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Abstract. For a prescribed set of lacunary data {(xν , fν , f
′′

ν ) : ν = 0, 1, . . . , N} with

equally spaced knot sequence in the unit interval, we show the existence of a fam-

ily of fractal splines Sα
b ∈ C3[0, 1] satisfying Sα

b (xν) = fν , (Sα
b )

(2)(xν) = f ′′

ν for
ν = 0, 1, . . . , N and suitable boundary conditions. To this end, the unique quintic

spline introduced by A. Meir and A. Sharma [SIAM J. Numer. Anal. 10(3) 1973,
pp. 433-442] is generalized by using fractal functions with variable scaling pa-

rameters. The presence of scaling parameters that add extra “degrees of freedom”,

self-referentiality of the interpolant, and “fractality” of the third derivative of the in-
terpolant are additional features in the fractal version, which may be advantageous

in applications. If the lacunary data is generated from a function Φ satisfying certain

smoothness condition, then for suitable choices of scaling factors, the corresponding
fractal spline Sα

b satisfies ‖Φr − (Sα
b )

(r)‖∞ → 0 for 0 ≤ r ≤ 3, as the number of

partition points increases.
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1. Introduction

Through his land mark papers [1,3], Barnsley commenced the study of fractal inter-

polation by using the framework of Iterated Function System (IFS). Since then, many

researchers have explored the technique and earnestly attempted to generalize the no-

tion of Fractal Interpolation Function (FIF) in many different ways. As a new type of in-

terpolant, FIF enjoys more advantages than the classical interpolation methods, which

are based on polynomials, trigonometric functions, rational functions, and splines. To

put in a nutshell, the main advantages of FIFs over traditional nonrecursive interpolants

∗Corresponding author. Email addresses: amritaviswa@gmail.com (P. Viswanathan), chand@iitm.ac.in

(A.K.B. Chand), kurmaths86@gmail.com (K.R. Tyada)

http://www.global-sci.org/nmtma 65 c©2017 Global-Science Press

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1514
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1514
https://www.cambridge.org/core


66 Viswanathan, A.K.B. Chand and K.R. Tyada

are: (i) they provide a method to render non-smooth approximants (ii) by suitable

selection of parameters of the underlying IFS, FIFs can be made smooth and these

smooth FIFs include traditional interpolants as special cases (iii) interpolation scheme

produced by fractal functions can have local or global dependence on data points, de-

pending on the choice of scaling factors (iv) interpolants possess self-referentiality (v)

the interpolant or a certain derivative of it has a non-integer box-counting dimension,

which can be controlled by scaling factors.

If the IFS is chosen appropriately in terms of a prescribed continuous function f ,

then the notion of fractal interpolation can be used to produce a family of fractal

functions {fα}, which includes f as a very special case. This was first observed by

Barnsley and later popularized by Navascués through a series of papers (see, for in-

stance, [9, 10]). The free parameter α, which is a suitable vector in the Euclidean

space, enables us to preserve or modify properties of the original function f . In par-

ticular, each element of this class can be made to preserve smoothness of the original.

The methodology is so versatile and the corresponding notion of α-fractal function acts

as a medium by which the theory of fractal interpolation overlaps and interacts quite

fruitfully with many other fields of mathematics. In the perspective of numerical anal-

ysis, the notion of α-fractal function is used to generalize some well-known traditional

interpolation techniques such as Hermite interpolation and splines [5, 11], but not ex-

plored in the area of lacunary interpolation. Furthermore, in much of the researches

in fractal functions, the free parameters termed scaling factors, which have decisive

influence on the properties of the “perturbed function”, are restricted to be constants.

Deriving principal influence from these facts, the present article targets to invite fractal

functions with variable scalings to the field of lacunary interpolation.

To achieve the intended goal, a family of fractal splines is constructed as fractal

perturbation (having function scaling parameters) of a quintic spline with C3-continuity

introduced in [8]. This perturbation process allows one to replace the unicity of the

traditional quintic spline that solves the lacunary interpolation problem with unicity up

to a particular choice of scaling vector. This has practical advantage: the lack of unicity

opens up the possibility of choosing an interpolant that fit a certain application best, for

instance, in a problem that involves both approximation and optimization. Further, in

contrast to the traditional quintic spline S ∈ C3(I), the perturbed function Sα
b ∈ C3(I)

has the property that its third derivative (Sα
b )

(3) may reveal, in general, non-smooth

or fractal characteristic which can be quantified in terms of Minkowski dimension [6].

The fractal characteristic of the interpolant may be explored in various nonlinear and

nonequilibrium phenomena. On the other hand, for suitable choice of scaling functions,

the fractal spline introduced herein has same approximation properties as that of its

classical counterpart. Thus, the current article may be considered as a humble attempt

to (i) re-investigate [8] using fractal interpolation, a methodology which is not yet very

familiar to the “traditional” numerical analysts, (ii) reiterate the ubiquity of fractal

function by taking lacunary interpolation - a field where fractal splines are not yet

explored - as a medium, and (iii) pronounce that approximation by fractal functions

can provide more flexibility, which may be exploited in various practical applications.
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Lacunary Interpolation by Fractal Splines 67

2. Background and Preliminaries

In this section, we review some basic definitions and results that are needed in the

sequel. For details, the reader is referred to [1,9].

2.1. Fractal functions

We begin with the definition of an Iterated Function System (IFS), which forms a

standard framework to define fractal functions.

