
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 8, No. 6, pp. 971-991

DOI: 10.4208/aamm.2015.m1138
December 2016

Toward Cost-Effective Reservoir Simulation Solvers on

GPUs

Zheng Li1,∗, Shuhong Wu2, Jinchao Xu3 and Chensong Zhang4

1 Kunming University of Science and Technology, Kunming 650093, China
2 Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083,
China
3 Department of Mathematics, Penn State University, University Park, PA 16802, USA
4 LSEC & NCMIS, Academy of Mathematics and Systems Science, Beijing 100190,
China

Received 5 June 2015; Accepted (in revised version) 13 October 2015

Abstract. In this paper, we focus on graphical processing unit (GPU) and discuss how
its architecture affects the choice of algorithm and implementation of fully-implicit
petroleum reservoir simulation. In order to obtain satisfactory performance on new
many-core architectures such as GPUs, the simulator developers must know a great
deal on the specific hardware and spend a lot of time on fine tuning the code. Porting
a large petroleum reservoir simulator to emerging hardware architectures is expensive
and risky. We analyze major components of an in-house reservoir simulator and in-
vestigate how to port them to GPUs in a cost-effective way. Preliminary numerical
experiments show that our GPU-based simulator is robust and effective. More im-
portantly, these numerical results clearly identify the main bottlenecks to obtain ideal
speedup on GPUs and possibly other many-core architectures.

AMS subject classifications: 65M10, 78A48

Key words: GPUs, reservoir simulation, fully-implicit method.

1 Introduction

Nowadays, computers are equipped with multicore CPUs and coprocessors which have
tens or even thousands of light cores, such as Intel Many Integrated Core (MIC) copro-
cessors and graphic processing units (GPUs). This kind of heterogeneous architecture
provides opportunities for development of more powerful and more energy efficient su-
percomputers. In the Top500 (spring 2015) list of supercomputers, there are 17 clusters

∗Corresponding author.
Email: lizhxtu@126.com (Z. Li), wush@petrochina.com.cn (S. Wu), xu@math.psu.edu (J. Xu),
zhangcs@lsec.cc.ac.cn (C. Zhang)

http://www.global-sci.org/aamm 971 c©2016 Global Science Press

972 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

accelerated by Nvidia or AMD GPUs and 11 by Intel Xeon Phi (MICs) chips in the top
100 systems. Although, the GPUs still dominates over the MIC coprocessors in terms
of number of systems in the Top500 list for the moment, it is still too early to tell which
coprocessor(s) will eventually win the race to the exascale era and beyond.

Reservoir simulation plays an important role in designing efficient development pro-
cesses and improving oil recovery ratio. High-resolution reservoir models can better
characterize the reservoir heterogeneity and describe complex water encroachment [19,
38]. The demand for more accurate computer simulations has led to larger and, in turn,
more heterogeneous, reservoir models. Such models entail larger and more difficult lin-
ear systems. For fully implicit reservoir simulation, the solution of Jacobian systems often
accounts for the majority of simulation time. Hence simulation can be greatly accelerated
by faster linear solvers. Reservoir property calculation and matrix assembling, which al-
though accounts for the majority part in source code, is cheap in terms of computational
cost and is embarrassingly parallelizable. Since the parallel scalability depends strongly
on what algorithm is used in application, speedup itself should not be over emphasized.
State-of-the-art sequential solvers often utilize multilevel and multistage algorithms that
offer fast convergence, especially for large models. It is challenging to port these al-
gorithms to many-core architectures without compromising the rate of convergence or
robustness. Many simple preconditioning methods, such as weighted Jacobi, polynomial
preconditioning and multi-color versions of the incomplete factorization methods, are
naturally parallel and exhibit strong scalability. Exposing fine-grained parallelism often
involves either a careful redesign of existing algorithms or developing novel algorithms
in which sequential dependencies on data are reduced or eliminated [21]. In both cases,
reusing the legacy code is very difficult if not completely impossible.

A lot of research effort has been devoted to creating fine-scale reservoir models and
efficient reservoir simulators on high-performance computers; see [26] and references
therein for details. Many researchers have investigated reservoir simulation on many-
core architectures; most of them are on GPUs. Klie et al. [29] developed a GPU-based
GMRES solver with multiple preconditioners and achieved an overall computational
speedup of 2x compared to conventional CPU multicore simulations. Yu et al. [53] devel-
oped GPU-based block ILU preconditioners and showed a 6x speedup compared with
their CPU implementation for the industry standard SPE10 benchmark [15]. Appleyard
et al. [1] developed a massively parallel nested factorization for two-stage preconditioner
in combination with a GMRES solver and also assembled matrix on GPU. An overall
speedup factor of 10x was achieved using a GPU over execution on a single CPU core.
Tchelepi and Zhou [44], based on the Appleyard’s work, developed a massively paral-
lel nested factorization preconditioner on multiple GPUs and achieved 19x speedup for
double-precision computations compared to sequential CPU code for the SPE10 prob-
lem. Fung et al. [24] used a heterogeneous approach in which their simulator ran on
CPUs while the linear solver ran automatically chosen device (CPU or GPU). Esler et
al. [21] developed a GPU based reservoir simulator and they claim that it costs less than
two minutes on one Nvidia K40 card to solve the full SPE10 benchmark.

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 973

GPUs have great computing power and large band-width, which has attracted many
computation scientists and engineers. However, exploiting the increasing number of pro-
cessing units without stretching the time needed to develop algorithms and software is
very challenging. Difficulties in parallel programming, like load balancing, sequential
dependencies and synchronization, now challenge application scientists, algorithm de-
velopers and software engineers. Moreover, hardware’s life span is typically five years
or less and an application or software is usually much more long-lived. This is especially
the case for petroleum reservoir simulation, where a vast set of legacy code presents and
a lot of effort has been devoted to make the existing code robust. It seems too expensive,
or at least not cost-effective, to port the whole serial reservoir simulators to multi-core
platforms.

In this paper, we investigate potential speed gains by porting a legacy serial simula-
tor to a CPU-GPU heterogenous computer. We perform numerical experiments with the
in-house simulator HiSim [52], which is an fully implicit reservoir simulator developed
by the Research Institute of Petroleum Exploration and Development, CNPC. In the se-
quential version of HiSim, there are 150,000 lines of source code for the main simulator
(not including pre/post processing or GUI) and more than 50,000 source lines for several
linear algebraic solvers (from purely algebraic methods like ILU to several multi-stage
ones like CPR). We plan to use this simulator as an example to investigate how much ef-
fort is needed to take full advantage of the computing power provided by new CPU-GPU
architectures.

We plan to find a cost-effective road map toward efficient reservoir simulation on
many-core architectures. Our numerical study is valuable for petroleum engineers before
making implementation decisions. More specifically:

• We employ the widely-used True-IMPES decoupling and a CPR-AMG precondi-
tioned GMRES solver for solving the Jacobian systems arising in the fully implicit
method (FIM). We compare several matrix storage data structures for the coupled
Jacobian systems and present a new hybrid storage format.

