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Abstract. Dynamical system theory is applied to the integrable nonlinear wave equa-
tion ut±(u3−u2)x+(u3)xxx=0. We obtain the single peak solitary wave solutions and
compacton solutions of the equation. Regular compacton solution of the equation cor-
respond to the case of wave speed c= 0. In the case of c 6= 0, we find smooth soliton
solutions. The influence of parameters of the traveling wave solutions is explored by
using the phase portrait analytical technique. Asymptotic analysis and numerical sim-
ulations are provided for these soliton solutions of the nonlinear wave equation.
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1 Introduction

It is well known that the study of nonlinear wave equations and their solutions are of
great importance in many areas of physics. Travelling wave solution is an important
type of solution for the nonlinear partial differential equation. Finding their traveling
wave solutions of these equations has become a hot research topic for many scholars.
Many methods have been used to investigate these types of equations, such as tanh-sech
method [1], Lie group method [2], exp-function method, bifurcation method [3–9] and
sine-cosine method.

Classically, the solitary wave solutions of nonlinear evolution equations are deter-
mined by analytic formulae and serve as prototypical solutions that model physical lo-
calized waves. For integrable systems, the solitary waves interact clearly, and are known
as solitons. The appearance of non-analytic solitary wave solutions to new classes of
nonlinear wave equations, including peakons [10–14], which have a corner at their crest,
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cuspons [11], having a cusped crest and compactons [15–26], which have compact sup-
port, has vastly increased the menagerie of solutions appearing in model equations, both
integrable and non-integrable.

There are two important nonlinearly dispersive equations. One is the well-known
Camassa-Holm equation

ut−uxxt+3uux =2uxuxx+uxxx, (1.1)

which was proposed by Camassa and Holm [10] as a model equation for unidirectional
nonlinear dispersive waves in shallow water. This equation has attracted a lot of attention
over the past decade due to its interesting mathematical properties. The Camassa-Holm
equation have been found to has peakons, cuspons and composite wave solutions [11].
The other is the K(m,n) equation

ut+a(um)x+(un)xxx=0, (1.2)

which was discovered by Rosenau and Hyman [27], where a is a constant and both the
convection term (um)x and the dispersion effect term (un)xxx are nonlinear. These equa-
tions arise in the process of understanding the role of nonlinear dispersion in the for-
mation of structures like liquid drops. Rosenau and Hyman derived solutions called
compactons for Eq. (1.2). Xu and Tian [28] introduced the osmosis K(2,2) equation

ut+(u2)x−(u2)xxx =0, (1.3)

where the negative coefficient of dispersion term denotes the contracting dispersion.
In the present work, we consider the following integrable nonlinear wave equation

ut+a(u3−u2)x+(u3)xxx =0, (1.4)

where a=±1. It’s a simple model used for cubic dispersion of presentation. In [29], Rose-
nau had studied the impact of a non-convex convection on formation of compactons by
using this model. Note that whereas the K(3,3) has four local conserved quantities [27]:
∫

udx,
∫

u4dx,
∫

ucosxdx and
∫

usinxdx, Eq. (1.4) inherits from K(3,3) only two conserved
quantities:

∫

udx,
∫

u4dx.
Here, by using bifurcation theory of dynamical system, we consider bifurcation prob-

lem of the single peak solitary wave solutions and compacton solutions for the Eq. (1.4).
We look for travelling wave solutions of Eq. (1.4) in the form of u(x,t) = u(ξ) with

ξ = x−ct, where c is the wave speed. Substituting the traveling wave solution u(x,t)=
u(x−ct) into Eq. (1.4), we have the following equation:

−cuξ+a(u3−u2)ξ+(u3)ξξξ =0. (1.5)

Integrating (1.5) once and setting the integration constant as g, we have

−cu+a(u3−u2)+(u3)ξξ = g. (1.6)



1086 W. Wang, C. H. Li and W. J. Zhu / Adv. Appl. Math. Mech., 8 (2016), pp. 1084-1098

Substituting
du

dξ
=y

into the Eq. (1.6), then we have the following equivalent planar system















du

dξ
=y,

dy

dξ
=

−a(u3−u2)+cu−6uy2+g

3u2
.