Definition 2.1. Let (X, d) be a complete metric space. For a positive integer N > 1, let

Wi : X → X, i = 1, 2, . . . , N be continuous maps. Then the collection {X;W1,W2, . . . ,WN}
is called an Iterated Function System. Further, if each of the maps Wi is a contraction, i.e.,

d
(

Wi(x),Wi(y)
)

≤ λi d(x, y) for all x, y ∈ X, and for some 0 < λi < 1,

then the IFS is referred to as a contractive or hyperbolic IFS.

With a given IFS F = {X;W1,W2, . . . ,WN} one can associate a set-valued map, which

is termed a collage map, as follows. Let H(X) denote the collection of all non-empty

compact subsets of X endowed with the Hausdorff metric

h(A,B) = max
{

max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(b, a)
}

∀ A,B ∈ H(X).

Define W : H(X) → H(X) by

W (B) = ∪N
i=1Wi(B),

where Wi(B) = {Wi(b) : b ∈ B}.

Definition 2.2. A nonempty compact subset A of X is called an attractor of an IFS F =
{X;W1,W2, . . . ,WN} if

1. A is a fixed point of W , that is W (A) = A

2. there exists an open set U ⊆ X such that A ⊂ U and limk→∞ h
(

W k(B), A
)

= 0 for

all B ∈ H(U), where W k is the k-fold autocomposition of W .

The largest open set U for which (2) holds is called the basin of attraction for the attractor

A of the IFS F . The attractor A is also referred to as a fractal or self-referential set owing

to the fact that A is a union of transformed copies of itself.

If the IFS F is contractive, then the existence of a unique attractor is ensured by the

Banach fixed point theorem, and in this case, the basin of attraction is X.

In what follows, the question of how to obtain continuous functions whose graphs

are fractals (in the above sense) is readdressed.
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Let {(xν , yν) ∈ R
2 : ν = 0, 1, . . . , N} denote the given interpolation points. Let

I denote the closed bounded interval [x0, xN ] and Ii = [xi−1, xi] for i = 1, . . . , N .

Suppose Li : I → Ii are contraction homeomorphisms such that

Li(x0) = xi−1, Li(xN ) = xi, |Li(x)− Li(x
∗)| ≤ li|x− x∗|

∀ x, x∗ ∈ I, for some li ∈ (0, 1).

Further, assume that Fi : I × R → R are continuous maps satisfying

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi,
∣

∣Fi(x, y)− Fi(x, y
∗)
∣

∣ ≤ si|y − y∗| ∀ y, y∗ ∈ R,

and for some si ∈ (0, 1). Define functions Wi : I × R → Ii × R by

Wi(x, y) =
(

Li(x), Fi(x, y)
)

.

The following is a fundamental theorem in the subject of fractal functions.

Theorem 2.1. ([1]) Let C(I), the space of all real-valued continuous functions on a com-

pact interval I, be endowed with the Chebyshev norm ‖h‖∞ := max{|h(x)| : x ∈ I} and

consider the closed metric subspace

Cy0,yN (I) := {h ∈ C(I) : h(x0) = y0, h(xN ) = yN}.

The following hold.

1. The IFS {I ×R;Wi, i = 1, 2, . . . , N} has a unique attractor G(g) which is the graph

of a continuous function g : I → R satisfying g(xν) = yν for ν = 0, 1, . . . , N .

2. The function g is the fixed point of the Read-Bajraktarevíc (RB) operator T : Cy0,yN (I) →
Cy0,yN (I) defined via

(Th)(x) = Fi

(

L−1
i (x), h ◦ L−1

i (x)
)

, x ∈ Ii, i ∈ {1, . . . , N}.

Definition 2.3. The function f appearing in the foregoing theorem is termed Fractal

Interpolation Function (FIF) corresponding to the data {(xν , yν) : ν = 0, 1, . . . , N}.

The most widely studied FIFs so far are defined by the system of maps

Li(x) = aix+ bi, Fi(x, y) = αiy + qi(x), (2.1)

where |αi| < 1 and qi : I → R are continuous functions satisfying

qi(x0) = yi−1 − αiy0, qi(xN ) = yi − αiyN .

The parameter αi is referred to as vertical scaling factor of the transformation Fi and

α = (α1, α2, . . . , αN ) ∈ (−1, 1)N is called scale vector. Note that here and throughout

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1514
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1514
https://www.cambridge.org/core


Lacunary Interpolation by Fractal Splines 69

the article, we denote by Am the Cartesian product A×A× · · · ×A (m times) of a set

A.

Let f ∈ C(I). Choose a partition {x0, x1, . . . , xN} of I and consider

qi(x) = f
(

Li(x)
)

− αib(x),

where b : I → R is a continuous function satisfying

b 6= f, b(x0) = f(x0), and b(xN ) = f(xN ).

Then the IFS in (2.1) provides a fractal function denoted by fα
∆,b, which interpolates the

data
{(

xν , f(xν)
)

: ν = 0, 1, . . . , N
}

. The function fα
∆,b is termed as fractal perturbation

of f or α-fractal function associated to f with respect to the partition ∆, base function

b, and scale vector α. For a fixed partition ∆ of I and scaling vector α, the operator

which associates f to fα
∆,b is a linear map, provided b depends on f linearly, say b = Lf ,

where L : C(I) → C(I) is a linear operator. That is,

Fα
∆,b : C(I) → C(I), Fα

∆,b(f) = fα
∆,b

is a linear operator.

In this paper, following [17], we replace constant scaling αi with continuous func-

tions αi : I → R satisfying

‖αi‖∞ := max
{

|αi(x)| : x ∈ I
}

< 1.

