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Abstract. In this paper, our main purpose is to establish the existence of positive solu-
tion of the following system







−∆p(x)u=F(x,u,v), x∈Ω,

−∆q(x)v=H(x,u,v), x∈Ω,

u=v=0, x∈∂Ω,

where Ω = B(0,r)⊂ RN or Ω = B(0,r2)\B(0,r1)⊂RN , 0< r, 0< r1 < r2 are constants.

F(x,u,v)=λp(x)[g(x)a(u)+ f (v)], H(x,u,v)=θq(x)[g1(x)b(v)+h(u)], λ,θ>0 are param-

eters, p(x), q(x) are radial symmetric functions, −∆p(x)=−div(|∇u|p(x)−2∇u) is called

p(x)-Laplacian. We give the existence results and consider the asymptotic behavior of
the solutions. In particular, we do not assume any symmetric condition, and we do
not assume any sign condition on F(x,0,0) and H(x,0,0) either.

AMS subject classifications: 35J60, 35J62
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1 Introduction

In this paper, our main purpose is to establish the existence of positive solution of the
following system







−∆p(x)u=F(x,u,v), x∈Ω,

−∆q(x)v=H(x,u,v), x∈Ω,

u=v=0, x∈∂Ω,

(1.1)

∗Corresponding author.
Email: yinhh@hytc.edu.cn (H. H. Yin), zdyang jin@263.net (Z. D. Yang)

http://www.global-sci.org/aamm 19 c©2016 Global Science Press



20 H. H. Yin and Z. D. Yang / Adv. Appl. Math. Mech., 8 (2016), pp. 19-36

where Ω=B(0,r)⊂RN or Ω=B(0,r2)\B(0,r1)⊂RN , r and r1 < r2 are positive constants,
F(x,u,v)=λp(x)[g(x)a(u)+ f (v)], H(x,u,v)=θq(x)[g1(x)b(v)+h(u)] and p(x),q(x)∈C1(Ω)
are radial symmetric positive functions, i.e., p(x) = p(|x|), q(x) = q(|x|), the operator
−∆p(x)=−div(|∇u|p(x)−2∇u) is called p(x)-Laplacian and the corresponding equation
is called a variable exponent equation.

The study of differential equations and variational problems with nonstandard p(x)-
growth conditions is a new and interesting topic. It aries from nonlinear elasticity theory,
electro-rheological fluids, etc. (see [17, 27]). Many results have been obtained on this
kind of problems, for example [1–3, 5–7, 9, 13]. On the regularity of weak solutions for
differential equations with nonstandard p(x)-growth conditions, we refer to [1, 3, 5]. For
the existence results for the elliptic problems with variable exponents, we refer to [7, 13,
21–24].

For the special case, p(x)≡ p (a constant), (1.1) becomes the well known p-Laplacian
system. There have been many papers on this class of problems, see [4, 12, 19] and the
reference therein. We point out that elliptic equations involving the p(x)-Laplacian are
not trivial generalizations of similar problems studied in the constant case, since the p(x)-
Laplacian operator is nonhomogeneity. Thus, some techniques which can be applied in
the case of the p-Laplacian operators will fail in that new station, such as the Lagrange
Multiplier Theorem. Another example is that, if Ω is bounded, then the Rayleigh quotient

λp(x)= inf
u∈W

1,p(x)
0 (Ω)\{0}

∫

Ω

1
p(x) |∇u|p(x)dx

∫

Ω

1
p(x)

|u|p(x)dx

is zero in general, and only under some special conditions λp(x)> 0 (see [11]). But the
facts that the first eigenvalue λp >0 and the existence of the first eigenfunction are very
important in the study of p-Laplacian problems. There are more difficulties in discussing
the existence and asymptotic behavior of solutions of variable exponent problems.

In [12], the authors studied the existence of positive weak solutions for the following
problem:







−∆pu=λ f (v), x∈Ω,
−∆pv=λg(u), x∈Ω,
u=v=0, x∈∂Ω.

(1.2)

Under the condition of

lim
s→∞

f (M[g(s)]
1

p−1 )

sp−1
=0, ∀M>0, (1.3)

the authors gave the existence of positive solutions for problem (1.2).

In [4], the author considered the existence and nonexistence of positive weak solu-
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tions to the following p-Laplacian problem:






−∆pu=λuαvγ, x∈Ω,
−∆qv=λuδvβ, x∈Ω,
u=v=0, x∈∂Ω.