(1.7)

The system (1.7) has the first integral:

H(u,y)=
3

2
u4y2− g

3
u3− c

4
u4+

a

6
u6− a

5
u5=h. (1.8)

On the singular straight line u= 0, the second equation in (1.7) is discontinuous. Such
system (1.7) is called a singular system. In other words, uξξ is not been defined on the
straight lines in the phase plane (u,y). It derives that the differential system (1.7) could
has some non-smooth behavior or breaking properties of traveling wave solution.

This paper is organized as follows. In Section 2, we analyze the bifurcations of phase
portraits of system (1.7) with a =±1. In Section 3, we give the parametric representa-
tions of the smooth solitary wave solutions and compacton solution of Eq. (1.4). A short
conclusion is given in Section 4.

2 Bifurcations of phase portraits of system (1.7)

In this section, we study all bifurcations of phase portrait in the parametric space. Denote

dξ

dζ
=3u2,

then system (1.7) has the same topological phase portraits as the following polynomial
system















du

dζ
=3u2y,

dy

dζ
=−au3+au2+cu−6uy2+g,

(2.1)

except for the singular line u=0, which is a straight line solution for system (2.1). Easy to
see that system (2.1) is a Hamiltonian system with Hamiltonian function H(u,y) defined
as the same as (1.8). For a given h= H(u,y), (1.8) determine a set of invariant curves of
system (2.1), which contains some different branches of curves. As h varies, (1.8) defines
different families of orbits of system (2.1) with different dynamical behaviors. Denote
that

f (u)=−au3+au2+cu+g. (2.2)
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It is easy to see that on the (u,y)-phase plane, the abscissas of equilibrium points of sys-
tem (2.1) on the u-axis are the solutions of f (u)=0. Noticing that f ′(u)=−3au2+2au+c,
f ′(u) has two solutions u1,u2(u1<u2) if 4a(a+3c)>0.

Let M(uǫ,yǫ) be the coefficient matrix of the system (2.1) at an equilibrium point
Eǫ(uǫ,yǫ), and J(uǫ,yǫ) be its Jacobian determinant. By the theory of planar dynam-
ical system [6–9], if J < 0, then the equilibrium point is a saddle point; if J > 0 and
Tr(M(uǫ,yǫ))= 0, the equilibrium point is a center point; if J > 0 and (Tr(M(uǫ,yǫ)))2−
4J>0, the equilibrium point is a node; if J=0 and the index of equilibrium point is zero,
then the equilibrium is a cusp; if J=0 and the index of equilibrium point is not zero, then
the equilibrium point is a high-order equilibrium point.

2.1 Type 1: The case of a=1

When a=1, system (2.1) becomes














du

dζ
=3u2y,

dy

dζ
=−u3+u2+cu−6uy2+g,

(2.3)

with the first integral

H(u,y)=
3

2
u4y2− g

3
u3− c

4
u4+

1

6
u6− 1

5
u5=h. (2.4)

Case I: g=0

In this case, f (u)=u(−u2+u+c).

(1) when c<−1/4, it is easy to know that the function f (u)=0 has no real roots, which
implies that system (2.3) has no equilibrium points on the u-axis.

(2) When c =−1/4, the function f (u) = 0 has one real root u = 1/2. So there is a
degenerate equilibrium point on the u-axis.

(3) When c>−1/4, there exist two equilibrium points ( 1±
√

1+4c
2 ,0) for system (2.3) on

the u-axis.

Case II: g 6=0

In this case, f ′(u)=−3u2+2u+c, ∆1=4(1+3c).

(1) when c ≤−1/3, ∆1 ≤ 0, the function f (u) = 0 has one real root, there exist one
equilibrium point on the u-axis.