2.2. Lacunary interpolation

Given n points {xν : ν = 1, 2, . . . , n} and corresponding to each xν a set of nonneg-

ative integers {m1,ν ,m2,ν , . . . ,mαν ,ν} and arbitrary numbers ω1,ν, ω2,ν , . . . , ωαν ,ν , the

central problem of lacunary interpolation is to find a polynomial P of degree less than

or equal to α1 + α2 + · · ·+ αn − 1 satisfying α1 + α2 + · · ·+ αn conditions

P (mk,ν)(xν) = ωk,ν for k = 1, . . . , αν and ν = 1, . . . , n.

The term lacunary is chosen to suggest that there may be lacunae (gaps) in the se-

quence m1,ν ,m2,ν , . . . ,mαν ,ν . It reduces to the Hermite interpolation problem when

mk,ν = k−1 for k = 1, . . . , αν . In contrast to the Hermite interpolation, for the problem

of lacunary interpolation or Hermite-Birkhoff interpolation the existence and unique-

ness of solution cannot be guaranteed in general. Schoenberg [12] used splines in

lacunary interpolation. Various special cases of lacunary interpolation have received

attention in the literature. For a historical background of lacunary interpolation, we

refer the reader to the nice survey article [13].
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3. Fractal Splines in Lacunary Interpolation

In this section, we initiate (0, 2)-lacunary interpolation with fractal splines. We shall

construct a class of fractal splines such that each member of the class will satisfy the

desired lacunary interpolation condition. For a special choice of the parameter α, we

reobtain the Meir-Sharma quintic spline interpolant [8]. For the sake of completeness

of the exposition, a brief review of the Meir-Sharma quintic spline interpolant is pro-

vided in the Appendix. Note that the word spline in Meir-Sharma interpolant is used

in a more general sense to mean a piecewise defined polynomial interpolant, a more

accurate term could be a deficient spline. In the sequel, the space of all three times

continuously differentiable real-valued functions on I will be denoted by C3(I).

Theorem 3.1. Let N be an odd integer and let a set of 2N + 4 real numbers

{f0, f1, . . . , fN ; f ′′
0 , f

′′
1 , . . . , f

′′
N ; f ′′′

0 , f ′′′
N }

be given. There exist smooth functions αi, S, and b so that the α-fractal function Sα
b

obtained through the IFS with maps Li : [0, 1] → [ i−1
N

, i
N
] and Fi : [0, 1] × R → R

Li(x) =
x+ (i− 1)

N
, Fi(x, y) = αi(x)y + S(Li(x))− αi(x)b(x), i = 1, . . . , N,

has C3-continuity and satisfies the (0, 2)-interpolation conditions

(Sα
b )

( ν

N

)

= fν , (Sα
b )

(2)
( ν

N

)

= f ′′
ν for ν = 0, 1, . . . , N,

together with the boundary conditions

(Sα
b )

(3)(0) = f ′′′
0 and (Sα

b )
(3)(1) = f ′′′

N .

Proof. Let S ∈ C3[0, 1] be a function which is a quintic polynomial in each of the

subintervals determined by an equally spaced partition points in [0, 1] and which satis-

fies the lacunary interpolatory conditions

S
( ν

N

)

= fν , S(2)
( ν

N

)

= f ′′
ν , ν = 0, 1, . . . , N ;

S(3)(0) = f ′′′
0 , S(3)(1) = f ′′′

N .

The existence and uniqueness of such a quintic spline is established in [8] (see Ap-

pendix). We call this quintic spline S solving (0, 2)-lacunary interpolation problem as

the Meir-Sharma interpolant. For i = 1, 2, . . . , N , choose αi ∈ C3[0, 1] such that

‖αi‖C3 := max
{

‖α
(j)
i ‖∞ : j = 0, 1, 2, 3} <

1

(2N)3
, i = 1, . . . , N.

Further, choose b ∈ C3[0, 1] such that

b(j)(0) = S(j)(0), b(j)(1) = S(j)(1), j = 0, 1, 2, 3. (3.1)
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We shall obtain Sα
b as the fixed point of a suitable contraction map acting on a complete

metric space. To this end, consider the Banach space C3[0, 1] endowed with the norm

‖g‖C3 := max
{

‖g(j)‖∞ : j = 0, 1, 2, 3
}

and its (metric) subspace

C3
S[0, 1] :=

{

g ∈ C3[0, 1] : g(j)(0) = S(j)(0), g(j)(1) = S(j)(1), for j = 0, 1, 2, 3
}

.

It follows at once that C3
S [0, 1] is a closed subspace of C3[0, 1] and hence a complete met-

ric space. Define an operator T : C3
S [0, 1] → C3

S[0, 1] such that for x ∈ Ii = [ i−1
N

, i
N
], i =

1, . . . , N

(Tg)(x) = Fi

(

L−1
i (x), g(L−1

i (x))
)

= S(x) + αi

(

L−1
i (x)

)

(

g
(

L−1
i (x)

)

− b
(

L−1
i (x)

)

)

.

By the selection of functions S, b and αi, i = 1, . . . , N , it is apparent that Tg and its first

three derivatives are continuous on Ii, i = 1, 2, . . . , N. Using the fact that Li : [0, 1] → Ii
are affine maps such that Li(1) = Li+1(0) =

i
N

for i = 1, . . . , N − 1 and applying the

Leibnitz rule of differentiation we obtain that for k = 0, 1, 2, 3:

(Tg)(k)
(

i

N

−
)

= S(k)

(

i

N

)

+Nk
k

∑

j=0

(

k

j

)

(g − b)(j)(1) α
(k−j)
i (1),

(Tg)(k)
(

i

N

+)

= S(k)

(

i

N

)

+Nk
k

∑

j=0

(

k

j

)

(g − b)(j)(0) α
(k−j)
i+1 (0).

