
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 8, No. 1, pp. 52-66

DOI: 10.4208/aamm.2014.m462
February 2016

Unsteady MHD Non-Darcian Flow Over a Vertical

Stretching Plate Embedded in a Porous Medium with

Thermal Non-Equilibrium Model

D. Prakash1, M. Muthtamilselvan1,∗ and Xiao-Dong Niu2

1 Department of Applied Mathematics, Bharathiar University, Coimbatore-641 046,
India
2 Department of Mechatronics Engineering, Shantou University, Shantou 515063,
China

Received 10 January 2014; Accepted (in revised version) 28 November 2014

Abstract. An analysis is performed to study the influence of local thermal non-
equilibrium (LTNE) on unsteady MHD laminar boundary layer flow of viscous, incom-
pressible fluid over a vertical stretching plate embedded in a sparsely packed porous
medium in the presence of heat generation/absorption. The flow in the porous medi-
um is governed by Brinkman-Forchheimer extended Darcy model. A uniform heat
source or sink is presented in the solid phase. By applying similarity analysis, the
governing partial differential equations are transformed into a set of time dependent
non-linear coupled ordinary differential equations and they are solved numerically by
Runge-Kutta Fehlberg method along with shooting technique. The obtained results
are displayed graphically to illustrate the influence of different physical parameters on
the velocity, temperature profile and heat transfer rate for both fluid and solid phases.
Moreover, the numerical results obtained in this study are compared with the existing
literature in the case of LTE and found that they are in good agreement.
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1 Introduction

The transport in porous media is a process that finds application in a broad spectrum of
disciplines ranging from chemical engineering to geophysics. For instance, applications
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of the porous media includes, heat exchangers, geothermal systems, building thermal in-
sulation, nuclear waste disposal, thermal energy storage cooling of nuclear reactors dur-
ing emergency shutdown etc. to name just few. To be more specific, it may be pointed
out that many metallurgical processes involve the cooling of continuous strips or fila-
ments by drawing them through a quiescent fluid and that in the process of drawing,
these strips are sometimes stretched. For example in the case of drawing, annealing and
tinning of copper wires, the properties of the final product depend to a great extent on
the rate of cooling. By drawing such strips in a porous medium [1] and by applying
magnetic field, the rate of cooling can be controlled and a final product of desired char-
acteristics can be achieved. Reviews of the huge volume of information on this subject is
amply documented in the recent books by Nield and Bejan [2], Vafai [3] and Ingham and
Pop [4].

Most of the earlier studies on flow through porous media have been employed with
the Darcy model. But in many applications in engineering disciplines involve high per-
meability porous media. In such situation, Darcy equation fails to give satisfactory re-
sults. Therefore, use of non-Darcy models, which takes care of boundary and/or inertia
effects, is of fundamental and practical interest to obtain accurate results for high per-
meability porous media. The inertial and the solid boundary effects on momentum and
energy transport have been discussed through constant-porosity media [5] and through
non-uniform porosity media [6]. These investigations provided an insight on the appli-
cability of the customarily employed Darcy’s law. Due to the importance of non-Darcian
effects in the emerging industrial and engineering applications, several researchers [7–11]
have analyzed the boundary layer flow characteristics by assuming non-Darcian model.

Most of the analytical and numerical studies of flow and heat transfer in porous me-
dia assume the condition of local thermal equilibrium (LTE) between the solid and the
fluid materials, i.e., it is assumed that the temperature difference at any location be-
tween the two phases is absent. This assumption is satisfactory for small-pore media
such as geothermal reservoirs and fibrous insulations and small temperature difference
between the phases. But for many practical applications, involving high-speed flows or
large temperature difference between the fluid and solid phases, the assumption of lo-
cal thermal equilibrium is inadequate and it is important to take account of the thermal
non-equilibrium effects. Furthermore, when the length scale of the representative control
volume is the same order of the length of the system, then the thermal equilibrium model
prediction may be unacceptable [12]. Due to applications of porous media theory in dry-
ing/freezing of foods [13, 14] and othermundane materials and applications in everyday
technology such as microwave heating [15], rapid heat transfer from computer chips via
use of porous metal foams [16, 17] and their use in heat pipes, it is believed that the local
thermal non-equilibrium (LTNE) theory will play a major role in future developments.