(2) When c>−1/3, the function f ′(u)=0 has two real roots. Obviously, u1=
1−

√
1+3c
3 ,

u2=
1+

√
1+3c
3 , (u1<u2),

f (u1)=
−2

√
1+3c+2+9c−6c

√
1+3c+27g

27
,

f (u2)=
2
√

1+3c+2+9c+6c
√

1+3c+27g

27
.
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Figure 1: The bifurcation curves in the (c,g)-parameter plane when a=1.

Let g1(c)= f (u1)=0, g2(c)= f (u2)=0. Under this condition, if g>g1(c) or g<g2(c), there
exists one equilibrium point on the u-axis; if g2(c)<g<g1(c), there exist three equilibrium
points on the u-axis; if g = g1(c) or g = g2(c), there exist two equilibrium points on the
u-axis.

Thus, the following three bifurcation curves of system (2.3) in the (c,g)-parameter
plane are obtained

g1(c) : g=
(2
√

1+3c+6c
√

1+3c)−2−9c

27
, (2.5a)

g2(c) : g=
−(2

√
1+3c+6c

√
1+3c)−2−9c

27
, (2.5b)

g3(c) : g=0. (2.5c)

Moreover, the curves g2(c) and g3(c) intersect at the point d1=(−1/4,0), the curves g1(c)
and g3(c) are tangent at the point d2 =(0,0). These bifurcation curves divide the (c,g)-
parametric plane into fourteen regions (see Fig. 1):

A1 :
{

(c,g)|c>−1

3
, g1(c)< g

}

⋃

{

(c,g)|c≤−1

3
, g>0

}

⋃

{

(c,g)|c>−1

3
, 0< g< g2(c)

}

,

A2 :
{

(c,g)|c≤−1

4
, g<0

}

⋃

{

(c,g)|− 1

4
< c, g< g2(c)

}

,

A3 :
{

(c,g)|− 1

3
< c<0, g= g1(c)

}

, A4 :{(c,g)|0< c, g= g1(c)},

A5 :
{

(c,g)|− 1

3
< c<−1

4
, g= g2(c)

}

, A6 :
{

(c,g)|− 1

4
< c, g= g2(c)

}

,

A7 :
{

(c,g)|− 1

3
< c<−1

4
, g2(c)< g< g1(c)

}

⋃

{

(c,g)|− 1

4
≤ c<0, 0< g< g1(c)

}

,

A8 :
{

(c,g)|0< c, 0< g< g1(c)}, A9 :
{

(c,g)|− 1

4
< c, g2(c)< g<0

}

,
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A10 :
{

d1 : (c,g)=
(

− 1

4
,0
)}

, A11 :
{

(c,g)|− 1

4
< c<0, g=0)

}

,

A12 :{d2 : (c,g)=(0,0)}, A13 :{(c,g)|0< c, g=0)},

A14 :
{

(c,g)|c<−1

4
, g=0

}

.

In this case, the phase portraits of system (2.3) can be shown in Fig. 2.

Remark 2.1. When (c,g)∈A14, system (2.3) has no equilibrium point on the u-axis. So we
don’t give its phase portraits.

2.2 Type 2: The case of a=−1

When a=−1, system (2.1) becomes














du

dζ
=3u2y,

dy

dζ
=u3−u2+cu−6uy2+g,

(2.6)

with the first integral

H(u,y)=
3

2
u4y2− g

3
u3− c

4
u4− 1

6
u6+

1

5
u5=h. (2.7)

Case I: g=0

In this case, f (u)=u(u2−u+c).

(1) when c> 1/4, it is easy to know that the function f (u) = 0 has no real root, this
implies that system (2.6) has no equilibrium points on the u-axis.

(2) When c=1/4, the function f (u)=0 has one real root u=1/2. So this is a degenerate
equilibrium point on the u-axis.

(3) When c< 1/4, there exist two equilibrium points ( 1±
√

1−4c
2 ,0) for system (2.6) on

the u-axis.