• We compare the performance of classical AMG and aggregation-type AMG meth-
ods on GPUs for solving pressure equations. Numerical results suggest that
aggregation-type AMG methods, compared with the classical AMG, are not only
cheaper in terms of AMG setup but also more efficient for typical pressure equa-
tions from FIM.

• We investigate numerically the convergence and scalability of CPR-AMG on GPUs.
As numerical experiments indicates, we can easily obtain about 3.0x speedup for
the linear solver part and 6.5x speedup for the SOLVE phase alone.

The rest of this paper is organized as follows: In Section 2, we will briefly review the
mathematical model of the black-oil model, its fully implicit discretization, decoupling
method and the CPR-AMG preconditioner. We then compare and analyze the scaling
performance of standard Krylov iterative methods and ILU preconditioner in Section 3.

974 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

We compare the classical and the pair-wise aggregation AMG methods on GPU in Sec-
tion 4. In Section 5, we design several numerical tests and show potential speed gains by
using GPUs for reservoir simulation. And we draw some conclusions in Section 6.

2 Mathematical models and fully implicit methods

2.1 The black-oil model

In the black oil model, we assume that the water phase does not exchange mass with the
other phases and the liquid and gaseous phases exchange mass between them. Let Pα,
Sα, Bα, krα, ρα and µα denote the pressure, saturation, formation volume factor, relative
permeability, density and viscosity of phase α, respectively. φ is the porosity, κ is the
static permeability tensor, g is the acceleration due to gravity, Z is the depth and Rs is the
solution gas-oil ratio. Under isothermal condition, the black oil model are composed of
three mass conservation equations for oil, water and gas components [13]. For brevity,
we denote them by subscripts o, w and g, respectively.

∂

∂t

(φSo

Bo

)

=∇·

(1

Bo
uo

)

+qo, (2.1a)

∂

∂t

(φSw

Bw

)

=∇·

(1

Bw
uw

)

+qw, (2.1b)

and
∂

∂t

[

φ
(Sg

Bg
+

RsSo

Bo

)]

=∇·

(1

Bg
ug+

Rs

Bo
uo

)

+qg. (2.2)

The Darcy velocity of phase α in the porous media can be written as

uα=
κκrα

µα
(∇pα−ραg∇Z), α= o,w,g,

and phase saturations satisfy:
So+Sw+Sg=1.

The source/sink terms qα denote the net rate of well production injection of phase α. We
use the well-known Peaceman model [39] for the volumetric well rates at the standard
condition.

2.2 Fully implicit methods

Among many possible discretization methods for the above model, we only consider the
standard fully implicit method (FIM) [20]. In FIM, Newton linearization is combined with
first-order upstream-weighting finite difference spatial discretization [13]. This method is
robust and stable. But it has a major disadvantage, i.e., the computational cost associated
with solving the Jacobian systems arising from Newton’s linearization is high. Very often,

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 975

solving such linear systems takes more than 80% of the computation time in reservoir
simulation.

We choose Po and Sw as the primary variables for each cell in two-phase (water-oil)
problems and we use Po, Sw and Sg (or Rs) in the saturated (undersaturated) states as
the primary variables for three-phase problems. When FIM is combined with cell-center
finite volume or finite difference methods, a fully coupled linear algebraic system

Ax=b, i.e.,

(

ARR ARW

AWR AWW

)(

xR

xW

)

=

(

bR

bW

)

, (2.3)

needs to be solved in each Newton step. Where the subscripts ”R” and ”W” stand for
the reservoir and implicit well parts, respectively, of the main solution variables. ARR is
the derivatives of the reservoir equations with respect to the reservoir variables, ARW is
the derivatives of the reservoir equations with respective to the well variables, AWR is
the derivatives of the well equations with respect to the reservoir variables and AWW is
the derivative of the well equations with respect to the well variables, xR refer to primary
variables corresponding to reservoir and xW is well variable (well bottom pressure pbh).
Let m be the number of unknowns in each grid cell. For example, in FIM for the black oil
model, m is equal to 3; and m is equal to 2 for the dead oil case (no gas phase). Assume
that there are N active grid cells and M implicit wells. Then the size of the Jacobian
matrix is mN+M.

Remark 2.1. The coupling between the reservoir equations and the well constraints is
usually strong. Based on this observation, we pad all the implicit well variables, by intro-
ducing artificial auxiliary saturation variables to each implicit well block, such that they
have the same dimension as the reservoir blocks. At the same time, we pad the right-
hand side with zeros at the corresponding positions of these artificial variables. Then the
size of the expanded coefficient matrix A (with abuse of notation) is m(N+M) and can
be stored in a uniform block compressed sparse row (BSR) format. The details of this
technique can be found in [52].

2.3 Linear solution methods

The pressure and saturation unknowns are strongly coupled in the Jacobian system (ex-
panded Jacobian system). Many methods [3, 16, 30] have been proposed to weaken
the coupling between pressure and saturations. The different decoupling methods will
cause different effect to Jacobian systems. For the Alternate Block Factorization (ABF)
method [3], the CPR method can not work well for the decoupled Jacobian system any-
more. The preconditioner depends strongly on decoupled method used. We will address
this else where. The most commonly used decoupling method in the CPR method is the
so-called True-IMPES method [16], which operates Jacobian matrix to form an approxi-
mate pressure matrix. In the rest of this paper, only the decoupled Jacobian system will
be considered.

976 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

Different parts of A have different algebraic properties due to the analytic nature of
their corresponding continuous differential equations [45]. The equation corresponding
to the pressure unknowns is elliptic and the equation corresponding to the saturation
unknowns is hyperbolic. This makes the resulting Jacobian systems very challenging to
solve. Moreover, the complicated geometric and physical properties of the reservoir, such
as the anisotropy and heterogeneity of real reservoir media, make the Jacobian systems
more difficult to solve. Based on this mixed nature of continuous partial differential
equations, Wallis et al. [49, 50] have proposed a two-stage constrained pressure residual
(CPR) preconditioner, which can be described in the following general form

M= Ã−1[I−AΠT Ã−1
p Π]+ΠT Ã−1

p Π.

Here Ã−1
p and Ã−1 are approximate inverses of the pressure matrix Ap and the Jacobian

matrix A, respectively. I is the identity matrix, Π=(IN×N,0)T∈R
(mN+M)×N is the restric-

tion matrix and ΠT denotes the prolongation.
In the first-stage, the pressure equations can be efficiently solved (approximately) by

algebraic multigrid methods (AMG). In the second-stage, the block incomplete LU factor-
ization (BILU) methods and the line successive over relaxation (LSOR) method are quite
effective at resolving such system in practice [12]. In this paper, AMG and BILU(0) meth-
ods are applied to the first and second stage, respectively. This is the so-called CPR-AMG
method, which can be naturally divided into two phases, SETUP and SOLVE. The SETUP
phase is the part where AMG prepares the multilevel hierarchy and ILU decomposes the
coefficient matrix into triangular matrices. SETUP is needed only once for each Newton
iteration and sometimes multiple Newton iterations can even share a single SETUP step.
The SOLVE phase is the actual preconditioned iterative method and it is performed in
each linear iteration.