(1.4)

Recently, in [20], the authors considered the existence of positive solutions to the fol-
lowing quasilinear elliptic system in a bounded domain Ω⊂RN:







−∆pu=λ[g(x)a(u)+ f (v)], x∈Ω,
−∆qv= θ[g1(x)b(v)+h(u)], x∈Ω,
u=0=v, x∈∂Ω,

(1.5)

where λ,θ>0 are parameters and g(x), g1(x) may be negative near the boundary ∂Ω.
We note that in order to obtain the existence results, the first eigenfunction of −∆p is

used to construct the sub-solution for problems (1.2), (1.4) and (1.5). But for the variable
exponent problems, maybe the first eigenvalue and the first eigenfunction of the operator
−∆p(x) do not exist. Even if the first eigenfunction of −∆p(x) exists, because of the nonho-
mogeneity of −∆p(x), we still cannot to construct the sub-solution of variable exponent
problems with the first eigenfunction. In many cases, the radial symmetric conditions
are affective to deal with variable exponent problems, see [7,8,22,24] and reference there-
in. In [21, 22, 26], with a condition similar to (1.3), the author discussed the existence of
positive solutions of the following problems:







−∆p(x)u=λ f (v), x∈Ω,

−∆p(x)v=λg(u), x∈Ω,

u=v=0, x∈∂Ω,

(1.6)

and






−∆p(x)u=λp(x) f (v), x∈Ω,

−∆p(x)v=λp(x)g(u), x∈Ω,

u=v=0, x∈∂Ω.

(1.7)

We call (1.1) is (p(x),q(x))-type and call (1.6), (1.7) are (p(x),p(x))-type. Since both
−∆p(x) operator and −∆q(x) operator are contained, the study of (p(x),q(x))-type is more
complicated than that of (p(x),p(x))-type.

Motivated by the above results, we study problem (1.1) in this paper. Our aim is to
give the existence and asymptotic behavior of positive weak solutions for problem (1.1).
The paper gives the existence of positive weak solutions via sub-supersolution method.
Our results partially generalized the results of [12, 20–22, 26].

The paper is organized as follows. In Section 2, we recall some facts that will be
needed in the paper. In Section 3, we consider the existence of positive solutions of (1.1).
We will show the asymptotic behavior of the positive solutions of problem (1.1) in the
fourth section. In Section 5, we give an example.
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2 Notations and preliminaries

In order to deal with p(x)-Laplacian problem, we need some theories on spaces Lp(x)(Ω),
W1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [6, 14, 17, 18]).
For any f (x)∈C(Ω), we write

f+=max
x∈Ω

f (x), f−=min
x∈Ω

f (x).

Denote

Lp(x)(Ω)=
{

u
∣

∣

∣
u is a measurable real-valued funcion,

∫

Ω

|u(x)|p(x)dx<∞

}

.

We can introduce a norm on Lp(x)(Ω) by

|u|p(x)= inf
{

λ>0
∣

∣

∣

∫

Ω

∣

∣

∣

u(x)

λ

∣

∣

∣

p(x)
dx≤1

}

,

and (Lp(x)(Ω),|·|p(x)) becomes a Banach space, and we call it variable exponent Lebesgue
space.

The space W1,p(x)(Ω) is defined by

W1,p(x)(Ω)={u∈Lp(x)(Ω)||∇u|∈Lp(x)(Ω)},

and it can be equipped with the norm

‖u‖= |u|p(x)+|∇u|p(x), ∀u∈W1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W1,p(x)(Ω), and we call it variable expo-

nent Sobolev space. From [6], we know that spaces Lp(x)(Ω), W1,p(x)(Ω) and W
1,p(x)
0 (Ω)

are separable, reflexive and uniform convex Banach spaces.
We define

(L(u),v)=
∫

Ω

|∇u|p(x)−2∇u∇vdx, ∀u,v∈W
1,p(x)
0 (Ω),

then L : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗ is a continuous, bounded and strictly monotone op-

erator, and it is a homeomorphism (see [9, Theorem 3.1]).

Definition 2.1. (1) (u,v)∈ (W
1,q(x)
0 (Ω),W

1,q(x)
0 (Ω)) is called a (weak) solution of problem

(1.1) if it satisfies










∫

Ω

|∇u|p(x)−2∇u∇ϕdx=
∫

Ω

F(x,u,v)ϕdx,
∫

Ω

|∇v|q(x)−2∇v∇ψdx=
∫

Ω

H(x,u,v)ψdx,
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for any (ϕ,ψ)∈ (W
1,q(x)
0 (Ω),W

1,q(x)
0 (Ω)).