Case II: g 6=0

In this case, f ′(u)=3u2−2u+c, ∆2=4(1−3c).
(1) when c≥1/3, ∆2 ≤0, the function f (u)=0 has one real root, there exist one equi-

librium point on the u-axis.

(2) When c<1/3, the function f ′(u)=0 has two real roots. Obviously, u3 =
1−

√
1−3c
3 ,

u4=
1+

√
1−3c
3 , (u3<u4),

f (u3)=
2
√

1−3c−2+9c−6c
√

1−3c+27g

27
,

f (u4)=
−2

√
1−3c−2+9c+6c

√
1−3c+27g

27
.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 2: The phase portraits of system (2.3) when a= 1. (a) (c,g)∈ A1. (b) (c,g)∈ A2. (c) (c,g)∈ A3. (d)
(c,g)∈ A4. (e) (c,g)∈ A5. (f) (c,g)∈ A6. (g) (c,g)∈ A7. (h) (c,g)∈ A8. (i) (c,g)∈ A9. (j) (c,g)∈ A10. (k)
(c,g)∈A11. (l) (c,g)∈A12. (m) (c,g)∈A13.

Let L1(c)= f (u3)=0, L2(c)= f (u4)=0. Under this condition, if g< L1(c) or g> L2(c),
there exists one equilibrium point on the u-axis; if L1(c)< g < L2(c), there exist three
equilibrium points on the u-axis; if g = L1(c) or g = L2(c), there exist two equilibrium
points on the u-axis.
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Figure 3: The bifurcation curves in the (c,g)-parameter plane when a=−1.

Then, we obtain three bifurcation curves of system (2.6) on the (c,g)-parameter plane

L1(c) : g=
−2

√
1−3c+2−9c+6c

√
1−3c

27
, (2.8a)

L2(c) : g=
2
√

1−3c+2−9c−6c
√

1−3c

27
, (2.8b)

L3(c) : g=0. (2.8c)

In addition, the curves L2(c) and L3(c) intersect at the point d3 = (1/4,0), the curves
L1(c) and L3(c) are tangent at the point d4 = (0,0). These bifurcation curves divide the
(c,g)-parametric plane into fourteen regions (see Fig. 3):

B1 :
{

(c,g)|g< L1(c), c<
1

3

}

⋃

{

(c,g)|c≥ 1

3
, g<0

}

⋃

{

(c,g)|0< c<
1

3
, L2(c)< g<0

}

,

B2 :
{

(c,g)|1
4
≤ c, g<0

}

⋃

{

(c,g)|c< 1

4
, L2(c)< g

}

,

B3 :
{

(c,g)|0< c<
1

3
, g= L1(c)

}

, B4 :{(c,g)|c<0, g= L1(c)},

B5 :
{

(c,g)|1
4
< c<

1

3
, g= L2(c)

}

, B6 :
{

(c,g)|c< 1

4
, g= L2(c)

}

,

B7 :
{

(c,g)|0< c≤ 1

4
, L1(c)< g<0

}

⋃

{

(c,g)|1
4
< c<

1

3
, L1(c)< g< L2(c)

}

,

B8 :
{

(c,g)|c< 1

4
, 0< g< L2(c)

}

, B9 :{(c,g)|c<0, L1(c)< g<0},

B10 :
{

d3 : (c,g)=
(1

4
, 0

)}

, B11 :
{

(c,g)|0<0<
1

4
, g=0

}

,

B12 :{d4 : (c,g)=(0,0)}, B13 :{(c,g)|c<0, g=0)},

B14 :
{

(c,g)|c> 1

4
, g=0

}

.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 4: The phase portraits of system (2.6) when a=−1. (a) (c,g)∈B1. (b) (c,g)∈B2. (c) (c,g)∈B3. (d)
(c,g)∈B4. (e) (c,g)∈B5. (f) (c,g)∈B6. (g) (c,g)∈B7. (h) (c,g)∈B8. (i) (c,g)∈B9. (j) (c,g)∈B10. (k) (c,g)∈B11.
(l) (c,g)∈B12. (m) (c,g)∈B13.

