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Abstract. In this paper we extend the idea of interpolated coefficients for a semilinear
problem to the quadratic triangular finite volume element method. At first we intro-
duce quadratic triangular finite volume element method with interpolated coefficients
for a boundary value problem of semilinear elliptic equation. Next we derive conver-
gence estimate in H'-norm, L?>-norm and L*®-norm, respectively. Finally an example is
given to illustrate the effectiveness of the proposed method.
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1 Introduction

The finite volume element method is a discretization technique for solving partial dif-
ferential equations, especially for those that arise from physical laws including mass,
momentum, and energy. The method has been widely used in computational fluid me-
chanics and other applications because it keeps the mass conservation [2,5-7,11,12, 14,
15,17,18,21,22,25-28,34]. As far as the method is concerned, it is identical to the special
case of the generalized difference method or GDM proposed by Li-Chen-Wu [21].

The finite element method with interpolated coefficients is an economic and graceful
method. This method was introduced and analyzed for semilinear parabolic problems
in Zlamal [35]. Later Larsson-Thomee-Zhang [19] studied the semidiscrete linear trian-
gular finite element with interpolated coefficients and Chen-Larsson-Zhang [10] derived
almost optimal order convergence on piecewise uniform triangular meshes by use of su-
perconvergence techniques. Xiong-Chen studied superconvergence of finite element for
some semilinear elliptic problems [29-31]. Xiong-Chen first put the interpolation idea
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into the finite volume element method and studied the finite volume element with in-
terpolated coefficients of the two-point boundary problem [32] and the linear triangular
finite volume element method for a class of semilinear elliptic equations [33].

Li [20] has considered the finite volume element method for a nonlinear elliptic prob-
lem and obtained the error estimate in H'-norm. Chatzipantelidis-Ginting-Lazarov [8]
have studied the finite volume element method for a nonlinear elliptic problem, estab-
lished the error estimates in H'-norm, L?>-norm and L®-norm. Bi [3] obtains the H!
and W' superconvergence estimates between the solution of the finite volume element
method and that of the finite element method for a nonlinear elliptic problem. In this
paper, we put the excellent interpolating coefficients idea into the finite volume element
method on triangular mesh for a semilinear elliptic equation.

We denote Sobolev space and its norm by W*"(Q) and ||-||,, respectively [1]. If r=2,
simply use H*(-) and ||-||x and ||-|| = ||-||o is L>norm. Further we denote with ' the
adjoint of 7, i.e.,

ror
We assume that the exact solution u is sufficiently smooth for our purpose. Throughout
this paper, the constant C denotes different positive constant at each occurrence, which is
independent of the mesh size h.

The rest of the paper is organized as follow. First we introduce the quadratic trian-
gular finite volume element method with interpolated coefficients in Section 2 and give
preliminaries and some lemmas in Section 3. Next we derive optimal order H'-norm,
L2-norm and L®-norm estimates, respectively, in Section 4. Finally the theoretical results
are tested by a numerical example in Section 5.

2 Quadratic finite volume element method with interpolated
coefficients

Let QO CIR? be a bounded polygonal domain. Consider the second-order semilinear ellip-
tic boundary value problem:

{ —Au+f(u)=g in Q, 2.1)

u=0 on JdQ).

It is assumed that f(s) is the sufficiently smooth function with respect to s, and f’(s) >0
for finite interval.

Let V C Q) be any control volume with piecewise smooth boundary oV Integrate (2.1)
over control volume V, then by the Green’s formula, the conservative integral of (2.1)
reads, finding u, such that

ou
_ /a s+ /V F(u)dxdy = /V gdxdy, VcQ. (22)
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Figure 1: lllustration for a dual element Vp, and its modes.

The FVE method of (2.2) consists of replacing by finite-dimensional space of piece-
wise smooth function and using a finite set of volumes. In this paper, we shall consider
triangular partition of () and piecewise quadratic triangle interpolation with interpolated
coefficients, for u.