(2) (u,v)∈(W1,p(x)(Ω),W1,p(x)(Ω)) is called a sub-solution (super-solution) of problem
(1.1) if (u,v)≤ (≥)(0,0) on ∂Ω and











∫

Ω

|∇u|p(x)−2∇u∇ϕdx≤ (≥)
∫

Ω

F(x,u,v)ϕdx,
∫

Ω

|∇v|q(x)−2∇v∇ψdx≤ (≥)
∫

Ω

H(x,u,v)ψdx,

for any (ϕ,ψ)∈ (W
1,p(x)
0 (Ω),W

1,q(x)
0 (Ω)) with ϕ,ψ≥0.

Define A :W1,p(x)(Ω)→ (W
1,p(x)
0 (Ω))∗ as

〈Au,ϕ〉=
∫

Ω

(|∇u|p(x)−2∇u∇ϕ+m(x,u)ϕ)dx, ∀u∈W1,p(x)(Ω), ∀ϕ∈W
1,p(x)
0 (Ω),

where m(x,u) is continuous on Ω×R, m(x,·) is increasing and satisfies

|m(x,t)|≤C1+C2|t|
p∗(x)−1,

where

p∗(x)=
Np(x)

N−p(x)
,

if p(x)< N and p∗(x)=∞ if p(x)≥ N, here and hereafter, we use Ci to denote positive
constants. It is easy to check that A is a continuous bounded mapping. From [25], we
have the following lemma.

Lemma 2.1 (Comparison Principle). Let u,v∈W1,p(x)(Ω). If Au−Av≤0 in (W
1,p(x)
0 (Ω))∗

and u≤v on ∂Ω (i.e., (u−v)+∈W
1,p(x)
0 (Ω)), then u≤v a.e. in Ω.

The following conditions will be required in our results:

(D1) Ω=B(0,r)⊂RN is an open ball with center 0 and radius r>0;

(D2) p(x),q(x)∈C1(Ω) are radial symmetric functions and 1< p−≤ p+, 1<q−≤q+;

(D3) g,g1 ∈C(Ω) are positive functions;

(D4) f ,h∈C1([0,∞)) are nondecreasing, lims→∞ f (s)=∞, lims→∞ h(s)=∞ and

lim
s→∞

f
(

M[h(s)]
1

q−−1
)

sp−−1
=0, ∀M>0,

(a combined sub-linear effect at ∞).

(D5) a,b∈C1([0,∞)) are nondecreasing, lims→∞ a(s)=∞, lims→∞ b(s)=∞ and

lim
s→∞

a(s)

sp−−1
=0, lim

s→∞

b(s)

sq−−1
=0.
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3 Existence of positive solutions

In the present paper, we use (λ,θ)>(λ∗,θ∗) to denote λ>λ∗, θ>θ∗ and the same meaning
for other cases, and denote by ρ(x)= |x|, then we have the following result:

Theorem 3.1. If (D1)-(D5) hold, then there exist (λ∗,θ∗)> (0,0) such that for any (λ,θ)>
(λ∗,θ∗), problem (1.1) has at least one positive solution.

Proof. According to the sub-super solution method for p(x)-Laplacian equations (see [10]),
we only need to construct a positive sub-solution (φ1,φ2) and a super-solution (z1,z2) of
(1.1) such that (φ1,φ2)≤(z1,z2), then there exists a positive solution (u,v) of (1.1) satisfies
(φ1,φ2)≤ (u,v)≤ (z1,z2). That’s complete the proof.

By (D3)-(D5), we see that there exists a M>2, such that

a(s)g(x)+ f (0)≥1, b(s)g1(x)+h(0)≥1, when s≥M−1, x∈Ω. (3.1)

Let

σ=
lnM

k
, τ=

lnM

l
,

then there exists k1 = l1>1 such that for any k> k1, l> l1, we have σ,τ∈ (0,r), we denote

φ1(x)=φ1(ρ)=











ek(r−ρ)−1, r−σ<ρ≤ r,

ekσ−1+
∫ r−σ

ρ
kekσ

( t

r−σ

)
1

p(t)−1
dt, 0≤ρ≤ r−σ,

and

φ2(x)=φ2(ρ)=











el(r−ρ)−1, r−τ<ρ≤ r,

elτ−1+
∫ r−τ

ρ
lelτ

( t

r−τ

)
1

q(t)−1
dt, 0≤ρ≤ r−τ.