According to our numerical experiments (see Fig. 4 in Section 5.3), the CPR precondi-
tioning accounts for as high as 70% in the SOLVE phase of linear solver. This means that,
for an effective and relatively robust preconditioner like CPR-AMG, we should pay more
attention to the implementation of preconditioning instead of just the iterative methods
themselves (which accounts for less than 30% in our tests). In the next two sections, we
shall discuss the implementation of both the iteration procedure and the preconditioner
on GPUs.

3 Iterative methods and ILU on GPU

Thanks to their applicability and limited demands on memory, iterative methods are gen-
erally preferred over direct solvers for solving large-scale. The Krylov subspace methods
(KSMs) [40], such as ORTHMIN, GMRES and BiCGstab, are efficient iterative methods
for solving large sparse linear systems. The performance of KSMs depends on the ef-
ficiency of sparse matrix-vector multiplication (SpMV) implementation. Conventional
implementations of SpMV have historically performed poorly, running at 10% or less

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 977

of system peak performance on many uniprocessors, for two major reasons: (1) indirect
and irregular memory accesses generally result in little spatial or temporal locality and
(2) the speed of accessing index information in the data structure is limited by memory
band-width [11]. Hence, SpMV is generally memory band-width-bounded instead of
computation-bounded. How to make SpMV as efficient as possible for a specific archi-
tecture is still a challenging problem in computer science.

3.1 Block hybrid storage format

Exposing fine-grained parallelism and regularity of execution paths (as well as memory
accesses) are vital to SpMV on GPUs. Both of them depend strongly on the sparse ma-
trix storage format. Bell and Garland [5] implemented several traditional sparse storage
formats on GPU, such as diagonal, COO, CSR and ELL formats and presented a efficient
GPUs-suited Hybrid (ELL/COO) storage format. This format assures that data can be
coalesced access by threads and achieve maximal band-width. Double-precision SpMV
performance is more than 10x greater than that of a quad-core Intel Clovertown system.
Based on the ELL format and block CSR format, Choi et al. [14] presented a block ELL
format (BELL), this format not only can be coalesced, but exploits block structure to re-
duce row and column index and release burden on band-width. Experiments showed
that SpMV based on BELL gains 1.8x and 1.5x for single and double-precision speedup
over unblocked state-of-the-art implementations on GPUs. In addition, there are many
other important aspects should be aware of in SpMV, like multithreads per row to expose
sufficient parallelism to hide latency; reorder matrix to make load balance for each thread
and etc. Interested readers are referred to [5, 18, 31].

Better performance of SpMV should be gained from the right combination of data
structures and corresponding implementation that best exploit the GPU architecture. In
fully implicit simulation of the black-oil model, the coefficient matrices are naturally in
a block structure. Due to the presence of wells and faults, the band-width of Jacobian
matrix will be affected by number of perforations and the number of non-neighboring
connections (NNCs). Motivated by [5, 14], we present a block hybrid (BHYB) format
and store the regular part of matrix in BELL format and irregular part (corresponding
to well and fracture) in BCOO format in this paper. The BHYB format preserves the
coalesced memory access pattern, avoids much padding introduced by ELL format and
also reduces index set needed to store matrix. In our implementation, different levels
of cache memory are used. Frequently reused parameters are cached to on-chip shared
memory and vectors are binded to texture memory. And also, bitwise operations are
used to index non-zero value for block data structure.

We compare the performance of SpMV based on the BHYB format with the cuS-
PARSE’s HYB format in Fig. 1. The experiments show the speedup of the HYB and
BHYB data structures on GPU. The comparison is based on the BSR performance on a
single CPU core, where the BSR format is used in our reservoir simulator HiSim. The
size of the test problems are Jacobian matrix arising in the fully implicit method for the

978 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

!"#$%&& !"#'$&& !(#!%&&

(#)$&&

)#*(&& !%#!*&& !%#!$&&

!+#!)&&

!'#+"&&

!*#*%&&

+#($&&

!,#*$&&
!"#(!&& !"#")&&

%#%%

,#%%

(#%%

+#%%

*#%%

!%#%%

!,#%%

!(#%%

!+#%%

!*#%%

,%#%%

-./0, -./0" -./0(-./0$ -./0+ -./0' -./0*

123

3123

!
"
#
#
$
%
"
&

Figure 1: Performance of SpMV using BHYB and HYB on GPU compared with BSR on CPU.

black-oil test problems listed in Table 5. The problem size ranges from 0.2 million to 2.7
million.

Fig. 1 suggests that (1) for all test matrices, the BHYB format out-perform the HYB
format in cuSPARSE (shows about 25% performance improvement); (2) speedup for two-
phase problems (Case 2–4) are usually higher than those three-phase problems (Case 5–
8); (3) for the same type of problems, the speedup for BHYB is higher when the problem
size is larger (in contrast, the speedup in the HYB format is almost the same for different
sizes). GPUs have great computing power and high memory band-width. Larger prob-
lem size means more active thread blocks and enough transactions in flight saturate the
memory bus to hide latency.

Remark 3.1. The block data structures require less indexing than non-block formats. For
memory-bounded operations, less indexing means less indirect memory accesses in the
SpMV operation. This is why BHYB is faster than HYB. GPUs are throughput-oriented
processors and are good at handling large data set. The speedup of BHYB matrices is also
related to the block-size because larger block-size will introduce more paddings, which
makes it less efficient.

Remark 3.2. So far it seems optimistic because we can get very good performance of
SpMV on GPUs. Unfortunately, we must point out that the most expensive part in mod-
ern KSMs is usually not the iteration procedure itself. In fact, preconditioning takes much
more time than iteration. We will see that the CPR-AMG preconditioner takes a large por-
tion of the computation time and it is the main bottleneck when we port the simulator to
many-core architectures; see Section 5.3 for details.

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 979

3.2 ILU on GPU

In the second stage of CPR preconditioner, ILU(0) is usually applied to full Jacobian sys-
tems in order to resolve high frequency of error. It is an important component of CPR.
However, ILU is a sequential algorithm and has weak parallel scalability on GPUs. There-
fore, many variant version of ILU, such as block ILU and multi-color ILU, are often used
in order to scale well on many-core platform in reservoir simulation [29, 42, 53]. Also,
Li and Saad [31] provided a few strategies on GPU implementation of ILUs. The main
strategy is to form a disjoint partition of rows via algebraic coloring algorithm or METIS,
reorder coefficient matrices to form blocks and then do ILU decomposition to each diag-
onal block. Actually, the BILU becomes more scalable as the number of blocks increasing.
As reported in [31], large number of iterations are still needed and improved parallelism
may be outweighed by increased number of iterations. As mentioned earlier, CPR pre-
conditioner is the most time-consuming part in the linear solver and plays an important
role in the convergence of GMRES. In this sense, it is justified to keep balance between
scalability and robustness of the preconditioner. We employ the level scheduling strat-
egy [40] to implement BILU(0) on GPUs in this paper.