Since g(j)(0) = b(j)(0) = S(j)(0) and g(j)(1) = b(j)(1) = S(j)(1) for each g ∈ C3
S[0, 1]

and j = 0, 1, 2, 3, it follows from the previous equations that for k = 0, 1, 2, 3:

(Tg)(k)
(

i

N

−
)

= (Tg)(k)
(

i

N

+)

= S(k)

(

i

N

)

for i = 1, . . . , N − 1. (3.2)

Consequently, Tg ∈ C3[0, 1]. Using L1(0) = 0 and LN (1) = 1 we may deduce that for

k = 0, 1, 2, 3:

(Tg)(k)(0) = S(k)(0) +Nk
k

∑

j=0

(

k

j

)

(g − b)(j)(0) α
(k−j)
1 (0) = S(k)(0), (3.3a)

(Tg)(k)(1) = S(k)(1) +Nk
k

∑

j=0

(

k

j

)

(g − b)(j)(1) α
(k−j)
N (1) = S(k)(1), (3.3b)
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and from which it follows that Tg ∈ C3
S [0, 1]. Suppose g, h ∈ C3

S[0, 1] and x ∈ [ i−1
N

, i
N
].

We see that

∣

∣(Tg)(k)(x)− (Th)(k)(x)
∣

∣

= Nk
∣

∣

∣

k
∑

j=0

(

k

j

)

α
(k−j)
i

(

L−1
i (x)

)

(g − h)(j)
(

L−1
i (x)

)

∣

∣

∣

≤ Nk ‖αi‖Ck ‖g − h‖Ck

k
∑

j=0

(

k

j

)

. (3.4)

Suppose that for α = (α1, α2, . . . , αN ) ∈
(

C3[0, 1]
)N

, the product norm is defined by

‖α‖k = max
{

‖αi‖Ck : i = 1, . . . , N
}

.

From (3.4) we infer that for k = 0, 1, 2, 3,

‖(Tg)(k) − (Th)(k)‖∞ ≤ (2N)k ‖α‖k ‖g − h‖Ck ,

and hence that

‖Tg − Th‖C3 ≤ (2N)3 ‖α‖3 ‖g − h‖C3 .

Since ‖αi‖C3 < 1
(2N)3 for all i = 1, . . . , N , the previous inequality implies that T is a

contraction on C3
S [0, 1]. Therefore, by the Banach fixed point theorem T has a unique

fixed point Sα
b satisfying the self-referential equation: for i = 1, 2, . . . , N

Sα
b (x) = S(x) + αi

(

L−1
i (x)

)[

Sα
b

(

L−1
i (x)

)

− b
(

L−1
i (x)

)]

, x ∈ Ii. (3.5)

From (3.2)-(3.3), it follows that

(Sα
b )

( ν

N

)

= S
( ν

N

)

= fν , (Sα
b )

(2)
( ν

N

)

= S(2)
( ν

N

)

= f ′′
ν , ν = 0, 1, . . . , N,

(Sα
b )

(3)(0) = S(3)(0) = f ′′′
0 , (Sα

b )
(3)(1) = S(3)(1) = f ′′′

N .

This completes the proof. �

Several straightforward but noteworthy comments are in order.

Remark 3.1. It is easy to see that in the definition of a fractal function, for the recursion

to take place, we need at least three knot points. Hence, we may assume in the previous

theorem and throughout the paper that N is an odd integer greater than or equal to 3.

For N = 1, additional knots may be inserted for the construction of fractal function.

Remark 3.2. From the functional equation of Sα
b (cf. (3.5)) it follows at once that

if each scaling function is assumed to be zero function, then Sα
b reduces to the Meir-

Sharma interpolant.
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Remark 3.3. A natural choice for the function b satisfying (3.1) is the Hermite poly-

nomial of degree 7 with contact of order 3 corresponding to the function S and knot

points x0 = 0, xN = 1.

Remark 3.4. If we choose constant scaling factors, i.e., αi : I → R as constant func-

tions for i = 1, 2, . . . , N , then a look back at (3.4) reveals that only one term in the

summation, which corresponds to j = k, is nonzero. Consequently, the condition

|α|∞ := max{|αi| : i = 1, . . . , N} <
1

N3

assures that T is a contraction. In Reference [11], by using the Barnsley-Harrington

(BH) theorem [3], a similar but in a slightly general setting, namely, the condition

|α|∞ < 1
Np is derived for the p-smoothness of a α-fractal function. Note that our

treatment does not rely on BH-theorem but effectively uses RB operator, and allows the

scaling factors to be functions rather than constants.

Remark 3.5. If N is even, then the existence of quintic spline S solving the aforemen-

tioned (0, 2)-lacunary interpolation problem cannot be ensured (see [8]), and so is the

existence of Sα
b . However, if we replace the boundary conditions in Theorem 3.1 with

(Sα
b )

(1)(0) = f ′
0 and (Sα

b )
(3)(0) = f ′′′

0 , then for any integer N > 2, a fractal spline Sα
b

solving this modified lacunary interpolation problem can be constructed similar to that

in Theorem 3.1. Here we start with the traditional nonrecursive quintic spline S solving

the lacunary interpolation problem with modified boundary conditions, the existence

and uniqueness of which is established in [8].

Remark 3.6. Following our procedure, one can establish the fractal analogue of la-

cunary quartic spline with uniform knot sequence in [0, 1] constructed in [7]. Since

the idea is already inherent in the proof of Theorem 3.1, we avoid the computational

details.