In this case, the phase portraits of system (2.6) can be shown in Fig. 4.

Remark 2.2. When (c,g)∈ B14, system (2.6) has no equilibrium points on the u-axis. So
we don’t give its phase portraits.
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3 Single peak solitary wave and compacton solutions

3.1 Single peak solitary wave solutions of Eq. (1.4)

In this section, we study single peak solitary wave solutions of Eq. (1.4) by using the
phase portraits given in the Section 2. Learning from Eq. (1.8), we get

(uξ)
2=

2h

3u4
+

2g

9u
+

c

6
− au2

9
+

2au

15
. (3.1)

To study single peak solitary wave solutions, we impose the boundary condition

lim
ξ→±∞

u(ξ)=A, (3.2)

where A is a constant. In fact, the constant A is equal to the horizontal coordinate of
saddle point. Substituting the boundary condition (3.2) into (3.1), Eq. (3.1) becomes

(uξ)
2=

(u−A)2V(u)

90u4
, (3.3)

where

V(u)=−10au4+(−20aA+12a)u3+(15c−30aA2+24aA)u2

+(−20aA3+16aA2+10Ac)u+(−10aA4+8aA3+5A2c).

The fact that both sides of Eq. (3.3) are nonnegative implies V(u)≥0. If 3aA2−2aA−c≤0,
then Eq. (3.3) reduces to

(uξ)
2=

(u−A)2(B1−u)(u−B2)((u−k1)
2+k2

2)

90u4
, (3.4)

where B1, B2, k1, k2 are real constants and B1>B2.

Definition 3.1. A function u(ξ) is said to be a single peak soliton solution of the Eq. (1.4)
if u(ξ) satisfies the following conditions:

(C1) u(ξ) is continuous on R and has a unique peak point ξ0, where u(ξ) attains its
global maximum or minimum value;

(C2) u(ξ)∈C3(R−{ξ0}) satisfies Eq. (1.4) on R−{ξ0};
(C3) limξ→±∞ u(ξ)=A.

Definition 3.2. A wave function u(ξ) is called peakon if u(ξ) is smooth locally on either
side of ξ0 and limξ↑ξ0

u′(ξ)=−limξ↓ξ0
u′(ξ)= a, a 6=0, a 6=±∞.

Definition 3.3. A wave function u(ξ) is called cuspon if u(ξ) is smooth locally on either
side of ξ0 and limξ↑ξ0

u′(ξ)=−limξ↓ξ0
=+∞ (or −∞).
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Without loss of generality, we assume ξ0=0.

Theorem 3.1. Assume that that u(ξ) is a single peak solitary wave solution for the Eq. (1.4) at
the peak point ξ0 =0, Then we have u(0)=0 or u(0)=B1 or u(0)=B2.

Proof. If u(0) 6=0, then u(ξ) 6=0 for any ξ∈R since u(ξ)∈C3(R−{0}). Differentiating both
sides of Eq. (3.3) yields u∈C∞(R).

If u(0) 6=0, by Eq. (3.3) we see u′(0) exists. According to the definition of peak point,
we have u′(0)= 0. Thus we obtain u(0)= B1 or u(0)= B2 from Eq. (3.4), since u(0)= A
contradicts the fact that 0 is the unique peak point.

By virtue of the above theorem, all single peak soliton solutions for the Eq. (1.4) must
satisfy the following initial and boundary values problem















(uξ)
2=

(u−A)2V(u)

90u4
,

u(0)∈{0,B1,B2},

limξ→±∞ u(ξ)=A.

(3.5)

Below, we will present some implicit formulas for the single peak solitary wave solutions
for some specific cases.