Give a quasi-uniform triangulation 7, for Q) with h=maxhg, where hg is the diameter
of the triangle K € Jj,. Let Qg be the barycentre of K € J,,. The vertexes of the triangles
and the midpoints of the sides are taken as the nodes. (), denotes the set of the vertexes
of all the triangular elements, M), the set of the midpoints of the sides of all elements.
All the control volumes constitute the dual partition ', consisting of the polygons Ky,
surrounding the node Py € (), and K}, surrounding M € M;,. Their detailed construction
is as follows [21]:

1) Construction of K}, . Suppose that Py € (), that P; are its adjacent vertexes, and that
Py; is a point on Dy P; such that PyPy; = Py P;. Connect successively P; to obtain a polygon
Kp, (see Fig. 1).

2) Construction of K},. Let M € Mj, be a midpoint of a common side of two adjacent
triangular elements Ko, = APyP; P> and Kg, = APyP; P3. Denote by Q15, Q13, Qo2, Qo3 the
midpoints of Py Pop, Po1Pos, PioP12 and Py Pi3 respectively. A polygon K3, surround M is
obtained by connecting successively Pig, Qo3, Q2, Q13, Po1, Q12, Q1, Qoz2, Pio (see Fig. 2).

For boundary nodes, their control volumes should be modified correspondingly.

Let S, C HY(Q) and Sy, C H}(Q) be both the piecewise quadratic triangular finite
element subspace over the partition 7}, and S; be the piecewise constant space over the
dual partition 7,". Denote ¢p by basic function of S at the node P € (3,UM;,. For an
arbitrary node P € (),UM;, denote xp or xp by characteristic function over Vp or V.
Define standard Lagrangian interpolation operator I,: C(Q)) — S, by

Lig= Y  o@(P)pp, VoeC(Q), (2.3)
PGO;,UM;,
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Figure 2: lllustration for a dual element V) and its modes.

and interpolation operator I} : C(Q2) = S; by

Lio= Y. o¢(P)xp, YoeC(Q). (2.4)
PEO;,UM;,

The standard finite volume element scheme of (2.2) can read, finding iij, € Sgy,, such that

auh
- d+/ (1) dxd / dxdy, VPeO,UM
/avp o fay)dxdy= | gdxdy nUM.
For the sake of simplicity, we now define quadratic triangular finite volume element
scheme with interpolated coefficients, finding uj, € Sqj, such that

P / L, f (uy)dxdy = / gdxdy, VPeQ,UN,. 2.5)
avp on
Eq. (2.5) can be further written as difference equation which is simpler than that of stan-
dard finite volume element method [32]. Notice that Iy, f (u,) = Y peq, um, f (un(P))pp and
one can be solved by the Newton iteration method in which its tangent matrix can be
calculated simply.

3 Preliminaries and lemmas

In the preceding section, we give the finite volume element scheme with interpolated
coefficients. We will give preliminary work and some lemmas in this section. Letting

ou

a(wlipn)=— Y, ou(P )/ ——ds, Von € Son,
Pe(y, UM, Ve oan

(wTig= Y u(P) [ udxdy, Yo € Son

PGQ;, UM;,
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Figure 3:

and taking V = Vp, (2.2) can be written as, finding u € H}(Q)), such that

a(u, L on)+(f () Lyon) = (& Typn), Yo € Son- (3.1)

Analogously, (2.5) is equivalent to finding uj, € Sqj, such that

a(upIyon) + T f (un) Lion) = (8 1h9n),  You€Son- (3.2)

For the sake of simplicity in our analysis in the paper, we still denote the bilinear form by
a(u,v)= / Vu-Vodxdy, VYu,v€H{(Q).
Q

Depicted as in Fig. 3, we convert the integral on the edge of dual partition to the related
element K= AP;P;P € Jj, then

a(ulyon)=— 3, ). [(Ph Pz/

du du
s+ gu(M) / Sds], Vgneso (33)
KETyl=ijk aVp MK

9V, NK ON

Similarly, we can obtain

(wlion)=)_ /ulh(phdxdy
KET,

-y ¥ [q)h P / udxdy + g5 (M) / udxdy], Yon€Son. (34
KGJhl l]k ﬁK VMZOK

Denote ||-||s and |-|s be continuous norm and continuous semi-norm of order s in Sobolev
space H*(Q)), respectively. Let us introduce the discrete zero norm, semi-norm and full-
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norm, respectively, by

1/2
loullon={ ¥ lguluc} (3.50)
KeJy
1/2
’(Phh,hZ{ Z|§0h|ih,K} / (3.5b)
KeJy
2 2 \1/2
enllin= (lenllon+lenlin) (3.5¢0)

for ¢, € Son, where K= AP;P; P, shown as in Fig. 3, and

7

1 1/2
l@nllonk= | = (% +93+ 0%+ 0+ 0k + ) S

’(Phll,h,K = [(gopi _(PMi)2+((PPj_(PMj)2+(gopk_goMk)z
+ (o, — om,) >+ (@m,— a1

From [21], we have the following lemma.