4. Approximation Properties

This section is intended to establish that if the lacunary data set is generated by a

function Φ satisfying certain smoothness condition, then the fractal spline Sα
b ∈ C3[0, 1]

converges to Φ with respect to the C3-norm, as number of partition points N → ∞. To

this end, we find upper bounds for the uniform norm ‖(Sα
b )

(k) − Φ(k)‖∞ for k = 0, 1, 2,
and 3. The bounds are not claimed to be optimal, but serve to establish the desired

convergence. Let us record the following theorem as a prelude.

Theorem 4.1. ([8]) Let Φ ∈ C4[0, 1] and N be an odd integer. Then for the unique

Meir-Sharma quintic spline S satisfying

S
( ν

N

)

= Φ
( ν

N

)

, S(2)
( ν

N

)

= Φ(2)
( ν

N

)

, ν = 0, 1, . . . , N ;

S(3)(0) = Φ(3)(0), S(3)(1) = Φ(3)(1),
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we have

‖S(k) − Φ(k)‖∞ ≤ 75Nk−3 ω4

(

1

N

)

+ 8Nk−4‖Φ(4)‖∞, k = 0, 1, 2, 3,

where ω4(.) denotes the modulus of continuity of Φ(4). If Φ(4) ∈ Lipβ [0, 1], then

‖S(k) − Φ(k)‖∞ ≤ CNk−β−3, k = 0, 1, 2, 3,

with a constant C independent of N . If Φ is such that Φ(4) is a Riemann integrable function

on [0, 1], then we have

‖S(k) − Φ(k)‖∞ ≤ o(Nk−3) as N → ∞, k = 0, 1, 2, 3.

Proposition 4.1. Let Sα
b be a fractal spline solving (0, 2)-lacunary interpolation problem

established in Theorem 3.1 and S be the Meir-Sharma interpolant. Then the perturbation

error satisfies

‖Sα
b − S‖∞ ≤

1

8N3 − 1
‖S − b‖∞.

Proof. In view of (3.5), for x ∈ Ii =
[

i−1
N

, i
N

]

we have

∣

∣Sα
b (x)− S(x)

∣

∣

=
∣

∣αi

(

L−1
i (x)

)∣

∣

∣

∣(Sα
b − b)

(

L−1
i (x)

)∣

∣

≤ ‖αi‖∞‖Sα
b − b‖∞ ≤ ‖α‖∞‖Sα

b − b‖∞,

where ‖α‖∞ := max{‖αi‖∞ : i = 1, 2, . . . , N}. From the previous inequality it follows

that

‖Sα
b − S‖∞ ≤ ‖α‖∞‖Sα

b − b‖∞

≤ ‖α‖∞

(

‖Sα
b − S‖∞ + ‖S − b‖∞

)

and hence

‖Sα
b − S‖∞ ≤

‖α‖∞
1− ‖α‖∞

‖S − b‖∞.

Since ‖αi‖∞ < ‖αi‖C3 < 1
(2N)3

for all i = 1, . . . , N , the multiplier in the right hand side

of the above inequality is less than 1
8N3−1 , and hence the proof. �

Proposition 4.2. Let S be the Meir-Sharma quintic spline and Sα
b be its fractal analogue

introduced in Theorem 3.1. Then, we have the following estimates for the perturbation

error

‖Sα
b − S‖Ck ≤

(2k+1 − 1)Nk

8N3 −Nk
‖S − b‖Ck , k = 1, 2, 3.
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Proof. From Theorem 3.1 we obtain the following functional equation for the deriva-

tive of Sα
b

(Sα
b )

(k)(x) = S(k)(x) +Nk
k

∑

j=0

(

k

j

)

α
(k−j)
i

(

L−1
i (x)

)

(Sα
b − b)(j)

(

L−1
i (x)

)

.

Therefore for x ∈ Ii, i = 1, 2, . . . , N,

∣

∣(Sα
b )

(k)(x)− S(k)(x)
∣

∣

≤ Nk

k
∑

j=0

(

k

j

)

∣

∣α
(k−j)
i

(

L−1
i (x)

)∣

∣

∣

∣(Sα
b − b)(j)

(

L−1
i (x)

)∣

∣

≤ Nk
(

‖αi‖Ck‖Sα
b − b‖Ck−1(2k − 1) + ‖αi‖∞‖(Sα

b )
(k) − b(k)‖∞

)

≤ Nk(2k − 1)‖αi‖Ck

(

‖Sα
b − S‖Ck−1 + ‖S − b‖Ck−1

)

+Nk‖αi‖∞

(

‖(Sα
b )

(k) − S(k)‖∞ + ‖S(k) − b(k)‖∞

)

≤ Nk‖αi‖∞‖(Sα
b )

(k) − S(k)‖∞ +Nk‖αi‖Ck

(

(2k − 1)‖Sα
b − S‖Ck−1 + 2k‖S − b‖Ck

)

.

For α = (α1, . . . , αN ) ∈ (C3[0, 1])N , let

‖α‖∞ := max
1≤i≤N

{‖αi‖∞}, ‖α‖k := max
1≤i≤N

{‖αi‖Ck}.

Then it follows that, for k = 1, 2, 3,

‖(Sα
b )

(k) − S(k)‖∞

≤Nk‖α‖∞‖(Sα
b )

(k) − S(k)‖∞ +Nk‖α‖k

(

(2k − 1)‖Sα
b − S‖Ck−1 + 2k‖S − b‖Ck

)

.

Transposing the first summand to the left hand side and noting that ‖α‖∞ < 1
8N3 < 1

Nk

for k = 1, 2, 3, we see that

‖(Sα
b )

(k) − S(k)‖∞

≤
Nk‖α‖k

1−Nk‖α‖∞

[

(2k − 1)‖Sα
b − S‖Ck−1 + 2k‖S − b‖Ck

]

, k = 1, 2, 3.