4 Algebraic multigrid methods on GPU

The multigrid (MG) method is one of the most important advance in the area of numer-
ical solution of discrete PDEs in the 20th century. Motivated by the observation that
reasonable operator-dependent interpolation can often be derived directly from the un-
derlying matrices, without any reference to the underlying grids, researchers found an
automatic coarsening process in the early 1980s [7–9]. This is the algebraic multigrid
(AMG) method, which can be considered as a ”black-box” solver and has a wide appli-
cation in practical. Currently, the most popular AMG methods for solving scalar elliptic
PDEs are the so-called classical AMG method [22, 41] and the aggregation-based AMG
methods [6, 28, 35, 37, 47, 48].

4.1 Classical and aggregation-based AMG methods

A typical Classical AMG method forms the coarse-level variables by a C/F-splitting algo-
rithm, which partitions the fine-level variables Ω into C-variables and F-variables mea-
sured by strong or weak connection between nodes, that is, Ω=C∪F and φ=C∩F. The
interpolation operator P is defined via a weighted sum of the coarse grid nodes and usu-
ally has form of

eh
i =(PeH)i =







eH
i , if i∈C,

∑
k∈Ch

i

PikeH
k , if i∈F, (4.1)

980 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

where Ch
i ⊂ C is interpolator set of node i. The restriction operator usually is trans-

port of the interpolation operator. The coarse matrix is built by the Galerkin principle
AH =PT AhP. One thing should be notice is that interpolator P constructed by (4.1) will
make AH dense. The classical AMG converges quickly and also is very robust for many
applications. However, interpolation P in (4.1) leads to high complexity of coarse grid
matrices (i.e., more nonzero entries in each row) and requires large amount of memory
during SETUP.

In aggregation AMG methods, on the other hand, the set of fine nodes are decom-
posed into small mutually disjoint subsets Ω = C1∪C2 ···Cm−1∪Cm and each subset Ci

corresponds to a coarse grid node on the coarse level. The interpolator P is defined as

Pij=

{

1, if j∈Ci,
0, otherwise.

(4.2)

Note that P has exactly one nonzero entry per row, which makes coarse grid matrix
sparse. However, this ”simple” interpolator P will deteriorate the convergence of AMG
and do not provide grid independent convergence.

In order to overcome this drawback, two alternative approaches are possible. One
strategy is to damp P by a relaxation step (for example P=(I−wD−1A)P). This approach,
usually referred to as the smoothed aggregation (SA) AMG, is proposed by [48]. It is
successfully applied to linear elasticity. But smoothed interpolation typically leads to
a hierarchy with very dense coarse level matrices, which will cause expensive matrix-
vector product computations and excessive requirement for memory. Another approach
is to adopted some enhanced multilevel cycles in the solve phase rather than modifying
interpolator P, like algebraic multi-level iteration cycle (AMLI-cycle) and Krylov-based
cycles (K-cycle). Notay [35, 37] employed an unsmoothed aggregation (UA) along with
K-cycle [27, 36] as preconditioning for iterative Krylov methods. Compared with the
classical AMG and SA AMG, unsmoothed aggregation AMG is cheaper in its setup and
low grid and operator complexities; see Table 1 (Grid Comp. and Op. Comp.).

We consider to solve pressure systems obtained from Jacobian systems using GMRES
preconditioned by the classical AMG and unsmoothed aggregation AMG methods. The
stopping criteria is to reduce relative residual in Euclidean norm to 10−6. We employ the

Table 1: Grid and operator complexities of classical and unsmoothed aggregation AMGs.

Case Size
Classical AMG UA AMG AmgX

Grid Comp. Op. Comp. Grid Comp. Op. Comp. Grid Comp. Op. Comp.
1 2,097,152 1.61 3.51 1.33 1.33 2.47 2.93
2 556,402 2.01 5.46 1.47 1.78 1.82 3.18
3 1,094,422 2.07 4.11 1.29 1.40 2.21 10.39
4 2,188,843 1.68 3.48 1.21 1.28 3.15 4.69
5 200,002 2.03 4.38 1.32 1.30 1.53 2.03
6 512,002 1.92 3.94 1.33 1.32 1.58 2.28
7 900,002 1.81 5.56 1.42 1.56 1.88 2.92
8 900,002 1.81 5.56 1.42 1.56 1.88 2.92

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 981

Table 2: Performance of classical and unsmoothed aggregation AMGs (time: seconds).

Case Size
Classical AMG (V-cycle) UA AMG (K-cycle) AmgX

#Its SETUP SOLVE Total #Its SETUP SOLVE Total #Its Total

1 2,097,152 6 10.10 3.61 13.82 10 1.46 5.72 7.26 36 8.46
2 556,402 7 2.48 2.26 4.76 15 0.87 3.30 4.21 78 8.20
3 1,094,422 7 3.57 3.36 6.98 14 1.05 5.75 6.86 36 6.16
4 2,188,843 7 6.48 5.11 11.70 12 1.68 6.95 8.74 25 7.46
5 200,002 4 0.41 0.37 0.79 9 0.19 0.45 0.66 14 0.52
6 512,002 5 1.53 1.20 2.75 9 0.39 1.19 1.59 13 0.92
7 900,002 8 4.42 3.46 7.92 11 1.01 3.45 4.51 36 4.40
8 900,002 13 4.41 5.64 10.09 8 1.03 2.53 3.60 100 6.18

open-source linear solver package FASP (http://fasp.sourceforge.net) for both AMG
methods. We can see, from Table 2, that UA AMG has a slower convergence rate than the
classical AMG method, but cost much less CPU time than the classical AMG for all tested
problems. Here, ”#Its” denotes the number of iteration needed to converge for GMRES
method, ”SETUP” denotes the wall time of setup phase of AMG, ”SOLVE” denotes the
wall time of GMRES method and ”Total” is total time, including AMG setup and GMRES.
This is because of the setup time of classical AMG is more than 50% of total solution time,
even up to 75% (for Case 1), while the ratio is less than 30% for the UA AMG method. The
results show that UA AMG is more efficient than classical AMG method for the pressure
equations in reservoir simulation.

4.2 AMG implementation on GPU

The SETUP phase of AMG is inherently serial, it is not easy to be implemented on multi-
core processors, especially for fine-grained parallelism GPUs. However, many attempts
have been tried. Bell et al. [4] presented an SA AMG code on GPUs, which is included
into the state-of-the-art algebraic multigrid GPU solver package AmgX developed by
Nvidia (https://developer.nvidia.com/amgx). However, this parallel AMG method
is not robust enough for our test problems and the convergence performance is much
worse than our sequential UA AMG; see the last column in Table 2. Brannick et al. [10]
developed a parallel UA methods based on parallel maximal independent set algorithm;
the numerical therein showed the proposed UA AMG method converges uniformly for
the Laplacian problem. Liu et al. [32] implemented several classical AMG methods on
GPUs but the SETUP phase is serial and executes on CPU.