Reasonably a good number of papers have been focused on impact of LTNE state
on convective flow in connection with horizontal cylinder [18], cavity [19, 20] and chan-
nel [21, 22]. In recent years, the effect of local thermal non-equilibrium on natural con-
vection over a vertical plate has been studied by several authors. Much of this study has
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been reviewed in recent book by Ingham and Pop [4]. Rees and Pop [23] studied the ef-
fect of local thermal equilibrium on the free convective boundary layer flow in the porous
vertical plate. They found that the thermal equilibrium is achieved by increasing the dis-
tance from the leading edge. Mixed convection in a vertical porous layer under LTNE
assumption has been investigated by Saeid [24]. It is reported that the total average Nus-
selt number depends strongly on the thermal conductivity ratio parameter and slightly
on the heat transfer co-efficient parameter i.e., increasing the thermal conductivity ratio
leads to increase in the total average Nusselt number. Nouri-Borujerdi et al. [25] derived
the simple conditions to guarantee local thermal equilibrium for conduction in porous
channels with heat source. Thermal non-equilibrium heat transfer in the stagnant porous
medium with variable porosity is analyzed by Nazari and Kowsari [26], where the heat
generation takes place within the solid phase. Darcy’s flow in a horizontal porous layer
with impermeable boundaries is studied by Barletta and Celli [27] in the case of LTNE
model. The viscous dissipation effect is taken into account and the local thermal non-
equilibrium model for the energy balance is adopted. Very recently, Muthtamilselvan et
al. [28] have analyzed the influence of thermal non-equilibrium on transient hydromag-
netic boundary layer flow of nanofluid past a vertical stretching surface.

Based on the assumption of sinusoidal temperature oscillation on the plate (Saeid
and Mohamad [29]), we have assumed that the plate temperature linearly varies with
time and distance. The present study is to investigate the magnetic field and local ther-
mal non-equilibrium on unsteady boundary layer flow over a stretching vertical plate
embedded in a porous medium with heat generation/absorption. By using the similar-
ity approach, the transport equations are transformed into non-linear ODE and they are
solved numerically.

2 Mathematical formulation

Consider an unsteady two-dimensional laminar boundary layer flow over a continuous
moving stretching plate in a viscous incompressible electrically conducting fluid saturat-
ed porous medium. A uniform magnetic field B = [0,B0(x)] is applied in the direction
perpendicular to the stretching surface and varies in strength as a function of x. Since
the transverse applied magnetic field and magnetic Reynolds number are assumed to be
small, the induced magnetic field can be neglected. The x-axis is taken along the stretch-
ing plate in the direction of the motion and the y-axis is perpendicular to the plate in the
outward direction towards the fluid of ambient temperature T∞ (see Fig. 1).

We assume that for time t<0 the fluid and heat flows are steady. The unsteady fluid
and heat flows start at t = 0, the plate is being stretched with the velocity Uw(x,t) =
ax/1−ct along the x-axis, where a (stretching rate) and c are positive constants having
dimension t−1 (with ct< 1, c≥ 0). In case of polymer extrusion, the material properties
of the extruded sheet may vary with time. Here, the stretching sheet is subjected to such
amount of tension which does not alter the structure of the porous material. The surface
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Figure 1: Physical configuration and coordinate system.

temperature of the plate varies with the distance x from the slot and time t in the form

Tw(x,t)=T∞+
bx

1−ct
, (2.1)

where b is a constant and has a dimension temperature/length, with b>0 and b<0 cor-
responding to the assisting and opposing flows, respectively, and b= 0 is for the forced
convection limit (absence of buoyancy force). The Brinkman-Forchheimer extended Dar-
cy model is used as the momentum equation
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ks
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−h(Ts−Tf )+(1−ǫ)q′′′, (2.2d)

and the initial, boundary conditions are

u=Uw(x,t), v=0, Tf =Tw(x,t), Ts =Tw(x,t) at y=0, (2.3a)

u→0, Tf →T∞, Ts →T∞ as y→∞, (2.3b)

where u and v are the velocity components along x and y directions, respectively. ρ is the
fluid density, µ̄ is the effective viscosity of the fluid, µ is the fluid viscosity, k is the perme-
ability, ǫ is the porosity of the saturated porous medium, Cb is the empirical constant of
the second-order resistance term due to inertia effect, g is the acceleration due to gravity,
β is the coefficient of thermal expansion, cp is the specific heat at constant pressure, σm is
the magnetic permeability of the fluid and B0(x) is the applied magnetic field, q′′′ is the
volumetric heat generation in the solid phase. Tf , Ts and k f , ks are the temperature and
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thermal conductivity of the fluid and solid, h is the interstitial heat transfer coefficient
between the solid and fluid phases.

The inter-phase heat transfer coefficient h depends on the nature of the porous matrix
and the saturating fluid and the value of this coefficient has been the subject of intense ex-
perimental interest. Large values of h correspond to a rapid transfer of heat between the
phases (LTE) and small values of h gives rise to relatively strong thermal non-equilibrium
effects (Malashetty et al. [30]).