Lemma 3.1. For all ¢, € Sop, |@p |1 and |@y|1 are identical and || @y|lon and ||@p||1, are equiv-
alent with ||@p||o and ||y |1 respectively, i.e., there exist positive constants C1, Ca, C3, Cy inde-
pendent of h such that

Cilenlon <lonlo < Calenlon Vo €Sy, (3.6a)
Callenllun < llenllt < Call@nllin, Vi €Sy (3.6b)

From [7,9,21], we have three lemmas.

Lemma 3.2. There exist positive constants C1, Ca such that

a(@nTjon) > Clonli, Yon € Son, (3.72)
|a(u =Ty, pn) | < Coh?||ull3] pnl1, VueHy(Q), ¢n€So- (3.7b)

Lemma 3.3. The semi-norm |-|y and the norm ||-||1 are equivalent in the space H}(QY), that is,
there exists a positive constants C such that

[onli <ll@nlli <Clonl1,  VoueSo (3.8)
Lemma 3.4. The interpolation operator I has the following properties

L onl e .00 < ||7n]le,000 Yoy, € Soy, for any side e of K€ 7y, (3.9a)
lon —Th@nllo,p,x < Chlenl1,p,x, Vo €Son, 1<p<oo. (3.9b)

In addition in [9], for the interpolation operator I, the following lemma is derived.
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Lemma 3.5. Assume that w, ¢ are sufficiently smooth functions. Let I, € Soy, be the Lagrangian
interpolation of ¢, then

(@=L, 9n) | <CH || @ll2pllnll1,p, Vb1 € Son, (3.10)
for
1 1
—4—=1, 1<p<oco.
p v P

Lemma 3.6. Assume ue H}(Q)), then there exists a positive constant C, independent of the mesh
size h, such that

| (=T, o) | < CH[ull2 ]| @ullo, Vo € Son- (3.11)
Proof. In view of the Schwartz inequality, we easily give the desired (3.11). O

In addition in [7, 8], the following lemma is derived.

Lemma 3.7. Let e be a side of a triangle K € [Jy,. Then for u€ H'(K) there exists a constant C >0
independent of h such that

[uon=Tion)ds| <CHlull llenllk, Vor ey, (3.12)

e

Moreover, for u€ H' and vj, € Sy,
(1,00, =Tyop) < CH?|Jul |1 ][0 1 (3.13)
For our theoretical analysis, we also need two lemmas as follows.

Lemma 3.8. Let u € H. The following identities hold

Y / o ds=0, Y / Iy ds—0, (3.14)
K7, oK On K7, 9K 0N

Proof. The first identity of (3.14) is obvious by rewriting the sum as integrals of jump

terms over the interior edges of ;. These jumps obviously vanish because of the conti-
nuity of du/dn. A similar argument gives the second identity of (3.14). O

Lemma 3.9. It holds

| (un,on) = aun Tyon) | < COPfupl |+ 12|+ Rl =g [[1) o1 (3.15)
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Proof. Using the Green’s formula, the identity

d (1), 9 (2)
/vme<axW el )dxdy

(1) 47(2) 1 w2
= W, , W) .nd —|—/ W, , W, -nd 3.16
meaK( h h ) ’ anmK( h h ) i ( )

holds for P € Z) and K € J;, and hence we have

a(uy,oy) = Z / w2 ))Ihvhdxdy

KeJy

+ Z / nI,Z v, ds. (3.17)

KeJy

By use of the Green’s formula, we also obtain

a(up,vp)
=) / aﬁ+w( 290 )dxdy
KeJy ay
_ (2) (2)y.
=) + W vpdxdy+ Z h ,wh )-noyds. (3.18)
Ke, 'K ax Ay Ke,