It is easy to see that φ1,φ2∈C1(Ω). By computation, we have

−∆p(x)φ1=



































−(kek(r−ρ))p(ρ)−1
[

k(p(ρ)−1)−p′(ρ)lnk−kp′(ρ)(r−ρ)−
N−1

ρ

]

,

r−σ<ρ< r,

−(kekσ)p(ρ)−1
[

p′(ρ)(lnk+kσ)
ρ

r−σ
−

1

r−σ
+

N−1

ρ

ρ

r−σ

]

,

0<ρ< r−σ.

(3.2)

Denote

α=min
{ inf p(x)−1

4(sup|∇p(x)|+1)
,1
}

, α1=min
{ infq(x)−1

4(sup|∇q(x)|+1)
,1
}

,
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and
β= | f (0)|+a(M−1)max

x∈Ω

g(x), β1= |h(0)|+b(M−1)max
x∈Ω

g1(x).

From (3.2), there exists k2 >0 such that when k> k2, we have

−∆p(x)φ1≤−kp(ρ)α, r−σ<ρ< r. (3.3)

Let λ=α/βk, we have kp(x)α≥λp(x)β, then

−∆p(x)φ1≤−λp(x)β≤λp(x)[a(φ1)g(x)+ f (φ2)], r−σ<ρ< r. (3.4)

When 0<ρ< r−σ, there exists C1>0 such that

−∆p(x)φ1≤C1(kekσ)p(ρ)−1lnk. (3.5)

Then there exists k3>0 such that when k> k3, λ=α/βk, we have

C1(kekσ)p(x)−1lnk≤λp(x). (3.6)

From (3.1), (3.5) and (3.6), we have

−∆p(x)φ1≤λp(x)[a(φ1)g(x)+ f (φ2)], 0<ρ< r−σ. (3.7)

Let k∗=max{k1,k2,k3}. Similarly, we obtain l2, l3 and denote l∗=max{l1,l2,l3}. Denote

λ∗=
α

β
k∗, θ∗=

α1

β1
l∗.

Then for any (λ,θ)> (λ∗,θ∗), we let

σ=
αlnM

βλ
, τ=

α1 lnM

β1θ
,

and (3.3), (3.7) still hold, that is

−∆p(x)φ1≤λp(x)[a(φ1)g(x)+ f (φ2)] a.e. on Ω. (3.8)

Similarly, we have

−∆q(x)φ2≤ θq(x)[b(φ2)g1(x)+h(φ1)] a.e. on Ω. (3.9)

From (3.8) and (3.9), we can see that (φ1,φ2) is a sub-solution of (1.1). For any (λ,θ)>
(λ∗,θ∗), we consider the following problem











−∆p(x)z1=λp+η, x∈Ω,

−∆q(x)z2=2θq+h(ω1), x∈Ω,

z1= z2=0, x∈∂Ω,

(3.10)
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here ω1=maxx∈Ω
z1(x) and η is a positive constant. We will show that (z1,z2) is a super-

solution of (1.1).
By directly computation, we can see

z1=
∫ r

ρ

(λp+η

N
t
)

1
p(t)−1

dt, z2=
∫ r

ρ

(2θq+h(ω1)

N
t
)

1
q(t)−1

dt,

is a positive solution of problem (3.10). Obviously, there exists a ζ∈ [0,r] such that

ω1=max
x∈Ω

z1=
∫ r

0

(λp+η

N
t
)

1
p(t)−1

dt=(λp+η)
1

p(ζ)−1

∫ r

0

( t

N

)
1

p(t)−1
dt,

when η is large, we obtain

C2(λ
p+η)

1
p+−1 ≤ω1≤C2(λ

p+η)
1

p−−1 , (3.11)

where

C2=
∫ r

0

( t

N

)
1

p(t)−1
dt

is a positive constant. Similarly, we have

C3(2θq+h(ω1))
1

q+−1 ≤ω2≤C3(2θq+h(ω1))
1

q−−1 .

For any ϕ∈W1,p(x)(Ω) with ϕ≥0, we have
∫

Ω

|∇z1|
p(x)−2∇z1∇ϕdx=

∫

Ω

λp+ηϕdx, (3.12a)
∫

Ω

|∇z2|
q(x)−2∇z2∇ϕdx=

∫

Ω

2λq+h(ω1)ϕdx. (3.12b)

From (3.11), we know that ω1 is large when η is large, by (D3)-(D5), we have

lim
s→∞

f [C3(2θq+h(s))
1

q−−1 ]+a(s)maxx∈Ω
g(x)

sp−−1
=0.