The previous inequality for k = 1 in conjunction with Proposition 4.1 yields

‖(Sα
b )

(1) − S(1)‖∞ ≤
N‖α‖1

1−N‖α‖∞

[

‖Sα
b − S‖∞ + 2‖S − b‖C1

]

≤
N‖α‖1

1−N‖α‖∞

[ ‖α‖∞
1− ‖α‖∞

‖S − b‖∞ + 2‖S − b‖C1

]

≤
N‖α‖1

1−N‖α‖∞

[

‖S − b‖∞ + 2‖S − b‖C1

]

≤
3N‖α‖1

1−N‖α‖∞
‖S − b‖C1 .

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1514
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1514
https://www.cambridge.org/core


76 Viswanathan, A.K.B. Chand and K.R. Tyada

Noting ‖α‖∞ ≤ 3N‖α‖1 it follows that

‖Sα
b − S‖C1 = max

{

‖Sα
b − S‖∞, ‖(Sα

b )
(1) − S(1)‖∞

}

≤ max

{

‖α‖∞
1− ‖α‖∞

‖S − b‖∞,
3N‖α‖1

1−N‖α‖∞
‖S − b‖C1

}

=
3N‖α‖1

1−N‖α‖∞
‖S − b‖C1 .

Similarly, by induction we infer that

‖Sα
b − S‖Ck ≤

(2k+1 − 1)Nk‖α‖k
1−Nk‖α‖∞

‖S − b‖Ck , k = 1, 2, 3.

Using ‖α‖k ≤ ‖α‖3 < 1
8N3 for k = 1, 2, 3, and ‖α‖∞ < 1

8N3 we obtain the desired

assertion. �

Remark 4.1. In view of Remark 3.3, if we choose b to be a septic Hermite osculatory

polynomial for S with contact of order 3 at the end points of the interval I, then it is

well-known that (see, for instance, [4])

‖S(k) − b(k)‖∞ ≤ Λk‖S
(4)‖∞, k = 0, 1, 2, 3,

where Λk is a suitable constant depending on k and ‖S(4)‖∞ is the essential supremum

of S(4) over [0, 1].

Remark 4.2. If we impose a stronger condition on the scaling functions, namely,

‖αi‖C3 < 1
(2N)4 for all i = 1, 2, . . . , N , then from Propositions 4.1-4.2 we obtain

‖Sα
b − S‖Ck ≤

(2k+1 − 1)Nk

16N4 −Nk
‖S − b‖Ck , k = 0, 1, 2, 3.

Having established these results, now we can easily prove the main theorem in this

section.

Theorem 4.2. Let the function Φ generating the lacunary data {(xν , fν , f
′′
ν , f

′′′
0 , f ′′′

N ) :
ν = 0, 1, . . . , N}, where {xν : ν = 0, 1, . . . , N} is a uniform knot sequence on the unit

interval, be such that Φ(4) is Riemann integrable on [0, 1]. Let the scaling functions satisfy

‖αi‖C3 < 1
(2N)4

. Then the lacunary fractal interpolant Sα
b satisfies

‖Φ(k) − (Sα
b )

(k)‖∞ = o

(

1

N3−k

)

as N → ∞, k = 0, 1, 2, 3.

In particular, Sα
b converges to Φ with respect to the C3-norm as N → ∞.
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Proof. Consider the triangle inequality

‖Φ(k) − (Sα
b )

(k)‖∞ ≤ ‖Φ(k) − S(k)‖∞ + ‖S(k) − (Sα
b )

(k)‖∞, k = 0, 1, 2, 3.

The first term on the right hand side of the above inequality can be bounded from

above using Theorem 4.1 and the second term on the right can be bounded from above

in view of Remark 4.2. Combining these, we obtain the proof. �

Remark 4.3. With the original assumption on the scaling functions, viz., ‖αi‖∞ <
1

(2N)3
for all i = 1, 2, . . . , N , we can derive the uniform convergence of Sα

b and its

first two derivatives. Hence, in this case, we obtain a weaker convergence, namely,

‖Φ− Sα
b ‖C2 → 0 as N → ∞.

The next theorem points to the stability of fractal spline Sα
b with respect to perturbation

in data points. Proof follows from the corresponding stability result of the Meir-Sharma

interpolant (see Theorem 2, [14]) adapted to the present setting and the triangle in-

equality

‖Φ(k) − (Sα
b )

(k)‖∞ ≤ ‖Φ(k) − S(k)‖∞ + ‖S(k) − (Sα
b )

(k)‖∞, k = 0, 1, 2, 3.

and hence omitted.

Theorem 4.3. Let Φ ∈ C4[0, 1] and N be an odd positive integer. Let S be the unique

Meir-Sharma interpolant to the data

( ν

N

)

= βν,0, S(2)
( ν

N

)

= βν,2, 0 ≤ ν ≤ N ;

S(3)(0) = β0,3, S(3)(1) = βN,3,

and Sα
b be the corresponding fractal spline, where the scaling functions satisfy ‖αi‖C3 <

1
(2N)4

for all i = 1, 2, . . . , N . Suppose that there exists a function F (Φ, N) such that

max
0≤ν≤N

∣

∣Φ(
ν

N
)− βν,0

∣

∣ ≤ N−4F (Φ, N),

max
0≤ν≤N

|Φ(2)(
ν

N
)− βν,2| ≤ N−2F (Φ, N),

max
{

|Φ(3)(0)− β0,3|, |Φ
(3)(1)− βN,3|

}

≤ N−1F (Φ, N).

