[
H(1)

1 (r)eiθ]∣∣
Γ,
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(a) (b)
Figure 2: The electric-field distributions about the first component (a) and the second component (b) of
the real part of u.

where H(1)
1 (r) is the first kind Hankel function. Noting that the region of interest in

model problem (2.2) is Ω1 (see [5]), hence we will focus on the error in Ω1. According
to the boundary condition

u|Γ × n = g|Γ × n,

we get an approximated function

u|Ω1 = ∇×
[
H(1)

1 (r)eiθ],
of model problem (2.2). In Fig. 2 we show the electric-field distributions about the first
and second component of the real part of u on Ω1. In the following experiments, we
will show the distributions of numerical solution and compare them.

All numerical experiments performance on a PC with Intel(R) P4 3.00 GHz proces-
sor, 1GB main memory and Linux operating system.

In the following, we present the numerical results for the PMinres methods and
the iterative two-grid method, respectively.

4.1 PMinres method

Firstly, we present the numerical results by using PMinres method with identity pre-
condition (namely Minres method) in Tables 3 and 4, where the controlling accuracy
is 10−6, iter and time denote the iteration number and CPU times, respectively.

The results in Table 3 show that the orders of the L2-error and H(curl)-error are
O(h). From Table 4, we observe the following two properties:

• when the mesh size is reduced by half, the iteration number of Minres method increase four
times.

• CPU times grow fastly if the discrete systems become large, which implies the corresponding
condition numbers also become large.
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Table 3: Error for Minres method.

h ∥u − uh∥0,Ω1 ratio ∥u − uh∥H(curl;Ω1)
ratio

8
16 6.0118e-1 6.8581e-1
8

32 3.1081e-1 1.93 3.4915e-1 1.96
8

64 1.5672e-1 1.98 1.7475e-1 2.00
8

128 7.8556e-2 2.00 8.7496e-2 2.00

Table 4: Iteration numbers and CPU times (in second) for Minres method.

h iter time
8

16 3845 2.52
8

32 21815 63.39
8

64 88610 1352.11
8

128 317226 22092.86

Table 5: Iteration numbers and CPU times (in second) for PMinres method.

h iter iter p time
8
16 121 11.98 2.76
8
32 169 12.93 16.02
8
64 342 13.22 148.85
8

128 677 14.23 2078.92

Secondly, we report the numerical results by using PMinres method with the fol-
lowing precondition

C =

(
Â−1

Â−1

)
. (4.1)

Here, we use PCG method with H-X precondition to solve the following problem in
PMinres method

w = Cg, (4.2)

where the controlling accuracy is 10−6.
In this case, the corresponding errors are the same as those in Table 3, and itera-

tion number and CPU times will be given in Table 5, where iter and time denote the
iteration number and CPU times for PMinres method, and iter p denotes the average
iteration number of PCG method with H-X precondition for solving (4.2).

From Table 5, the mesh size is reduced by half, we observe that the iteration
number of PMinres method increased doubly and CPU times increased 9.6 times
(h = 8/128). Although PMinres method is better than Minres method, it’s still dif-
ficult to be applied to the larger problem. Hence, it’s necessary to design the more
efficient fast algorithm for solving (2.6).



186 C. Liu, S. Shu, Y. Huang, L. Zhong and J. Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 175-189

4.2 Iterative two-grid method

Firstly, we report the numerical result for errors between the solution u and iterative
two-grid solution uJ

h and ratios for a set of combination of h and H with J = 1, 2 in
Tables 6-7.

Table 6: Errors of Algorithm 3.1 with J = 1.

H h ∥u − uJ
h∥0,Ω1 ratio ∥u − uJ

h∥H(curl;Ω1)
ratio

8
16

8
32 8.4374e-1 8.8640e-1

8
32

8
64 5.7837e-1 1.46 5.8867e-1 1.51

8
64

8
128 4.0461e-1 1.43 4.0755e-1 1.44

Table 7: Errors of Algorithm 3.1 with J = 2.

H h ∥u − uJ
h∥0,Ω1 ratio ∥u − uJ

h∥H(curl;Ω1)
ratio

8
16

8
32 3.1730e-1 3.6128e-1

8
32

8
64 1.6207e-1 1.96 1.8187e-1 1.99

8
64

8
128 7.9254e-2 2.04 8.8707e-2 2.05

Tables 6-7 show the following conclusions. The solution of iterative two-grid method
with J = 1 does not approximate the real solution well. For J = 2, the L2-error and
H(curl)-error closely approximate the ones for PMinres method by comparing Table 3
with Table 7, their orders are O(h). Hence, we only present the numerical results with
J = 2 in the following.

Since PMinres method is shown to be a better solver of the variational problem
(3.6) on a coarse mesh than the standard Minres, we only make use of PMinres method
to be a solver of a coarse mesh problem in the following, and Ĉ−1 given by (4.1) to be
the corresponding precondition. Fig. 3 shows that the electric-field distributions about
the first and second component of the real part of uJ

h on the interest region for our

(a) (b)
Figure 3: The electric-field distributions about the first component (a) and the second component (b) of

the real part of uJ
h.
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Table 8: Error of PMinres method on coarse mesh for Algorithm 3.1.