Then when η is large enough, combining (3.11), we obtain

λp+η≥
( 1

C2
ω1

)p−−1
≥λp+

{

f
[

C3(2θq+h(ω1))
1

q−−1
]

+a(ω1)max
x∈Ω

g(x)
}

. (3.13)

Since f , a are nondecreasing functions, from (3.12a) and (3.13), and use (3.11) again, we
have

∫

Ω

|∇z1|
p(x)−2∇z1∇ϕdx

≥
∫

Ω

λp+
{

f
[

C3(2θq+h(ω1))
1

q−−1
]

+a(ω1)max
x∈Ω

g(x)
}

ϕdx

≥
∫

Ω

λp(x)[a(z1)g(x)+ f (z2)]ϕdx.
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Since h is nondecreasing, we have

∫

Ω

θq+h(ω1)ϕdx≥
∫

Ω

θq+h(z1)ϕdx. (3.14)

From (D4) and (D5), when η large enough, then

b
[

C3(2θq+h(ω1))
1

q−−1
]

max
x∈Ω

g(x)≤h(ω1). (3.15)

From (3.12b), (3.14) and (3.15), we obtain

∫

Ω

|∇z2|
q(x)−2∇z2∇ϕdx

≥
∫

Ω

θq+
{

b
[

C3(2λq+h(ω1))
1

q−−1
]

max
x∈Ω

g(x)+θq+h(z1)
}

ϕdx

≥
∫

Ω

θq(x)[b(z2)g(x)+h(z1)]ϕdx.

Thus, we obtain that (z1,z2) is a super-solution of (1.1).

Now, we only need to show that (φ1,φ2)≤ (z1,z2) in Ω. When η is large enough, we
have

lim
ρ→r−

φ1(ρ)

z1(ρ)
=

k
( λp+η

N r
)

1
p(r)−1

<1.

By the continuity of φ1(x) and z1(x), there exists ε>0 such that

φ1(x)≤ z1(x), r−ε<ρ≤ r.

When 0≤ρ≤ r−ε, we can see that φ1(x) is bounded and

z1(x)=
∫ r

ρ

(λp+η

N
t
)

1
p(t)−1

dt≥
∫ r

r−ε

(λp+η

N
t
)

1
p(t)−1

dt→∞ as η→∞.

Then

φ1(x)≤ z1(x), x∈Ω,

when η is large enough.

By (3.11), we can see that ω1 is large enough when η is large enough, and so h(ω1) is
large enough. Similarly as above argument, when η is large enough, we have

φ2(x)≤ z2(x), x∈Ω.

Thus, we complete the proof of Theorem 3.1.
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Remark 3.1. We note that if we replace (D3) with

(D3’) g,g1∈C(Ω), they are positive far away from ∂Ω, i.e., there exists ε>0 small enough
such that g, g1 are positive on Ω\∂Ωε, where ∂Ωε={x∈Ω|d(x)<ε} and d(x) denotes the
distance of x∈Ω to the boundary of Ω.

Then (3.1) is satisfied on Ω\∂Ωε. If we take

β= | f (0)|+a(M−1)max
x∈Ω

|g(x)|,

β1= |h(0)|+b(M−1)max
x∈Ω

|g1(x)|,

in the proof of Theorem 3.1, then Theorem 3.1 still hold. Since we do not assume any
sign-changing conditions on f (0) or h(0). Hence in our system (1.1), F(x,0,0) or H(x,0,0)
could be negative for some x ∈ Ω. In fact, we usually assume F(x,u,v), H(x,u,v) non-
negative (see [3, 21, 23]) and it is well known that the study of positive solutions with
sign-changing weight is mathematically challenging (see [15, 16, 20]).

Remark 3.2. From Corollary 5 in [20], we note that when p(x) = q(x)≡ p (a constant),
then problem (1.5) has at least one positive solution when λ= θ is large enough. Thus,
our results in the present paper is a complement and generalization partly to the results
in [20].

If we replace the condition (D1) with

(D1’) Ω=B(0,r2)\B(0,r1)⊂RN, where 0< r1< r2 are constants.

Then we have

Theorem 3.2. If (D1’) and (D2)-(D5) hold, then there exist (λ∗,θ∗)> (0,0) such that for any
(λ,θ)> (λ∗,θ∗), problem (1.1) has at least one positive solution.