We now introduce a stream function ψ(x,y,t), which is defined by

u=
∂ψ

∂y
, v=−

∂ψ

∂x
. (2.4)

The mathematical analysis of the problem is simplified by introducing the dimensionless
functions f , θ f , θs in terms of the similarity variable η (see Ishak et al. [31], Muthtamilsel-
van and Prakash [32]) as

η=y

√

Uw

νx
, ψ=

√
νxUw f (η), θ f =

Tf −T∞

Tw−T∞

, θs =
Ts−T∞

Tw−T∞

. (2.5)

Substituting Eqs. (2.4)-(2.5) into the governing equations (2.2a)-(2.2d), we get the follow-
ing transformed equations:

f ′′′+ f f ′′− f
′2
−A

(
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1

2
η f ′′
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+λθ f −
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σRe
f ′−β∗ f
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1

Pr
θ′′s −A

(ηθ′s
2

+θs

)

−Hγǫs(θs−θ f )+Qθs =0, (2.6c)

and the boundary conditions

f (0)=0, f ′(0)=1, θ f (0)=1, θs(0)=1, (2.7a)

f ′(∞)=0, θ f (∞)=0, θs(∞)=0, (2.7b)

where prime denotes the differentiation with respect to η, A= c/a is the unsteady pa-
rameter, λ = Gr/Re2

x is the buoyancy parameter, M = σmB2
0x/ρUw is the local magnetic

parameter, β∗ =Cbǫ2x/
√

k is the local inertial parameter, Pr = ν/α is the Prandtl num-
ber and Q= q′′′x/(ρcp)sUw is the dimensionless heat generation/absorption parameter,
where ν=µ̄/ρ, α=k/ρcp , Gr=gβ(Tw−T∞)x3/ν2 is the local Grashof number, Rex=Uwx/ν
is the local Reynolds number, α∗=µ/µ̄ is the ratio of viscosities and σ=k/x2ǫ is the local
permeability parameter.

The non-dimensional parameters, H, γ and ǫs are the non-dimensional inter-phase
heat transfer parameter, the porosity modified conductivity ratio and the fluid/solid
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modified thermal diffusivity ratio:

H=
hxα f

Uwǫk f
, γ=

ǫk f

(1−ǫ)ks
, ǫs =

αs

α f
. (2.8)

The important characteristics of the flow are the skin-friction co-efficient C f and the local
Nusselt numbers for fluid and solid phases Nu f and Nus, which are defined as
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ρU2
w/2

, Nu f =
x(qw) f
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, (2.9)

where the wall shear stress τw, the surface heat fluxes for fluid and solid are given by
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Substituting Eq. (2.10) in (2.9), we get

1

2
C f

√
Rex = f ′′(0), Nu f /

√
Rex =−θ′f (0), Nus/

√
Rex =−θ′s(0), (2.11)

where Rex =Uwx/ν is the local Reynolds number based on the surface velocity.

3 Numerical procedure

The coupled system of Eqs. (2.6a)-(2.6c) is highly non-linear. Most of the physical systems
are inherently non-linear in nature and are of great interest to physicists, engineers and
mathematicians. Problems involving non-linear ordinary differential equations are diffi-
cult to solve exactly. So, the governing equations together with the boundary conditions
have to be solved numerically.

The system of equations subject to the boundary conditions (2.7) are solved numeri-
cally by Runge-Kutta-Fehlberg method along with shooting technique using MATLAB.
Its accuracy and robustness has been repeatedly confirmed in various heat transfer pa-
pers. The asymptotic boundary conditions given by Eq. (2.7) are replaced by using a
value of 15 for the similarity variable ηmax as follows:

ηmax=15, f ′(15)=0, θs(15)=0, θ f (15)=0. (3.1)

The choice of ηmax = 15 ensured that all numerical solutions approached the asymptotic
values correctly. Pantokratoras [33] noticed that the erroneous result is found by many
researchers in the field of convective heat and mass transfer because of taking small far-
field asymptotic value of ηmax during their numerical computation.

The present method is verified by comparing the results with previously published
data [34,35] for the case of thermal equilibrium model. The data for comparison with the
thermal equilibrium model is obtained by setting the variables H=106, γ=102 and ǫs=102

at which the thermal equilibrium condition is recovered. Table 1 shows the comparative
results.



58 D. Prakash, M. Muthtamilselvan and X. D. Niu / Adv. Appl. Math. Mech., 8 (2016), pp. 52-66

Table 1: Comparison of results of the wall temperature gradient with Ishak et al. [34] and Vajravelu et al. [35]
for (M= β∗= A=0, α∗/σRex =0, Q=0).