Subtracting (3.17) from (3.18) gives

a(up,op) —a(up,Loy) = Z/ Y + W( ))(vh—I;vh)dxdy
KeJy x y

+ Y / (v, —T;o)ds. (3.19)

KeJy

Lemma 3.8 gives the identity
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Employing this identity, (3.9) in Lemma 3.4, we get

a(up,op) — (Mh,livh)

S Z/ ax —&+ yW 52) (vp—T;vp)dxdy

KeTy

ST [ (00D W) - Wl W), (W w2
KeJy,

— (W,£2) — Wh(z))e) (v, —TIjv)ds

=) (Ik+1x), (3.20)
KeJy

where &1 and & are the mean values of - ( ) and W( ) over triangle K, respectively.
By using the Holder’s inequality, we can get

1| < CR(IWM |1+ W 1) on |1k < CH2 [l 1 [lon |1, x. (3.21)

To bound IIg, we have

2 o(uy—u o(uy—u
1] < (1 (0 - (6) 25 ¢ (- an(e) 2] ol
<Chmax |aj;|([|u—up||1x+nl[ull2) [|on]l1,x- (3.22)
Summing up (3.21) and (3.22) over all triangles, we obtain the desired (3.15). O

4 Error estimate of the finite volume element

We have given the definition of the finite volume element scheme with interpolated co-
efficients. Now we analyze the error of the scheme. To start our analysis, we introduce
an auxiliary bilinear form

A(w;w,Tign) =a(w, I on) + (f (u)w, I on),

where u is the exact solution in (2.5). For the auxiliary bilinear form A(u;-,-), we have
following positive definite property.

Lemma 4.1. Assume f'(s) > 0 for finite interval, then for fixed u € Hj(Q), A(u;wy, Liwy) is
positive definite for sufficiently small h, i.e., there exists a positive constant w, such that

A(u;wp, Gwy) > au, f) w3, Yy € Son. 4.1)
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Proof. Rewrite A(u;wy,, I;wy,) as
A(uzwy, Gwy) = a(w,Gon) + (f (wn)wp,wp) — [(f (w)wn,wn) = (F (w)wp, Gwy)]. (42)
Application of Lemma 3.2 and Lemma 3.3 yields
a(wy, T;wy) > Crlwy 7. (4.3)
Note that f'(s) >0 and let C; =infpcq ' (u;,(P)) for the fixed uy, then we have
(f (un)wn,wy) > Ca|lwy |5 > 0. (4.4)
In terms of (3.9) in Lemma 3.7, we obtain
| (" () wn,wn) = (f () Ty )|
Y [ f nnyon(w,—aw,)dxdy

KeJy
< Y Chlf (un)wn|1,kh|wy]1,x
KeJ,
<max(|f" () Viurl, £ (w)]) 1 CH w13 &
KeJy
<Cal2 - *.5)

Together (4.3), (4.4) with (4.5) yields
Al(up;wp, o) > Ci [|wy || — Csh? ||wp |17 = (Cr = Cah?) [ |3,
which implies the desired result (4.1) for sufficiently small /. O

Lemma 4.2. Assume w € H}(Q), then for fixed uj, € Sy, there exists a positive constant C,
independent of the mesh size h, such that

| A ;w0 —Lyw, Lyon) | < CH? [wllsll @il Yopu € Son- (4.6)
Proof. Rewrite A(uy,w—L,w,I;¢p) as

Aupw—Tw, 1 op) =a(w—T,w, 1 ey)+ (f (up) (w—Tw),ep)
+(f (un) (w—Tyw), L) — (f (un) (w—Tw), y).- (4.7)

Again application of Lemma 3.2 and Lemma 3.3 yields
|a(w—Tw,Ton)| < C?[lwlls]gnllr- (4.8)
By Lemma 3.5, we obtain

|(f () (w—Tyw), @n) | < CH[[ew]l3 | n 1. (4.9)
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Recall Lemma 3.4,we also obtain the following inequality

(' (un) (w—Tyw), Ty @p) — (f () (w —Tpw), ) |

< Y () (w—Tw) [|o.x || on =T @nllo x
KeJy

<max(f'(un)) Y llw—Twlloxllon—T;¢nllox

KeJy,
<Ch*||w]|2||@n]l1- (4.10)
Together (4.8), (4.9) with (4.10) yields the desired results (4.6). O

Now we state the main result of this section.