Proof. We denote

φ1(x)=φ1(ρ)=























































ek(r2−ρ)−1, r2−σ<ρ≤ r2,

ekσ−1+
∫ r2−σ

ρ
kekσ

( r2−ε2−t

σ−ε2

)
1

p(t)−1
dt, r2−ε2<ρ≤ r2−σ,

ekσ−1+
∫ r1+ε1

r1+σ
kekσ

( r1+ε1−t

ε1−σ

)
1

p(t)−1
dt, r1+ε1<ρ≤ r2−ε2,

ekσ−1+
∫ ρ

r1+σ
kekσ

( r1+ε1−t

ε1−σ

)
1

p(t)−1
dt, r1+σ<ρ≤ r1+ε1,

ek(ρ−r1)−1, r1≤ρ≤ r1+σ,
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and

φ2(x)=φ2(ρ)=























































el(r2−ρ)−1, r2−τ<ρ≤ r2,

elτ−1+
∫ r2−τ

ρ
lelτ

( r2−ǫ2−t

τ−ǫ2

)
1

q(t)−1
dt, r2−ǫ2<ρ≤ r2−τ,

elτ−1+
∫ r1+ǫ1

r1+τ
lelτ

( r1+ǫ1−t

ǫ1−τ

)
1

q(t)−1
dt, r1+ǫ1<ρ≤ r2−ǫ2,

elτ−1+
∫ ρ

r1+τ
lelτ

( r1+ǫ1−t

ǫ1−τ

)
1

q(t)−1
dt, r1+τ<ρ≤ r1+ǫ1,

el(ρ−r1)−1, r1 ≤ρ≤ r1+τ,

where we assume

σ=
lnM

k
, τ=

lnM

l
,

M is a positive constant such that (3.1) hold. Then there exists k1 = l1 > 1 such that for
any k> k1, −l > l1, we have σ,τ ∈ (0,(r2−r1)/4), and ε1, ε2, ǫ1, ǫ2 are positive constants
satisfying

r1+σ< r1+ε1< r2−ε2< r2−σ (3.16)

and

r1+τ< r1+ǫ1< r2−ǫ2 < r2−τ. (3.17)

It is easy to see that we can take ε1, ε2 and ǫ1, ǫ2 such that

∫ r2−σ

r2−ε2

( r2−ε2−t

σ−ε2

)
2

p−−1
dt=

∫ r1+ε1

r1+σ

( r1+ε1−t

ε1−σ

)
2

p−−1
dt, (3.18a)

∫ r2−τ

r2−ε2

( r2−ε2−t

τ−ε2

)
2

p−−1
dt=

∫ r1+ε1

r1+τ

( r1+ε1−t

ε1−τ

)
2

p−−1
dt, (3.18b)

hold, then φ1,φ2 ∈C1(Ω). Obviously, we have that ε1 → σ+ when ε2 → σ+, then we can
choose ε1,ε2 > 0 such that (3.16) and (3.18a) hold simultaneously. Similarly, there exist
ǫ1,ǫ2>0 such that (3.17) and (3.18b) hold simultaneously.
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By computation

−∆p(x)φ1(x)=



































































































−(kek(r2−ρ))p(ρ)−1
[

k(p(ρ)−1)−p′(ρ)lnk−kp′(ρ)(r2−ρ)−
N−1

ρ

]

,

r2−σ<ρ< r2,

−(kekσ)p(ρ)−1
[

p′(ρ)(lnk+kσ)
r2−ε2−ρ

ε2−σ
−

1

ε2−σ
+ N−1

ρ

r2−ε2−ρ

ε2−σ

]

,

r2−ε2<ρ< r2−σ,

0, r1+ε1<ρ< r2−ε2,

−(kekσ)p(ρ)−1
[

p′(ρ)(lnk+kσ)
r1+ε1−ρ

ε1−σ
−

1

ε1−σ
+

N−1

ρ

r1+ε1−ρ

ε1−σ

]

,

r1+σ<ρ< r1+ε1,

−(kek(ρ−r1))p(ρ)−1
[

k(p(ρ)−1)+p′(ρ)lnk+kp′(ρ)(ρ−r1)+
N−1

ρ

]

,

r1 <ρ< r1+σ.

Then there exists k2>0 such that when k> k2, we have

−∆p(x)φ1≤−kp(ρ)α, r2−σ<ρ< r2 or r1 <ρ< r1+σ, (3.19)

where α, α1, β, β1 are defined as in Theorem 3.1. Let λ= αk/β, we have kp(x)α≥λp(x)β,
then when r2−σ<ρ< r2 or r1 <ρ< r1+σ, we have

−∆p(x)φ1≤−λp(x)β≤λp(x)[a(φ1)g(x)+ f (φ2)]. (3.20)

When r2−ε2<ρ< r2−σ or r1+σ<ρ< r1+ε1, there exists C4>0 such that

−∆p(x)φ1≤C4(kekσ)p(x)−1lnk. (3.21)

Then there exists k3>0 such that when k> k3 and λ=αk/β, we have

C4(kekσ)p(x)−1lnk≤λp(x). (3.22)