λ Pr
Ishak et al. Vajravelu et al. Present results

θ′(0) θ′(0) θ′s(0) θ′f (0)

0

0.72 0.8086 0.808836 0.808570 0.808578
1.0 1.0000 1.000000 0.999927 0.999937
3.0 1.9237 1.923687 1.923556 1.923573

10.0 3.7207 3.720788 3.720444 3.720475
1.0 1.0 1.0873 1.087206 1.087209 1.087219
2.0 1.1429 1.142298 1.142271 1.142281
3.0 1.1853 1.185197 1.185222 1.185232

4 Results and discussion

Here, we discuss the effect of magnetic, non-Darcy, heat generation/absorption parame-
ters on the flow and heat transfer characteristics in the case of local thermal/non-thermal
equilibrium between the fluid and solid-matrix phases. In all the results to be reported
below, the Darcian and thermal equilibrium effects are characterized with the negligible
inertial effect (β∗) and large values of interphase heat transfer co-efficient (H) and/or
porosity modified conductivity ratio (γ) respectively. The default values of the parame-
ters are considered as M=1, λ=1, α∗/σRex =0.1, Pr=0.72, H=1, γ=1, ǫs =1, Q=−0.5
unless otherwise specified.

The influence of magnetic parameter M on the velocity profile for both cases of Darcy
and non-Darcy region is depicted in Fig. 2. It can be seen that with the fixed value of
unsteady parameter, the effect of increasing of magnetic parameter is to decrease the
velocity profile near the plate, which is due to the fact that the transverse magnetic field
gives rise to a resistive-type of force called Lorentz force. This force has a tendency to
slow down the motion of the fluid which results in reducing the velocity profile. This
qualitative reduction is observed in both cases of Darcy and non-Darcy region. However,
more reduction is attained by applying non-Darcy effects in the flow field, since the fluid
inertia provides an additional pressure loss in the flow field. Moreover, with the fixed
values of magnetic parameter, the effect of increasing values of unsteady parameter A
is to decrease the velocity profile and hence it reduces the momentum boundary layer
thickness.

The effect of free convection parameter λ on the velocity field is shown in Fig. 3. In
the case of steady state, an increase in the buoyancy parameter is to increase the velocity
distribution and consequently increase it’s boundary layer thickness. Also in the region
of higher buoyancy parameter, a peak is observed near the stretching boundary, which
exponentially decreases away from the stretching surface i.e., the free stream velocity
near the surface is higher than that of the stretching surface velocity. Physically, it means
that the free convection currents are carried away from the stretching surface to the free
stream and as the free stream is in the upward direction, the free convection currents
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Figure 2: Velocity profile for different values of magnetic parameter and unsteady parameter.
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Figure 3: Velocity profile for different values of buoyancy parameter and unsteady parameter.

induce the fluid velocity to increase more. It is worth mentioning that the presence of
non-Darcy effect is to decrease the fluid velocity near the stretching boundary because
of higher retardation to the fluid. Furthermore, an increase in the dimensionless time
parameter is to decrease the velocity profile, which causes reduction in the boundary
layer thickness.

Figs. 4-7 are plotted to study the influence of heat generation/absorption parameters
on the LTNE and LTE temperature profiles in the case of Darcy and non-Darcy flow re-
spectively. It is found that the temperature distribution of solid and fluid phases increases
with increase in the heat source parameter (Q>0), whereas decreases with increase in the
heat sink (Q< 0) parameter as expected. It is noted that with the assumption of LTNE
between the phases, the higher heat generation parameter (Q>0.5) creates a distinctive
type of peak near the stretching surface, which meant that the temperature profile for the
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Figure 5: Temperature profile for different values of heat source/sink parameters in the case of Non-Darcian
flow (LTNE).

fluid and solid-matrix phases near the stretching sheet is higher than that of the tempera-
ture of the stretching sheet and consequently the heat is expected to transfer from the free
stream to the stretching surface. This phenomenon is signalled by the occurrence of the
Sparrow-Gregg-type ”hills”. But, this behaviour is controlled/reversed with the inclu-
sion of unsteady or heat sink parameters, i.e., the heat is transferred from the stretching
surface to the free stream (see Figs. 4-5). However, such a type of hill is not observed by
the assumption of thermal equilibrium between the fluid and solid-matrix phases (see
Figs. 6-7).