H h ∥u − uJ
h∥0,Ω1 ratio ∥u − uJ

h∥H(curl;Ω1)
ratio

8
16

8
32 3.1730e-1 3.6128e-1

8
32

8
64 1.6207e-1 1.96 1.8187e-1 1.99

8
64

8
128 7.9254e-2 2.04 8.8707e-2 2.05

8
128

8
256 4.0007e-2 1.98 4.4792e-2 1.98

Table 9: Iteration numbers of PMinres method on coarse mesh for Algorithm 3.1.

H h iter c1 iter p1 iter c2 iter p2
8
16

8
32 121 12.00 127 12.00

8
32

8
64 165 12.94 175 12.97

8
64

8
128 340 13.22 301 13.23

8
128

8
256 713 14.22 545 14.23

Table 10: CPU-times spent at each part of Algorithm 3.1 with PMinres method on coarse mesh.

time k time c time f
H h time m t k1 t k2 t c1 t c2 t f1 t f2 total time
8
16

8
32 0.53 0.63 0.48 2.72 2.72 0.13 0.13 6.93

8
32

8
64 2.06 2.34 2.42 15.30 17.38 0.45 0.46 38.96

8
64

8
128 8.56 18.75 22.20 156.92 138.96 2.83 2.85 344.39

8
128

8
256 96.26 103.06 113.27 2198.13 1679.25 15.65 15.77 4134.15

iterative two-grid method. Compared with Fig. 2, we observe that their distributions
are consistent, which implies that our algorithm is reliable.

The corresponding errors in Table 8 show that the orders of L2-error and H(curl)-
error are still O(h). Tables 9 and 10 present the corresponding iteration numbers and
CPU-times spent at each part of Algorithm 3.1, where iter c1 and iter c2 denote iter-
ation numbers of PMinres method on coarse mesh in Algorithm 3.1 for the first time
and second time, and iter p1 and iter p2 denote average iteration numbers of PCG
method with H-X precondition in Algorithm 3.1 for the first time and second time.

Compared Table 10 with Table 5, we also observe that total CPU times for iterative
two-grid method are less than those for PMinres method. For example, when h =
8/128, the total time of the former reduce to about one-sixth of the latter’s).

In the previous numerical results, we can find that the proportion of CPU times for
solving (3.6) on coarse mesh occupies a large share of total time (more than 85%) since
the size of coarse mesh is only twice of the size of fine mesh. So, we present some
numerical results in Tables 11-13 by enlarging the size between coarse mesh and fine
mesh in the following.

Table 11 shows that the orders of L2-error and H(curl)-error are still O(h). For a
fixed h, compared Table 11 with Table 8, we observe that the orders of L2-error and
H(curl)-error in Table 11 are between h and 2h which both in Table 8, and more closer
to h. For example, when h = 8/128, L2-error ∥u − uJ

h∥0,Ω1=1.0330e-1 in Table 11 is
between 1.6207e-1 and 7.9254e-2 in Table 8, and more closer to 7.9254e-2.
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Table 11: Error of Algorithm 3.1.

H h ∥u − uJ
h∥0,Ω1 ratio ∥u − uJ

h∥H(curl;Ω1)
ratio

8
16

8
64 1.9363e-1 2.2913e-1

8
32

8
128 1.0330e-1 1.87 1.2010e-1 1.91

8
64

8
256 4.7231e-2 2.19 5.6818e-2 2.11

Table 12: Iteration numbers of PMinres method on coarse mesh for Algorithm 3.1.

H h iter c1 iter p1 iter c2 iter p2
8
16

8
64 121 11.99 127 12.00

8
32

8
128 164 12.91 171 12.95

8
64

8
256 339 13.23 293 13.19

Table 13: CPU-times spent at each part of Algorithm 3.1.

time k time c time f
H h time m t k1 t k2 t c1 t c2 t f1 t f2 total time
8

16
8

64 1.93 2.40 2.40 2.58 2.70 0.45 0.45 11.53
8

32
8

128 7.06 18.57 22.18 15.90 16.63 2.74 2.94 80.74
8

64
8

256 42.99 103.59 116.43 151.47 130.97 15.79 16.09 546.88

From Tables 12, we know that the iteration numbers of solving (3.7) reduce, and
from Tables 13 that both CPU times for solving (3.7) and total time decrease signifi-
cantly. Hence, in order to save the total computational time, it is reasonable to enlarge
the size of coarse mesh properly in Algorithm 3.1 .

Remark 4.1. It should be remark that the size of coarse mesh in Algorithm 3.1 can-
not be enlarged too large, otherwise the approximation order would be influenced.
Heuristic arguments are referred to the literature [2].
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