From (3.1), (3.21) and (3.22), when r2−ε2<ρ< r2−σ or r1+σ<ρ< r1+ε1, we have

−∆p(x)φ1≤λp(x)[a(φ1)g(x)+ f (φ2)]. (3.23)

Obviously, when r1+ε1<ρ< r2−ε2, we have

−∆p(x)φ1=0≤λp(x)[a(φ1)g(x)+ f (φ2)]. (3.24)

Let k∗=max{k1,k2,k3}. Similarly, we obtain l2, l3 and denote l∗=max{l1,l2,l3}. Denote

λ∗=
α

β
k∗, θ∗=

α1

β1
l∗.
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Then for any λ>λ∗, θ> θ∗, we let σ=αlnM/βλ, τ=α1 lnM/β1θ and (3.20), (3.23)-(3.24)
still hold, that is

−∆p(x)φ1≤λp(x)[a(φ1)g(x)+ f (φ2)] a.e. on Ω. (3.25)

Similarly, we have

−∆q(x)φ2≤ θq(x)[b(φ2)g1(x)+h(φ1)] a.e. on Ω. (3.26)

From (3.25) and (3.26), we can see that (φ1,φ2) is a sub-solution of (1.1). Let z be a radial
solution of

−∆p(x)z(x)=µ in Ω, z=0 on ∂Ω,

then

z=
∫ ρ

r1

t
1−N

p(t)−1 µ
1

p(t)−1

∣

∣

∣

C

µ
−

tN

N

∣

∣

∣

1
p(t)−1

−1(C

µ
−

tN

N

)

dt,

where C is some positive constant such that

z(r1)= z(r2)=0.

Then
rN

1

N
<

C

µ
<

rN
2

N
.

Assume ω=maxx∈Ω
z=z(ρ0), then C=µρN

0 /N. From the argument of Theorem 2.2 in [22],
we know that

C5µ
1

p+−1 ≤ω≤C6µ
1

p−−1 , (3.27)

where C5, C6 are positive constants independent on µ.
Similarly to the proof of Theorem 3.1, we can see that the solution (z1,z2) of (3.10) is

still a supersolution for (1.1) when η is large enough.
Now we denote

ζ1=1+max
{

max
x∈Ω

φ1,max
x∈Ω

|∇φ1|
}

,

and
ζ2=1+max

{

max
x∈Ω

φ2,max
x∈Ω

|∇φ2|
}

.

Similarly to the argument in [22], we obtain that there exist positive constants σ1, σ2 such
that

z′1(ρ)≥ ζ1, r1≤ρ≤ r1+σ1, (3.28a)

z′1(ρ)≤−ζ1, r2−σ2≤ρ≤ r2, (3.28b)
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and

z1(ρ)≥ ζ1, r1+σ1≤ρ≤ r2−σ2. (3.29)

By (3.28a)-(3.29) and z1(x)=φ1(x)=0, x∈∂Ω, we obtain that

φ1≤ z1, x∈Ω.

Similarly, we obtain that
φ2≤ z2, x∈Ω.

That’s completes the proof.

4 Asymptotic behavior of positive solutions

In this section, when parameters (λ,θ)>(λ∗,θ∗), we will discuss the asymptotic behavior
of maximum of solutions about parameters λ, θ, and the asymptotic behavior of solutions
near the boundary of Ω.

Theorem 4.1. If (D1)-(D5) hold and (u,v) is a solution of (1.1) which has been obtained in
Theorem 3.1, then

(i) There exist positive constants C7 and C8 such that

C7λ≤max
x∈Ω

u(x)≤C6(λ
p+η)

1
p−−1 , (4.1a)

C8θ≤max
x∈Ω

v(x)≤C6(2θq+h(ω))
1

q−−1 . (4.1b)

(ii) When d(x)→0, we have

u(x)=O(d(x)), v(x)=O(d(x)).

Proof. (i) By the definition of φ1, we have

max
x∈Ω

u(x)≥max
x∈Ω

φ1(x)= ekσ−1+
∫ r−σ

0
kekσ

( t

r−σ

)
1

p(t)−1
dt

≥λ
α

β
M

∫ r−σ

0

( t

r−σ

)
1

p(t)−1
dt

=C7λ.

By (3.11), we have

max
x∈Ω

u(x)≤max
x∈Ω

z1(x)≤C6(λ
p+η)

1
p−−1 .