Theorem 4.1. Assume f'(s)>0, fEC?(R), g€L*(Q). Let u€ H} (Q)NH?(Q) be the solution of
(2.1) and Jy, be quasi-uniformly triangular partition of domain (), then the approximate solution
uy € Soy, of finite volume element method (2.5) with interpolated coefficients converges to the exact
solution u with the following estimate

it~ < CI2. (411)
Proof. Subtracting (3.2) from (3.1), we obtain the following error equation

a(u—up,Lop)+(f(u)—=L,f(uy), L en) =0. (4.12)

By expansion, we have

() f o) = ) )+ (=0 [y ) (1 )l
=" (up) (u—wy) + (u—up)*f". (4.13)

Substituting (4.13) into (4.12), we find

A(upsup—Tyun, I op)
=A(upsu—Ly Xyop) + ((w—up) 2 F" + f () =T f (), L) ]| 67
<(Cllu=Tpully+Cl f (un) =T f (un) |+ C | (e —1a1,)?(]) 1|61

Application of Lemma 4.1, Lemma 4.2 and Lemma 3.6 yields
1611y < Ch?+Cll (u—up)?|- (4.14)
By use of the property of the interpolation I;,, we obtain

1o — )2 [ <201 (= Tp10)?[ |1 +2]] 02| < Ch*+2]]62]].
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Substituting this into (4.14) yields
16]11 < Ch*4-C||6?], (4.15)
where the constants are dependent of u, uy, f, g. Recalling for Bramble [4] that
16]loe < Clink[*/2[[V6]| <ClInk[*/2|10]]1

holds for 8 € Sy, we get

162 = (/094dxdy>1/2 < max6| (/092dxdy>1/2

=100, 1611 < Cltn |/ 2] 0]l [|6]] < C|inF|*/2[10]]3.
Substituting this into (4.15) yields
16]]1 < C1h* 4+ Co|Inh|'/2 6] (4.16)

Now adopting a continuity argument by imitating the method by Frehse-Rannacher [16],
we show

16111 < Tyut—uy ||y <2C11%. (4.17)
For s €[0,1] considering the auxiliary semilinear elliptic problems (P?): Find u° such that
—AuP+sf(u’)=sg in Q, u*=0 on 0. (4.18)

Obviously, for s=1 this is our original problem (2.1) and for s =0 we have u’=0 on ().
We shall assume the following condition on Q. For any s € [0,1], there is a solution u° of
problem (P*) and there is a constant I such that set

Nr= {w‘weH%Q)ﬁH&(Q), mgx|u—w[ <F}

is some neighborhood of exact solution u in (2.1).
We approximate problem (P°) by the discrete problems (Pj ): Find u; € Sp;, such that

a(uy, Xop)+s(L f(uy) Ioy) =s(g Lyon), Vo, €Son. 4.19)
We intend to show that (P;) is solvable. For each h, we define the set E;, C [0,1] by
E,={s€[0,1]|(P;) has a solution u5, € Nt and there holds ||T,u*—u |l; <2C1h*},

where C is the constant appearing in (4.16).
(i) E; is not empty. In fact, for s=0,u° =0 and uj, =0 are the solutions of continuous
and the discrete problem, respectively.
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(ii) Ey is openin [0,1]. In fact, if s€ Ej, then (P} ) is solvable and using the monotonicity
condition, we obtain the solvability of (P} ) for all f in a neighborhood of s via the implicit
function theorem. By the implicit function theorem u! depends continuously on t. Thus
properly shorten the neighborhood such that the strict inequality ||1,u®—us || <2C1h? and
uj € Nr is still valid and we have t € Ej, for these t.

(iii) Ej, is closed. Let s(j) € Ej, and s(j) —s,j — oo. Since uZ(j) € Nr there is a cluster
point 5 which is the unique solution of (P}) and satisfies ||I,u° — u3||; <2C1h?. Recalling
for (4.16) we conclude

[Tyu — 15 ||1 < Crh2 4+-4CoC?|Ink| Y2 1% < Cp (1+4C, Co|Inh|V2H2) 12,

then for h<h*(Cy,C,), we have 4C;Co|Inh|'/2h? <1 and ||T,u* —u || <2C1h?, i.e., the strict
inequality.