Based on above investigations, it is very difficult to obtain an efficient parallel AMG
method for highly nonsymmetric pressure matrix on GPUs. Hence we perform the AMG
SETUP phase using FASP on CPU and only do SOLVE phase on GPUs. When compared
with classical AMG, the SETUP phase of UA AMG accounts for a small portion in the
solution time and also UA AMG has lower operator complexity (see Table 1) and will
save time for transferring data from host to device. Moreover the convergence rate of
UA on GPUs is almost same to as CPU because only the SOLVE phase is done on GPUs.

982 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

Table 3: Percentage of wall-time spent on each level in UA AMG (K-cycle).

Level #Rows #Nonzeros NNZ/Row CPU (%) GPU (%)
0 1094426 7478974 6.83 39.29 24.16
1 331645 3175097 9.57 21.56 14.58
2 110788 1313952 11.86 16.07 12.70
3 40167 546211 13.60 7.91 7.03
4 16142 235160 14.57 5.99 4.04
5 7250 106112 14.64 2.81 8.87
6 3579 50663 14.16 2.55 4.99
7 1941 25593 13.19 1.02 4.81
8 1094 13430 12.28 0.38 5.05

Hence we apply the UA method in the first stage of CPR-AMG preconditioner on GPUs.

AMG is a multi-level method and the number of unknowns reduces exponentially
from the finest to the coarsest level. Gandham et al. [25] present some statistics for classi-
cal multigrid method based on V-cycle and they find a interesting phenomena that time
distribution for solving phase is very different on CPU and GPU. On CPU, the time used
for each level is almost proportion to number of unknowns on each level, but this does
not hold on GPU. The percentage of time used on fine levels in SOLVE phase decreases
but that on coarse levels increases, when compared with time distribution on CPU.

There are two facts that contribute to this phenomena–one is the cache structure dif-
ference between CPU and GPU, another is the architectural difference. UA AMG method
based on K-cycle involves more coarse spaces than V-cycle, thus, it’s very important to
investigate the performance of the method on GPUs. We tested pressure matrix and cal-
culate the time of each level for both on CPU and GPU. In Table 3 the ratio of each level’s
time over the total AMG time is presented. We exclude the coarsest level, which is solved
on CPU by a direct solver. We can see, from Table 3, the ratio on the finest 3 levels (Level
0 ∼ Level 2) decrease significantly but increase on those coarser levels (Level 5 ∼ Level
8). On CPU, the coarse levels (with few unknowns) are more efficiently handled due to
large cache size, while GPUs are throughput-oriented and are good for large data set. We
should terminated the coarsening process with proper gird size.

4.3 Smoothers for multigrid methods

Smoother is a critical component of multigrid methods and aims to making the under-
lying error smooth so that it can be approximated accurately and efficiently on a coarse
grid. Very often, some simple iterative methods, like Richardson, Jacobi and Gauss-Seidel
(GS), are used as the smoother for multigrid methods. But in the context of multi-core
or many-core processors, the typically applied smoothers, such as lexicographical GS,
usually have poor scalability. Baker et al. [2] investigated the properties of smoothers in
the context of algebraic multigrid running on parallel computers with potentially mil-
lions of processors and compare C-F GS smoother, Polynomial smoothers, Chebyshev

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 983

Table 4: Performance comparison between smoothers on GPU.

Case
Weighted Jacobi Multi-Color GS Hybrid Smoother

#Nits #Lits Time #Nits #Lits Time #Nits #Lits Time
2 246 3369 571.88 246 3288 589.17 246 3357 558.12
3 239 3746 1152.12 239 3600 1100.68 240 3674 1049.68
4 343 5790 3153.77 344 5720 3200.96 339 5769 3063.96
5 1697 12711 1410.16 1550 12242 1345.16 1651 12547 1400.76
6 2017 18005 4534.27 2061 17527 4534.76 2108 17807 4516.44
7 224 999 770.10 224 960 763.32 224 981 740.70
8 1107 9594 4177.77 1000 9121 4212.45 1079 9330 3947.52

smoothers and proposed a Hybrid GS smoother, that is, using GS independently on each
processor and updating in a Jacobi-like manner on processor boundaries. The popular
Hybrid GS smoother has multigrid smoothing properties which are independent of the
number of processors in many applications, provided that the problem size per proces-
sor is large enough. However, this Hybrid GS smoother can not be well worked on GPUs
due to GPUs is fine-grained parallelism, which varies the coarse-grained parallelism of
MPI. Li and Saad [31] discussed smoothers (preconditioners) on GPUs, including ILU,
multi-color SSOR and least square polynomial.

In this paper, the lexicographical ordering GS smoother is used on CPU and a multi-
color GS smoother [23] is used on GPU. In multi-color GS smoother, nodes of graph
corresponding to matrix are first divided into groups via some algebraic graph coloring
strategies; see for example [40, Chapter 3]. After the coloring step, nodes of same color
can be concurrently smoothed, which is like the Jacobi method and different color groups
are smoothed sequentially, which is like the GS method. In AMG methods, the coarse ma-
trices usually become more and more dense as coarsening continues; see Table 3 (even
more so in the Classical AMG method). This observation suggestions that each node
will has more connections to adjacent nodes, which will result in more color groups and
hence smaller group sizes (less parallelism). In our linear solver, we use unsmoothed
aggregation AMG with the K-cycle, which involves more times of smoothing sweeps
than the V-cycle. Moreover, each color group corresponds to a kernel function, the over-
head of function launches can not be ignored in this case. Therefor, we propose a hybrid
smoother–The multi-color GS is used in fine levels (finest 2 levels) and the weighted Ja-
cobi method is used on the remaining levels, to avoid small data set caused by coloring
strategy on coarse space. The weight of weighted Jacobi method can be obtained by the
Arnoldi procedure [40, Chapter 6], which can be fully parallelized on GPUs.

We compare the weighted Jacobi, multi-color GS and hybrid smoothers in our linear
solver for the Jacobian systems from FIM and the results are reported in Table 4. ”#Nits”
and ”#Lits” denote the number of Newton iterations and linear iterations, respectively.
”Time” denotes time of linear solver in simulation. From this table, we find that hy-
brid smoother cost less time than multi-color GS smoother and damped Jacobi smoother,
while iteration number of hybrid smoother is a little more than multi-color GS. From the

984 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

time aspect, exposing sufficient parallelism with compromising the rate of convergence
is tradeoff here.