Thus, we obtain (4.1a). Similarly, (4.1b) is valid too.
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(ii) Since Ω=B(0,r), we have d(x)= r−ρ, when d(x)→0, we have

u(x)≥φ1(x)= ekd(x)−1≥C9λd(x)

and
v(x)≥φ2(x)= eld(x)−1≥C10θd(x),

where C9, C10 are positive constants. On the other hand, we have

u(x)≤ z1(x)=
∫ r

ρ

(λp+η

N
t
)

1
p(t)−1

dt=
∫ r

r−d(x)

(λp+η

N
t
)

1
p(t)−1

dt≤
(λp+η

N
r
)

1
p−−1

d(x),

when η is large enough. Thus, we obtain

u(x)=O(d(x)) as d(x)→0.

Similarly, when η is large enough, we have

v(x)≤ z2(x)≤
(2θq+h(ω)

N
r
)

1
p−−1

d(x),

and obtain
v(x)=O(d(x)) as d(x)→0.

This completes the proof.

When Ω=B(0,r2)\B(0,r1), we have almost the same results as Theorem 4.1, that is

Theorem 4.2. If (D1’), (D2)-(D5) hold and (u,v) is a solution of (1.1) which has been obtained
in Theorem 3.2, then

(i) There exist positive constants C11 and C12 such that

C11λ≤max
x∈Ω

u(x)≤C6(λ
p+η)

1
p−−1 , (4.2a)

C12θ≤max
x∈Ω

v(x)≤C6(2θq+h(ω))
1

p−−1 . (4.2b)

(ii) When d(x)→0, we have

u(x)=O(d(x)), v(x)=O(d(x)).

Proof. (i) By the definition of φ1, we have

max
x∈Ω

u(x)≥max
x∈Ω

φ1(x)= ekσ−1+
∫ r1+ε1

r1+σ
kekσ

( r1+ε1−t

ε1−σ

)
1

p(t)−1
dt

≥λ
α

β
M

∫ r1+ε1

r1+σ

( r1+ε1−t

ε1−σ

)
1

p(t)−1
dt

=C11λ.
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By (3.27), we have

max
x∈Ω

u(x)≤max
x∈Ω

z1(x)≤C6(λ
p+η)

1
p−−1 .

Thus, we obtain (4.2a). Similarly, (4.2b) is valid too.

(ii) Since Ω=B(0,r2)\B(0,r1), for any x∈Ω, we have d(x)=min{r2−ρ,ρ−r1}, when
d(x)→0, we have r1≤ρ≤ r1+σ or r2−σ<ρ≤ r2. Then

u(x)≥φ1(x)= ekd(x)−1≥C9λd(x). (4.3)

Similarly, we have

v(x)≥C10θd(x). (4.4)

For

z1=
∫ ρ

r1

t
1−N

p(t)−1 (λp+η)
1

p(t)−1

∣

∣

∣

ρ1

N
−

tN

N

∣

∣

∣

1
p(t)−1

−1(ρ1

N
−

tN

N

)

dt,

where r1<ρ1<r2 satisfies maxx∈Ω
z1=z1(ρ1). For z1(r1)=z1(r2)=0 and z1 is continuous,

it is easy to obtain that

z1(x)=O(d(x)) as d(x)→0. (4.5)

Thus, from (4.3) and (4.5), we have

u(x)=O(d(x)) as d(x)→0.

Similarly, we have
v(x)=O(d(x)) as d(x)→0.

This completes the proof.

5 An example

We consider the following problem























−∆p(x)u=λp(x)
[ 1

e|x|
us+vm

]

, x∈Ω,

−∆q(x)v=λq(x)
[ 1

e|x|
vt+un

]

, x∈Ω,

u=v=0, x∈∂Ω.

(5.1)

We assume:

(D6) 0≤ s< p−−1, 0≤ t<q−−1, 0<m,n and mn< (p−−1)(q−−1).

If we set g(x)=g1(x)=e−|x|, a(u)=us, b(v)=vt , f (v)=vm and h(u)=un, then (D3)-(D5)
are satisfied. Then we have the following result:
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Theorem 5.1. If (D1) (or (D1’)), (D2) and (D6) hold, then there exist (λ∗,θ∗)> (0,0) such
that for any (λ,θ)> (λ∗,θ∗), problem (5.1) has at least one positive solution (u,v), and (u,v)
satisfying

(i) There exist positive constants C13 and C14 such that

C13λ≤max
x∈Ω

u(x)≤C6(λ
p+η)

1
p−−1 ,

C14θ≤max
x∈Ω

v(x)≤C6(2θq+h(ω))
1

p−−1 .

(ii) When d(x)→0, we have

u(x)=O(d(x)), v(x)=O(d(x)).
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