From (i)-(iii), we know that for h <h*(C;,C;) the set E;, is not empty, closed and open
with respect to s € [0,1] and thus must coincide with [0,1]. Note that for s=1, (P}) is
solvable. We prove that inequality (4.17) and uj, € Nr hold for appropriately small .

Finally, the desired estimate (4.11) follows from (4.17) and the interpolation property

=Tl < CI2u
Thus, we complete the proof. O

For the proof of the L?-norm estimate we shall employ a duality argument as the one
used in [7,13], Let us consider the another auxiliary problem. Find ¢ € H}, such that

a(@,0)+(f (uy)@,0) = (u—uy,v), Yo€H]. (4.20)

Then the solution of (4.20) satisfies the following elliptic regularity estimate
l@ll2 < Cllu—up]. (4.21)
Theorem 4.2. Assume f'(s)>0, fEC?(R), g€ L*(Q)), and Jy, is quasi-uniform triangular parti-

tion of domain Q). Let u€ Hj(QY)NH?(QY) be the solution of (2.1) and uy, € Sy, be the approximate
solution of finite volume element method (2.5) with interpolated coefficients, respectively. Then

[ —uy| < Cu,f,g)h°. (4.22)
Proof. Firstly we note the following Taylor expansions
1 —_
Fla) = ) = (=) [ f (b))t = (=) (4.230)

) f )~ ) ) = )2 [t —0)) (1~ )l
= (u—up)*f". (4.23b)
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Then, in view of (4.20), we have

[t —un||*> =a(u—up, @)+ (f () (u—up), @)
=a(u—up, @)+ (f () = f(un), @)+ (f (up) = f () +f (up) (u—uz), @)
={a(u—up,¢—=Tn@)+(f(u) = f(un), 0 =Tno) } +{a(u—upT,¢)
+(f () = f (un) Tn) }+{ O () = f () +f (u) (u—up), ) }
=1 + L+ 1. (4.24)

Using (4.23a) and the interpolation property, we can get
L <C(u f)hlju—upll1]@ll2- (4.25)
Using (4.23b) and the interpolation property, we can again get
] < C(u, )l (=)ol < C(UI =L |+ 10 @l < Ch* [l ]| (4.26)

Rewriting I, as

L=a(u—upLyp)+(f(u)—f(un)Lng)
=a(u,Ine)+ (f (1), 1ne) —a(uplye) — (f (un), Inp)
=(g1ng) —a(unng) — (f (un) Ing) — (&1, ) +a(unL@) — (Inf (un) L)
=(&Ihe—1,¢) —a(uplne—T,0) — (f (up) =T f (un) Ine) — (I f (up) ln =1, @),

and applying Lemma 3.5, Lemma 3.7 and Lemma 3.9, we get
| <C(H +hlu—up[l1)l| ] (4.27)
Therefore, substituting (4.25), (4.26), (4.27) and (4.21) into (4.24) yields
e — [ < T + 2|+ [T ] < C O+l — g 1) |1 — 1y ]
Omitting the common factor ||u —uy||, this implies

| —up|| < C(R*+hl|u—ullr),

which gives the desired estimate (4.22) by using Theorem 4.1. O

Theorem 4.3. Assume f'(s)>0, f€C?(R), g€ L*(Q), and that the coefficients a1», az in (2.1)
satisfy ayy=ax and Jy, is quasi-uniform triangular partition of domain Q. Let u€ H} (Q)NC(Q)
be the solution of (2.1) and uy, € Sgy, be the approximate solution of finite volume element method
(2.5) with interpolated coefficients, respectively. Then

| —up |00 < C(u, f,)h°|Inh]. (4.28)
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Proof. By using the triangle inequality, we have
[ —unllo,eo <[t —n 0,00+ |25 —1n ]| 0,00,
where 7, is the finite element approximation of u satisfying
a(ity,on) + (f (), 0n) = (8,01), Vou € Son- (4.29)
It has been shown in [7,9, 23]
| — iy || 0,00 < C(u, f,g) 13| Inh]. (4.30)