Comparing the various Darcy/non-Darcy flow field on the temperature profile, one
can easily realize that the temperature distribution for fluid and solid-matrix phases is
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Figure 6: Temperature profile for different values of heat source/sink parameters in the case of Darcian flow
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Figure 7: Temperature profile for different values of heat source/sink parameters in the case of Non-Darcian
flow (LTE).

increased with the inclusion of non-Darcy effect (see Figs. 4-7). This is due to the fact
that the flow boundary/inertia force retards the momentum transport which results in
generation of form-drag and thereby increases the temperature.

Figs. 8-9 elucidate that the variation of local heat transfer rate for solid and fluid phas-
es with different values of pertinent parameters such as Pr, A, H and γ. It is noted from
the Fig. 8 that in the view of lower values of H or γ, the heat transfer rate of fluid phase is
always higher than that of solid-matrix phase in all the cases Pr and A. Furthermore, an
increase in the interphase heat transfer co-efficient H leads to increase the heat transfer
rate for solid phase whereas, decrease the fluid heat transfer rate. However, an increase
in γ is to increase the heat transfer rate for both fluid and solid phases. In the case of
large values of H or γ, the temperature difference between the fluid and solid phases is
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negligible, i.e., local thermal equilibrium between the phases is attained. Moreover, it is
noted that there may be some early departure from local thermal equilibrium is obtained
for large values of Prandtl number, whereas the dimensionless time parameter controls
it.

Figs. 10-11 demonstrate that the variation of heat transfer rate for solid and fluid phas-
es with different values of interphase heat transfer co-efficient and thermal conductivity
ratio and with different heat generation/absorption parameters. In the process of rapid
cooling (Q<0), an increase in the interphase heat transfer co-efficient H lead to decrease
the solid heat transfer rate, whereas increase the fluid heat transfer rate up to the level
of solid-matrix temperature. But the reverse trend has been observed during the process
of rapid heating (Q>0). Further, we noticed that the fluid and solid-matrix phases may
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Figure 10: Nusselt number variation for solid and fluid with Heat generation/absorption, unsteady parameter
and inter-phase heat transfer coefficient.

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

γ

N
u s/R

e x1/
2  (

so
lid

 li
ne

),
  N

u f/R
e x1/

2  (
do

tte
d 

lin
e)

A=0

A=1

Q=−1.0, 0.5

Figure 11: Nusselt number variation for solid and fluid with Heat generation/absorption, unsteady parameter
and modified thermal conductivity ratio.

lead to attain thermal equilibrium very quickly during the process of rapid cooling, com-
pared to rapid heating. These results are observed in both cases of steady and unsteady
situations.

When the heat is absorbed from the solid-matrix phase (Q < 0), an increase in the
porosity modified conductivity ratio (γ) is to decrease the heat transfer rate for both fluid
and solid-matrix phases. Whereas, in the case of heat is generated (Q>0) to solid-matrix
phase, the parameter γ lead to increase the solid-fluid heat transfer rates, as expected.
Also, we found that the unsteady parameter A is to decrease the temperature difference
between the fluid and solid phases for the case of generating/absorbing heat from the
solid-matrix phase.
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5 Conclusions

We have attempted to establish the condition of early departure from local thermal equi-
librium for the problem of transient MHD flow and heat transfer over a vertical stretch-
ing plate embedded in a non-Darcian porous medium in the presence of rapid heat-
ing/cooling. By using similarity approach, the transport equations are transformed into
non-linear ordinary differential equations and they are solved by Runge-Kutta-Fehlberg
method along with shooting technique. From the present study the following conclusions
may be drawn:

• An increase in the unsteady parameter is to decrease the thickness of the momen-
tum boundary layer for all the governing parameters.

• The velocity profile decreases with an increase in the values of magnetic parameter
M, whereas reverse trend is seen with increase in the buoyancy parameter λ.

• By applying non-Darcy effects in the flow field, the fluid velocity is decreased, but
the reverse behaviour is seen in the temperature field for fluid and solid-matrix
phases.

• During the process of rapid heating, the Sparrow-Gregg-type ”hill” is appeared in
the temperature profile for solid-matrix and fluid phases. Meanwhile, it is con-
trolled by transient parameter A.

• For all the cases of Pr, Q and A, the larger temperature difference between the fluid-
solid phases is observed in the region of lower values of H or γ. Once again it is
concluded that the larger values of H or γ correspond to attain thermal equilibrium
(LTE) between the phases.

• When H or γ increases, heat sink parameters lead to attain thermal equilibrium
quickly. But the heat source parameters delayed it.

• The rate of heat transfer for fluid and solid phases increases with an increase in the
Prandtl number and transient parameter, but the reverse effect has been observed
in the enhancement of heat generation/absorption parameters.
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