4.4 Coarsest-level solvers

In AMG, direct solvers are often applied to the coarsest linear systems due to the small
size of coarsest space. There are many good sparse direct solvers on CPU, such as
MUMPS [34], UMPACK [46], SuperLU [43]. However there are not many efficient sparse
direct solver packages on GPUs. MAGMA [33] is a direct solver for dense matrices de-
signed for heterogeneous/hybrid architectures, starting with current ”Multicore + GPU”
systems. However, it is a linear algebraic library oriented dense matrix. The sparse LU
solver in cuSOLVER [17] developed by Nvidia is not flexible due to the fact that the LU
decomposition and back substitution are packed in one function. This, obviously, is not
suitable for our situation when the decomposition is done once and back substitution is
needed in each iteration. In this paper, we solve the coarsest linear systems on GPUs by
simple iterative methods, such as the Jacobi method. By using the Jacobi iteration is used
as the coarsest space solver on GPUs, we get about 8% performance gain compared with
MUMPS on CPUs in numerical tests.

5 Numerical experiments

In this section, we construct several field-scale reservoir models and test the performance
of each of part of HiSim carefully.

5.1 Test environment and test problems

All experiments are run on a work station with 2 Intel(R) Xeon(R) CPU X5675, 39GB of
RAM and an NVIDIA Tesla C2075 coprocessor with 6GB of memory. The CPU clock
is 3.07GHz and the sizes of L1, L2 and L3 cache are 64KB (32KB double and 32KB int),
256KB and 12288KB, respectively. The coprocessor have 448 cores and the cache size is
96KB. The operator system of the workstation is Ubuntu 12.04.1LTS. Host compiler is
GCC 4.9.2 and device compiler is NVCC 7.0.

In order to get better ideas on the efficiency and robustness of the simulator, we de-
sign a set of eight test problems, whose main characteristics are listed in Table 5. In the
table, ”#ActCells” is number of active cells, ”#Wells” is number of wells, ”Time” is simu-
lation period in days and ”Characteristics” are some other key characteristics of the test
problems.

5.2 Comparison with commercial software

In order to establish some performance benchmark, we first compare the CPU version
of our simulator with a main-stream commercial simulator. All test problems are solved

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 985

Table 5: Summary of test problems.

Case #ActCells #Wells Time (days) Characteristics

1 2,097,152 0 – Single-phase, steady state, isotropic
2 561,000 5 2000 Two-phase (water-oil), anisotropic, heterogeneous
3 1,122,000 5 2000 Two-phase (water-oil), anisotropic, heterogeneous
4 2,244,000 5 2000 Two-phase (water-oil), anisotropic, heterogeneous
5 200,000 2 3656 Three-phase, isotropic, gas injection
6 512,000 2 3656 Three-phase, isotropic, gas injection
7 900,000 2 900 Three-phase, anisotropic, heterogeneous
8 900,000 26 900 Three-phase, anisotropic, heterogeneous

Table 6: Performance comparison between simulators (time: seconds).

Simulator Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Commercial 32766.72 >3 days >3 days 6443.02 36375.00 3865.40 46149.47
HiSim-CPU 2018.21 3782.34 10900.23 4423.21 15739.69 1962.23 11380.30

Speedup 16.24 – – 1.45 2.31 1.96 4.05

using HiSim-CPU, HiSim-GPU and the commercial simulator.
We now compare our numerical results with that produced by a commercial simu-

lator (2012 version). For brevity, we only report the results of Case 2 and 8 in Figs. 2
and 3, respectively. From the figures, we find that the curves of oil production rate and
water-cut fraction of three simulators are very close to each other. This shows, at least for
the models we constructed, that HiSim is robust and gives reasonable simulation results.
Moreover the run time by the commercial simulator are listed in the Table 6. Compared
with this commercial simulator, HiSim-CPU shows great advantages in terms of CPU
wall time, especially for large-scale models, i.e., Case 2, 3, 4 and 8.

5.3 Speedup

In our numerical experiments, the run time distribution of linear solver in HiSimCPU for
each problem is exhibited in Fig. 4. The stopping criteria for the CPR-AMG precondition-

0 400 800 1200 1600 2000

0

2000

4000

6000

8000

10000

O
il
P
ro
d
u
c
ti
o
n
R
a
te
(S
T
B
/D
a
y
)

Time (Days)

Commercial

HiSimCPU

HiSimGPU

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

W
a
te
r
C
u
t

Time (Days)

Commercial

HiSimCPU

HiSimGPU

Figure 2: Comparison of field oil production rate (Left) and field water-cut (Right): Case 2.

986 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

0 100 200 300 400 500 600 700 800 900

0

5000

10000

15000

20000

25000

30000

35000

40000

O
il
P
ro
d
u
c
ti
o
n
R
a
te
(S
T
B
/D
a
y
)

Time (Days)

Commercial

HiSimCPU

HiSimGPU

0 100 200 300 400 500 600 700 800 900

0.00

0.05

0.10

0.15

0.20

W
a
te
r
C
u
t

Time (Days)

Commercial

HiSimCPU

HiSimGPU

Figure 3: Comparison of field oil production rate (Left) and field water-cut (Right): Case 8.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

,-./$,-./% ,-./& ,-./' ,-./(,-./) ,-./*

0123./456

7893./456

:68;

<=/>?@AB4B?@B@C

!
"#

$
%&
"'
(
)
"*
+
(
",
-
%,
.%
/"
-
$
0
)
%'
,
/1
$
)
%

Figure 4: Time distribution for each part of linear solver.

ed GMRES method is for the relative residual in the Euclidian norm to be less than 10−3.
We can see from the figure that linear solver is the major computational part (more than
75% for most cases) of the simulations and the preconditioning (CPR-AMG) takes a large
fraction of the linear solver (up to 60%). In this sense, we have two possibilities to im-
prove performance of our simulator on the CPU-GPU architecture: One is to fine-tune
the implementation of CPR-AMG; The other is to construct a better preconditioner which
takes full advantage of the new architecture.

In Table 7, we summarize the results of HiSim-CPU and HiSim-GPU for all case prob-
lems. Columns 3, 4 and 5 are number of time steps, number of Newton iterations and

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 987

Table 7: Summary of simulation results (time: seconds).

Case Arch
Time Newton Linear SOLVE LinSolver Total LinSolver
Steps Iteration Iteration Time Time Time Percentage

2
CPU 202 246 3270 1246.94 1615.70 2018.21 80.06%
GPU 202 246 3357 193.10 558.12 960.63 58.10%

speedup – – – 6.5x 2.9x 2.1x –

3
CPU 165 242 3618 2493.77 3074.28 3782.34 81.28%
GPU 164 240 3674 410.04 1049.68 1757.74 59.71%

speedup – – – 6.1x 2.9x 2.2x –

4
CPU 245 340 5632 7354.12 9144.50 10900.23 83.89%
GPU 248 339 5769 1166.52 3063.96 4819.69 63.01%

speedup – – – 6.3x 3.0x 2.3x –

5
CPU 174 1443 11861 2867.07 3719.48 4423.21 84.09%
GPU 202 1651 12547 566.30 1400.76 2303.75 60.80%

speedup – – – 5.1x 2.7x 1.9x –

6
CPU 255 2131 17021 9446.04 12435.17 15739.69 79.01%
GPU 263 2108 17807 1836.86 4516.44 7820.96 57.75%

speedup – – – 5.1x 2.8x 2.0x –

7
CPU 194 224 976 771.59 1348.08 1962.23 68.70%
GPU 194 224 981 146.97 740.70 1354.85 54.67%

speedup – – – 5.2x 1.8x 1.5x –

8
CPU 229 1067 8011 6352.42 8890.68 11380.30 78.12%
GPU 224 1079 9330 1161.12 3947.52 6437.14 61.32%

speedup – – – 5.5x 2.3x 1.8x –

number of linear iterations, respectively. In most Cases, the numbers of time steps and
Newton iterations of HiSim-GPU changed slightly when compared with HiSim-CPU.
There is a modest increase in the total number of linear iterations, which is caused by
hybrid smoother used in AMG in HiSim-GPU. These facts show that GPU based linear
solver is robust.