Next, we turn our attention to the estimate of ||, —uy||o,«. Let P* € Ky C J), such that
|| ip —1p|0,c0 =| (11, —up) (P*)| and dp- € CP(Q2) is a regularized Dirac é-function satisfying

(6,0n) =on(P").
Consider the corresponding regularized Green’s function G € H} (Q)), defined by
a(G,0)+(f'(i1,)G,v) = (6p-,v), Vo€ H(Q). (4.31)
Let G, € S’(} be the finite element approximation of G, i.e.,
a(G—Gy, o)+ (f'(i1,)(G—Gy),v) =0, YoeH}(Q).
Then, in terms of (3.2) and (4.29), we can get

(|1 =t lo,c0 = (p+, iy — ) = a (i — 1y, Gy )+ (f' () (i — 1), Gp)
=(8,Gn) — (f(#n),Gn) —a(up, Gy) + (f (dy) (i —up),Gp)
+a(up,1,G)+ (U f (un) 1;Gn) — (8, 1,Gn)
={(8,Gn—1;Gn) —a(up, Gy —1;Gy) } +{ (Tnf (), 1;,Gp)
— (f (un),Gn) } =+ (f (i) (i1, — up) — f () + f (un ), Gp)
=I4+15+1¢. (4.32)

Using Lemma 3.7, Lemma 3.9 and Theorem 4.1, we can get

L] < C|gl[11| Gplla +C (| =yl |1+ [[ull2) [ Gull1 < C(1,8)1 || G- (4.33)
Using Lemma 3.7 and the interpolation property, we have

1] = | (f (un), G —T;Gu) |+ (f () = L f () 1;Gu) | < C 1, )12 G 1. (4.34)
Using (4.23b) and (4.34) and Theorem 4.1, we get

T | <|(f" (i) (i —un) — f (i) + f (un), Gn)|
<Cl| (i —un) |Gl < C:1F*(| G- (4.35)
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Table 1: Errors of FVEM with interpolated coefficients.

Hl-seminorm L2-norm L®-norm
h Error Rate Error Rate Error Rate
1/4 | 3.0209¢—6 5.2118¢—6 5.9708e—6

1/8 | 9.5310e—7 3.17 | 7.2956e—7 7.14 | 7.7624e—7 7.69
1/16 | 2.4847e—7 3.84 | 8.6112e—8 8.47 | 9.9410e—8 7.81
1/32 | 6.2020e—8 4.01 | 9.7218¢—9 8.86 | 1.1723¢—8 8.48

In addition in view of [7,24] we get
Gpll1 < C|Ink| 2. (4.36)
Combining of (4.33)-(4.35), we obtain
|7, — ]| 0,00 < CH3 | Ink| /2.
From this and (4.30) we get
|t — 1t ]| 0,00 < C(14|Ink| 1/2) B3| Inh],

which gives the desired estimate (4.28) for sufficiently small /. O

5 Numerical example

In this section we present a numerical experiment to verify the theoretical investigations.
Let Q= (0,1) x(0,1). We choose f(u)=u3 and g(x,y) =2(x(1—x)+y(1—y))cos(x(1—
y))+y(1—x)(x®+(1—y)?)sin(x(1—y)) +y>(1—x)3sin®(x(1—y)) in the problem (2.1) so
that the exact solution is: u(x,y) =y(1—x)sin(x(1—y)).

Place a right triangular decomposition on the domain Q)= (0,1) x (0,1) with the right-
angle-side length

] Z./]':()/1/2/"'11\]/

1
h_ N/ y]_ﬁl

1 J—
NN
depicted as Fig. 4.

Compute it by the quadratic triangular finite volume element method with interpo-
lated coefficients. The results are listed in Table 1. As observed, the error between the
quadratic triangular finite volume element solution with interpolated coefficients and
the exact solution is minor and stable at the nodes. The H!-norm error is of the 2-order

accuracy and the L2-norm error and L®-norm error are of the 3-order accuracy. This
agrees well with the theoretical analysis.
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O 1

Figure 4: The right triangulation of O=(0,1) x (0,1) with the right-angle-side length h=1/5.
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