3.1.1 Type 1: Smooth solitary wave solutions of system (1.4)

From (3.4), we have

(uξ)
2=

(u−A)2(B1−u)(u−B2)(u−d)(u−d)

90u4
, (3.6)

where A is real double root, B1, B2 are reel roots, d, d are complex roots.
Suppose a = 1. There exist smooth solitary wave solutions of system (1.4), which

corresponds to the homoclinic orbits defined by H(u,y)=h1=H(A,0) in the Fig. 2(h). By
the standard phase portrait analysis, we have B2<A<0<B1. On the interval [B2,A], we
have the following smooth solitary wave solutions. From (3.6), we have

uξ =
(u−A)

√

(B1−u)(u−B2)(u−d)(u−d)
√

90u2
sign(ξ). (3.7)

Further,
|ξ|√

90
=

∫ u

B2

u2

(u−A)
√

(B1−u)(u−B2)(u−d)(u−d)
du. (3.8)

Eq. (3.8) can be reduced to
|ξ|√

90
= I1+AI2+A2I3, (3.9)
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where

I1=
∫ u

B2

u
√

(B1−u)(u−B2)(u−d)(u−d)
du,

I2=
∫ u

B2

1
√

(B1−u)(u−B2)(u−d)(u−d)
du,

I3=
∫ u

B2

1

(u−A)
√

(B1−u)(u−B2)(u−d)(u−d)
du.

We obtain

I1=
g(B1N+B2M)

M−N
F1, I2= gcn−1(cos ϕ,κ), I3=

M+N

M(B2−A)−N(B1−A)
F2,

where

b1=
d+d

2
, a2

1 =− (d−d)2

4
, M2=(B1−b1)

2+a2
1,

N2=(B2−b1)
2+a2

1, g=
1√
MN

, κ2=
(B1−B2)2−(M−N)2

4MN
,

κ′=
√

1−κ2, cos ϕ= cnu1=
(B1−u)N−(u−B2)M

(B1−u)N+(u1−B2)M
, sdu=

snu

dnu
,

α1=(B2M−B1N)/(B1N+B2M), α2=β1=(M−N)/(M+N),

β2=(B2M−B1N+AN−AM)/(B1N+B2M−AM−AN),

Fi=αiu1+
βi−αi

1−β2
i

[

Π

(

u1,
β2

i

β2
i −1

)

−βi fi

]

,

fi =

√

1−β2
i

k2+k′2β2
i

arctan
(

√

k2+k′2β2
i

1−β2
i

sdu1

)

,

and i=1,2. cn(u,k), sn(u,k), dn(u,k) are the Jacobian elliptic function, while Π(···) is the
elliptic integral of the third kind.

Therefore, we have the parametric representation of solitary wave solution of (1.4) as
Eq. (3.9). And the profile of smooth solitary wave is shown in Fig. 5.

3.2 Compacton solution of system (1.4)

When a = 1, A = c = 0, by the standard phase portrait analysis (see Fig. 2(l)), we have
B2=0, B1=6/5. Eq. (3.3) becomes

(uξ)
2=

u(6−5u)

45
. (3.10)
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Figure 5: The profile of smooth solitary wave of u(ξ) of Eq. (1.4).

Figure 6: The profile of compacton of u(ξ) of Eq. (1.4) when a=1, A= c=0.

From Eq. (3.10), we have

uξ =

√

u(6−5u)√
45

sign(ξ). (3.11)

Integrating both sides of Eq. (3.11) on the interval [0,6/5] leads to a compacton solution
with compact support

u2(ξ)=







1

5

(

3+3cos
( |ξ|

3

))

, |ξ|≤3π,

0, otherwise,
(3.12)

with the properties

u2(0)=0, lim
ξ→±∞

u2(ξ)=A=0, u′
2(0)=0.

The profile of the compacton solution is shown in Fig. 6.
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4 Conclusions

In this paper, we study the integrable nonlinear wave Eq. (1.4). By using the method
of dynamical system, we have analyzed the numbers and relative position of the equi-
librium points. Furthermore, we obtain the parametric representations of single peak
solitary wave and compacton solution for the Eq. (1.4). Asymptotic analysis and numer-
ical simulations are provided for smooth solitary wave and compacton solution of the
equation.
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