Then

‖Φ(k) − (Sα
b )

(k)‖∞

≤KNk−3
[

ωk

(

1

N

)

+ F (Φ, N)
]

+
(2k+1 − 1)Nk

16N4 −Nk
‖S − b‖Ck , k = 0, 1, 2, 3,

where K is a constant, independent of Φ, F , and N , and ωk(.) is the modulus of continuity

of Φ(k).
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Remark 4.4. The sensitivity analysis of a fractal function with respect to the scaling

functions, which shows that small perturbations in the scaling functions produce only

small variations in the fractal functions, can be consulted in [17]. As free parameters,

the scaling functions have decisive influence on the properties of the fractal spline Sα
b .

Finding an optimal scaling vector α ∈ (−1, 1)N for which the perturbation Sα
b of S is

close to a given function Φ is a constrained convex optimization problem with a solution

(see [15,16]). Optimality problem in the case of scaling functions is kept open.

5. Numerical Examples

In this section, we provide graphical illustration for the proposed (0, 2)-lacunary

fractal interpolation. To this end, consider a uniform partition of the unit interval with

step size 1
5 . Let a set of 14 real numbers

D = {fν ; f
′′
ν ; f

′′′
0 , f ′′′

5 : ν = 0, 1, . . . , 5}

= {0, 0.04, 0.12, 0.26, 0.39, 0.5; 2, 1.5646, 0.6663,−0.0636,−0.4172,−0.5; 0, 0}

associated with the points in this uniform partition of [0, 1] be prescribed. Let us recall

that the truncated power function with exponent n is defined as follows:

xn+ :=

{

xn if x > 0,
0 if x ≤ 0.

The Meir-Sharma quintic spline corresponding to D is given below. Here the coeffi-

cients are four digit approximations of the solution of a linear system of equations (see

Appendix).

S(x) = 0.3554B0(x) + 2B1(1− x)− 2.5861B1(x)− 1.2997B2(x)

+ 0.2714 (x− 0.2)4+ + 0.1599 (x− 0.2)5+ + 0.1349 (x− 0.4)4+

− 0.4334 (x− 0.4)5+ − 0.0037 (x− 0.6)4+ − 0.2481 (x− 0.6)5+

− 0.0406 (x− 0.8)4+ − 0.0074 (x− 0.8)5+ ,

where

B0(x) = x, B1(x) =
x4 − x5

10
+

3(x4 − x)

20
, B2(x) =

x5 − x4

20
+

x− x4

30
.

This nonrecursive quintic spline S is depicted in Fig. 1(a). Next we shall perturb the

Meir-Sharma quintic spline S to obtain its self-referential analogue Sα
b , where the base

function b and scaling function α satisfy conditions prescribed in Theorem 3.1. We

choose b to be a septic Hermite osculatory polynomial for S with 0 and 1 as knot points

(see Remark 3.3). That is,

b(x) =− 0.000016x(1 − x)6 + 0.9999x2(1− x)5 + 4.9998x3(1− x)4

+ 8.7498x4(1− x)3 + 7.2499x5(1− x)2 + 2.9999x6(1− x) + 0.5x7.
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classical interpolant

(a) Meir-Sharma quintic spline S.
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(b) A fractal perturbation Sα1

of S

with variable scaling factors.
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(c) A fractal perturbation Sα2

of S

with variable scaling factors.
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Lacunary Data

constant α−FIF

(d) A fractal perturbation Sα3

of S

with constant scaling factors.

Figure 1: Meir-Sharma quintic spline and its fractal perturbations.

We take a scaling (function) vector α1 ∈ (C3[0, 1])5 satisfying ‖α1
i ‖C3 < 10−3 for i =

1, . . . , 5, say

α1
1(x) = 0.0008 sin x, α1

2(x) = 0.00099 cos x, α1
3(x) = 0.00091e−x,

α1
4(x) = 0.000425e−x sinx, α1

5(x) = 0.00042e−x cos x.

The graph of the corresponding lacunary fractal spline Sα1

b is depicted in Fig. 1(b).

Next let us consider α2 ∈ (C3[0, 1])5 whose components are given by

α2
1(x) = 0.00016(x − x3), α2

2(x) = 0.000165(1 − x2 + x3),

α2
3(x) = 0.000156(1 − x+ x2 − x3), α2

4(x) = 0.000025(x − x2 + x4 − x5),

α2
5(x) = 0.0000504(1 − x+ x3 − x4).

Fig. 1(c) represents the corresponding fractal spline Sα2

b . Consider a scaling vector

α3 ∈ (−0.008, 0.008)5 (see Remark 3.4), say

α3
1 = 0.0075, α3

2 = 0.0065, α3
3 = 0.0055, α3

4 = 0.0065, α3
5 = 0.0075.
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(a) The derivative S′′′ of

Meir-Sharma quintic spline.
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(b) Fractal function (Sα1

)′′′.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

(c) Fractal function (Sα2

)′′′.
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(d) Fractal function (Sα3

)′′′.

Figure 2: Third derivatives of Meir-Sharma quintic spline and its fractal perturbations.