Note that time of the linear solver accounts for 78% ∼ 84% of total simulation time.
According to the Amdahl’s Law

S=
1

q+(1−q)/p
,

where q represents the fraction of serial code and p is the number of processors used to
accelerate the complementary parallel fraction of the code. The maximal speedup could
be around 5.0x for simulator for these test problems if the whole linear solver can be
scalable and implemented on GPUs.

The third row of Table 7 gives the speedup of SOLVE phase, linear solver and the
whole simulator, respectively. For all test cases, the SOLVE phase of HiSim-GPU is of
the order 4.0x to 6.5x faster than that of HiSim-CPU. This indicates that GPU still has a
great potential for iterative methods. Due to the fact that AMG setup and ILU decom-
position (SETUP phase) are sequential and done on CPU, the speedup of linear solver is
less than 3.0x.

988 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

6 Conclusions

We investigate a GPU-based linear solver for our in-house reservoir simulator HiSim.
A hybrid block ELL storage format for fully-implicit reservoir simulation is presented
and SpMV based on this data structure gains a satisfactory speedup. We implement the
SOLVE phase of ILU(0) and develop a hybrid smoother for AMG method on GPU. Nu-
merical results show that our simulator on GPU is robust and effective. The numerical
experiments indicates that the linear solver, especially the preconditioner part, on GPU
can and must be further improved. To achieve desirable performance on many-core ar-
chitectures like GPU, we need to redesign both algorithm and implementation:

• The serial SETUP phase of the linear solver severely deteriorates the parallel scal-
ability of our implementation. The original algorithm (like AMG setup) is difficult
to be ported to fine-grained parallel computing platforms efficiently. We need to
redesign the AMG algorithm. For example, the auxiliary grid AMG technique pro-
posed in [51] can be exploited to speedup AMG setup on GPU.

• The software eco system for numerical reservoir simulation on GPUs is still far less
developed than on CPUs. We are in great need for efficient and robust implementa-
tion of AMG, ILU and sparse direct solvers. Our numerical study shows that, with
these fundamental modules available, we can obtain a cost-effective simulator on
CPU-GPU architecture rather quickly.

Acknowledgments

The authors would like to thank Professor Chunsheng Feng for his assistance in numer-
ical tests and many helpful discussions. The paper is finished during Li’s visit to the
State Key Laboratory of Scientific and Engineering Computing (LSEC). Li is thankful to
the kind support from LSEC. The authors would like to thank RIPED, PetroChina, for
providing data for the numerical tests and support through PetroChina New-generation
Reservoir Simulation Software (No. 2011A-1010), the Program of Research on Continen-
tal Sedimentary Oil Reservoir Simulation (No. z121100004912001) founded by Beijing
Municipal Science & Technology Commission and PetroChina Joint Research Funding
No. 12HT1050002654.

References

[1] J. R. APPLEYARD, J. D. APPLEYARD, M. A. WAKEFIELD AND A. L. DESITTER, Accelerating
reservoir simulators using GPU technology, SPE Reservoir Simulation Symposium, 2011.

[2] A. H. BAKER, R. D. FALGOUT, T. V. KOLEV AND U. M. YANG, Multigrid smoothers for ultra-
parallel computing, SIAM J. Sci. Comput., 33(5) (2011), pp. 2864–2887.

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 989

[3] R. E. BANK, T. F. CHAN, W. M. COUGHRAN JR AND R. K. SMITH, The Alternate-Block-
Factorization procedure for systems of partial differential equations, BIT Numer. Math., 29(4)
(1989), pp. 938–954.

[4] N. BELL, S. DALTON AND L. N. OLSON, Exposing fine-grained parallelism in algebraic multigrid
methods, SIAM J. Sci. Comput., 34(4) (2012), pp. C123–C152.

[5] N. BELL AND M. GARLAND, Efficient sparse matrix-vector multiplication on CUDA, Technical
report, Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

[6] D. BRAESS, Towards algebraic multigrid for elliptic problems of second order, Computing, 55(4)
(1995), pp. 379–393.

[7] A. BRANDT, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput., 19(1) (1986),
pp. 23–56.

[8] A. BRANDT, S. MCCORMICK AND J. RUGE, Algebraic multigrid (amg) for automatic multigrid
solutions with application to geodetic computations, Report, Inst. for Computational Studies,
Fort Collins, Colo, 1982.

[9] A. BRANDT, S. MCCORUICK AND J. RUGE, Algebraic multigrid (amg) for sparse matrix equa-
tions, Sparsity Appl., (1985), pp. 257–284.

[10] J. BRANNICK, Y. CHEN, X. HU AND L. ZIKATANOV, Parallel unsmoothed aggregation algebraic
multigrid algorithms on gpus, Numerical Solution of Partial Differential Equations: Theory,
Algorithms and Their Applications, pages 81–102, Springer, 2013.

[11] J.-H. BYUN, R. LIN, K. A. YELICK AND J. DEMMEL, Autotuning sparse matrix-vector multi-
plication for multicore, Technical Report UCB/EECS-2012-215, EECS Department, University
of California, Berkeley, November 2012.

[12] H. CAO, H. TCHELEPI, J. WALLIS AND H. YARDUMIAN, Parallel scalable unstructured CPR-
type linear solver for reservoir simulation, Paper SPE 96809 presented at the SPE Annual Tech-
nical Conference and Exhibition, Dallas, Texas, 9-12 October, 2005.

[13] Z. CHEN, G. HUAN AND Y. MA, Computational Methods for Multiphase Flows in Porous
Media, Volume 2, SIAM, 2006.

[14] J. W. CHOI, A. SINGH AND R. W. VUDUC, Model-driven autotuning of sparse matrix-vector
multiply on GPUs, ACM SIGPLAN Notices, 45(5) (2010), pp. 115.

[15] M. CHRISTIE AND M. BLUNT, Tenth SPE comparative solution project: A comparison of upscaling
techniques, SPE Reservoir Evaluation & Engineering, 4(04) (2001), pp. 308–317.

[16] K. H. COATS ET AL., A note on IMPES and some IMPES-based simulation models, SPE J., 5(03)
(2000), pp. 245–251.

[17] CUSOLVER, https://developer.nvidia.com/cusolver.

[18] H. V. DANG AND B. SCHMIDT, CUDA-enabled sparse matrix-vector multiplication on GPUs
using atomic operations, Parallel Comput., 39(11) (2013), pp. 737–750.

[19] A. H. DOGRU, L. S. FUNG AND U. MIDDYA ET AL., A next-generation parallel reservoir sim-
ulator for giant reservoirs, SPE/EAGE Reservoir Characterization & Simulation Conference,
2009.

[20] J. DOUGLAS JR, D. PEACEMAN AND H. RACHFORD JR ET AL., A method for calculating
multi-dimensional immiscible displacement, Trans. Amer. Inst. Min. Metallurgical Petroleum
Eng., pages 297–306, 1959.

[21] K. ESLER, K. MUKUNDAKRISHNAN, V. NATOLI, J. SHUMWAY, Y. ZHANG AND J. GILMAN,
Realizing the potential of GPUs for reservoir simulation, ECMOR XIV-14th European Conference
on the Mathematics of Oil Recovery, 2014.

[22] R. FALGOUT, An introduction to algebraic multigrid computing, Comput. Sci. Eng., 8(6) (2006).
[23] C. FENG, Multilevel Iterative Methods and Solvers for Reservoir Simulation on CPU-GPU

990 Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991

Heterogenous Computers, PhD thesis, Xiangtan University, 2014.
[24] L. S. FUNG, M. O. SINDI AND A. H. DOGRU ET AL., Multi-paradigm parallel acceleration for

reservoir simulation, SPE Reservoir Simulation Symposium, 2013.
[25] R. GANDHAM, K. ESLER AND Y. ZHANG, A GPU accelerated aggregation algebraic multigrid

method, Comput. Math. Appl., 68(10) (2014), pp. 1151–1160.
[26] M. E. HAYDER AND M. BADDOURAH ET AL., Challenges in high performance computing for

reservoir simulation, Paper SPE, 152414 (2012), pp. 4–7.
[27] X. HU, P. S. VASSILEVSKI AND J. XU, Comparative convergence analysis of nonlinear AMLI-cycle

multigrid, SIAM J. Numer. Anal., 51(2) (2013), pp. 1349–1369.
[28] H. KIM, J. XU AND L. ZIKATANOV, A multigrid method based on graph matching for convection–

diffusion equations, Numer. Linear Algebra Appl., 10(1-2) (2003), pp. 181–195.
[29] H. M. KLIE, H. H. SUDAN, R. LI AND Y. SAAD ET AL., Exploiting capabilities of many core

platforms in reservoir simulation, SPE Reservoir Simulation Symposium, Society of Petroleum
Engineers, 2011.

[30] S. LACROIX, Y. V. VASSILEVSKI AND M. F. WHEELER, Decoupling preconditioners in the im-
plicit parallel accurate reservoir simulator (IPARS), Numerical Linear Algebra Appl., 8(8) (2001),
pp. 537–549.

[31] R. LI AND Y. SAAD, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput.,
63(2) (2013), pp. 443–466.

[32] H. LIU, B. YANG AND Z. CHEN, Accelerating algebraic multigrid solvers on NVIDIA GPUs,
Comput. Math. Appl., 70(5) (2015), pp. 1162–1181.

[33] MAGMA, http://icl.cs.utk.edu/magma/.
[34] MUMPS, http://mumps-solver.org.
[35] A. NAPOV AND Y. NOTAY, An algebraic multigrid method with guaranteed convergence rate,

SIAM J. Sci. Comput., 34(2) (2012), pp. A1079–A1109.
[36] Y. NOTAY, Flexible conjugate gradients, SIAM J. Sci. Comput., 22(4) (2000), pp. 1444–1460.
[37] Y. NOTAY, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci.

Comput., 2012.
[38] E. J. PAVLAS JR ET AL., Fine-scale simulation of complex water encroachment in a large carbonate

reservoir in saudi arabia, SPE Reservoir Evaluation & Engineering, 5(05) (2002), pp. 346–354.
[39] D. W. PEACEMAN, Presentation of a horizontal well in numerical reservoir simulation, The 11th

SPE Symposium on Reservoir Simulation, 1991.
[40] Y. SAAD, Iterative methods for sparse linear systems, SIAM, 2003.
[41] K. STÜBEN, Algebraic Multigrid (AMG): an Introduction with Applications, GMD

Forschungszentrum Informationstechnik, 1999.
[42] H. SUDAN, H. KLIE, R. LI AND Y. SAAD, High performance manycore solvers for reservoir

simulation, 12th European Conference on the Mathematics of Oil Recovery, 2010.
[43] SuperLU, http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/.
[44] H. TCHELEPI AND Y. ZHOU ET AL., Multi-GPU parallelization of nested factorization for solving

large linear systems, SPE Reservoir Simulation Symposium, Society of Petroleum Engineers,
2013.

[45] J. A. TRANGENSTEIN AND J. B. BELL, Mathematical structure of the black-oil model for petroleum
reservoir simulation, SIAM J. Appl. Math., 49(3) (1989), pp. 749–783.

[46] UMFPACK, http://faculty.cse.tamu.edu/davis/suitesparse.html.
[47] P. VANĚK, M. BREZINA AND J. MANDEL ET AL., Convergence of algebraic multigrid based on

smoothed aggregation, Numer. Math., 88(3) (2001), pp. 559–579.
[48] P. VANĚK, J. MANDEL AND M. BREZINA, Algebraic multigrid by smoothed aggregation for sec-

Z. Li, S. H. Wu, J. C. Xu and C. S. Zhang / Adv. Appl. Math. Mech., 8 (2016), pp. 971-991 991

ond and fourth order elliptic problems, Computing, 196 (1996), pp. 179–196.
[49] J. WALLIS, Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient

acceleration, Paper SPE 12265 presented at the SPE Reservoir Simulation Symposium, San
Francisco, California, 15-18 November, 1983.

[50] J. WALLIS, R. KENDALL, T. LITTLE AND J. NOLEN, Constrained residual acceleration of conju-
gate residual methods, SPE, 13536 (1985), pp. 10–13.

[51] L. WANG, X. HU, J. COHEN AND J. XU, A parallel auxiliary grid algebraic multigrid method for
graphic processing units, SIAM J. Sci. Comput., 35(3) (2013), pp. C263–C283.

[52] S. WU, C. FENG, C.-S. ZHANG, Q. LI AND E. AL, A multilevel preconditioner and its shared
memory implementation for new generation reservoir simulator, Petroleum Science, (2014), pp.
1–18.

[53] S. YU, H. LIU, Z. J. CHEN, B. HSIEH AND L. SHAO ET AL., GPU-based parallel reservoir
simulation for large-scale simulation problems, SPE Europec/EAGE Annual Conference, Society
of Petroleum Engineers, 2012.