The corresponding fractal function Sα3

b associated with S is given in Fig. 1(d). Since the

“perturbations” α are small (with respect to the respective norms), the differences in

the corresponding fractal functions from the germ function S are not quite apparent in

Figs. 1(a)-(d) (see Remark 4.4). Values of the uniform norms ‖Sα1

b −S‖∞, ‖Sα2

b −S‖∞
and ‖Sα3

b − S‖∞ estimated with their 55 + 1 values that are generated at the fourth

iteration are given by 4.33155× 10−7, 7.708196× 10−8 and 5.98512× 10−6 respectively,

which provide a numerical illustration for the fact that small perturbations in scaling

factors provide small variations in the associated fractal function. The “fractality” of

Sα
b is evident from its third derivative. In this regard, note that the graphs of (Sα1

b )′′′,

(Sα2

b )′′′, (Sα3

b )′′′ depicted in Figs. 2 (b)-(d) show more irregularity than the graph of the

third derivative of the traditional Meir-Sharma quintic spline (see Fig. 2 (a)). We feel

that the flexibility in the choice of interpolant and fractality in the third derivative of

the interpolant inherent with the proposed scheme can be exploited in some nonlinear

and nonequilibrium phenomena. The fractality in the derivative may be quantified in

terms of box counting dimension or Hausdorff dimension and this number can be used

as an index for the complexity of the underlying phenomenon [2].
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Appendix

This appendix is to recall the existence and uniqueness of a quintic spline which

solves a (0, 2)-lacunary interpolation problem given in [8]. For N ≥ 2, let S
(3)
N,5 denote

the class of quintic spline S having the following two properties:

1. S ∈ C3[0, 1],

2. S is quintic in [ ν
N
, ν+1

N
], ν = 0, 1, . . . , N − 1.

If S ∈ S
(3)
N,5, then

S(x) = q(x) +
N−1
∑

ν=1

{

cν

(

x−
ν

N

)4

+
+ dν

(

x−
ν

N

)5

+

}

,

where q(x) is a quintic polynomial and cν , dν are constants. For every odd integer N

and any set of 2N+4 real numbers
{

f0, f1, . . . , fN ; f ′′
0 , f

′′
1 , . . . , f

′′
N ; f ′′′

0 , f ′′′
N

}

the existence

of a unique S ∈ S
(3)
N,5 satisfying

S
( ν

N

)

= fν, S′′
( ν

N

)

= f ′′
ν , ν = 0, 1, . . . , N ;

S′′′(0) = f ′′′
0 , S′′′(1) = f ′′′

N

is proved in [8]. This can be seen as follows.

For a given S ∈ S
(3)
N,5, set h = N−1 and

Mν = S(4)(νh+), ν = 0, 1, . . . , N − 1;

Lν = S(4)(νh−), ν = 1, . . . , N.

Since S(4) is linear in each interval
(

νh, (ν + 1)h
)

, it is completely determined by the

2N constants {Mν}
N−1
ν=0 and {Lν}

N
ν=1. Furthermore, a quintic polynomial P on [0, 1]

can be expressed as

P (x) = P (0)A0(1− x) + P (1)A0(x) + P ′′(0)A1(1− x)

+ P ′′(1)A1(x) + P (4)(0)A2(1− x) + P (4)(1)A2(x),

where

A0(x) = x, A1(x) =
1

6
(x3 − x), and A2(x) =

1

120
(x5 − x)−

1

36
(x3 − x).

Also note that a quintic polynomial P on [0, 1] can be expressed in terms of its values

and of its second and third derivatives at 0 and 1 as

P (x) = P (0)B0(1− x) + P (1)B0(x) + P ′′(0)B1(1− x)

+ P ′′(1)B1(x)− P ′′′(0)B2(1− x) + P ′′′(1)B2(x),
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where

B0(x) = x, B1(x) =
1

10
(x4−x5)+

1

20
(3(x4−x)), B2(x) =

1

20
(x5−x4)+

1

30
(x−x4).

Therefore, using the interpolation conditions

S
( ν

N

)

= fν , S′′
( ν

N

)

= f ′′
ν , ν = 0, 1, . . . , N

for νh ≤ x ≤ (ν + 1)h, ν = 0, 1, 2, . . . , N − 1, it follows that S should be of the form

S(x) = fνA0

(

(ν + 1)h− x

h

)

+ fν+1A0

(

x− νh

h

)

+ h2f ′′
νA1

(

(ν + 1)h− x

h

)

+ h2f ′′
ν+1A1

(

x− νh

h

)

+ h4MνA2

(

(ν + 1)h − x

h

)

+ h4Lν+1A2

(

x− νh

h

)

. (5.1)

In view of (5.1), we see that the endpoint conditions S′′′(0) = f ′′′
0 , S′′′(1) = f ′′′

N are

equivalent to

2M0 + L1 = 6h−2(f ′′
1 − f ′′

0 − hf ′′′
0 ) ≡ 6h−2β0, (5.2a)

MN−1 + 2LN = 6h−2(f ′′
N−1 − f ′′

N + hf ′′′
N ) ≡ 6h−2βN . (5.2b)

By a simple calculation it can be shown that S′(νh+) = S′(νh−), ν = 1, . . . , N − 1, are

equivalent to

8(Mν + Lν) + 7(Mν−1 + Lν+1)

= 360h−4(2fν − fν−1 − fν+1 + h2f ′′
ν ) + 60h−2(f ′′

ν+1 + f ′′
ν−1 − 2f ′′

ν )

≡ 360h−4γν + 60h−2βν , ν = 1, . . . , N − 1. (5.3)

Similarly, S′′′(νh+) = S′′′(νh−), ν = 1, . . . , N − 1, are equivalent to

2(Mν + Lν) + (Mν−1 + Lν+1)

= 6h−2(f ′′
ν+1 + f ′′

ν−1 − 2f ′′
ν ) ≡ 6h−2βν , ν = 1, . . . , N − 1. (5.4)

It can be easily established that the homogeneous linear system corresponding to (5.2)-

(5.4) has only the trivial solution, from which it follows that the system of linear equa-

tions governed by (5.2)-(5.4) has a unique solution.
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