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Abstract. Left-invariant PDE-evolutions on the roto-translation group SE(2) (and

their resolvent equations) have been widely studied in the fields of cortical model-
ing and image analysis. They include hypo-elliptic diffusion (for contour enhance-

ment) proposed by Citti & Sarti, and Petitot, and they include the direction process

(for contour completion) proposed by Mumford. This paper presents a thorough
study and comparison of the many numerical approaches, which, remarkably, are

missing in the literature. Existing numerical approaches can be classified into 3
categories: Finite difference methods, Fourier based methods (equivalent to SE(2)-
Fourier methods), and stochastic methods (Monte Carlo simulations). There are also

3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the
spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here

we provide an overview of these 3 types of exact solutions and explain how they

relate to each of the 3 numerical approaches. We compute relative errors of all nu-
merical approaches to the exact solutions, and the Fourier based methods show us

the best performance with smallest relative errors. We also provide an improvement
of Mathematica algorithms for evaluating Mathieu-functions, crucial in implemen-

tations of the exact solutions. Furthermore, we include an asymptotical analysis of

the singularities within the kernels and we propose a probabilistic extension of un-
derlying stochastic processes that overcomes the singular behavior in the origin of

time-integrated kernels. Finally, we show retinal imaging applications of combining

left-invariant PDE-evolutions with invertible orientation scores.
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1. Introduction

Hubel and Wiesel [38] discovered that certain visual cells in cats’ striate cortex have

a directional preference. It has turned out that there exists an intriguing and extremely

precise spatial and directional organization into so-called cortical hypercolumns, see

Fig. 1. A hypercolumn can be interpreted as a “visual pixel”, representing the opti-

cal world at a single location, neatly decomposed into a complete set of orientations.

Moreover, correlated horizontal connections run parallel to the cortical surface and link

columns across the spatial visual field with a shared orientation preference, allowing

cells to combine visual information from spatially separated receptive fields. Synaptic

physiological studies of these horizontal pathways in cats’ striate cortex show that neu-

rons with aligned receptive field sites excite each other [15]. Apparently, the visual sys-

tem not only constructs a score of local orientations, but also accounts for context and

alignment by excitation and inhibition a priori, which can be modeled by left-invariant

PDE’s and ODE’s on SE(2) [6, 8, 11, 12, 17, 19, 21, 24–26, 29, 32, 43, 46, 47, 50, 51, 58].

Motivated by the orientation-selective cells, so-called orientation scores are constructed

by lifting all elongated structures (in 2D images) along an extra orientation dimen-

sion [21, 24, 41]. The main advantage of using the orientation score is that we can

disentangle the elongated structures involved in a crossing allowing for a crossing pre-

serving flow.

Figure 1: The orientation columns in the primary visual cortex.
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Numerical Approaches for Linear Diffusions on SE(2) 3

Invertibility of the transform between image and score is of vital importance, to both

tracking [10] and enhancement [33, 52], as we do not want to tamper data-evidence

in our continuous coherent state transform [3,58] before actual processing takes place.

This is a key advantage over related state-of-the-art methods [7,12,19,43,58].

Figure 2: Real part of an orientation score of an example image.

Invertible orientation scores (see Fig. 2) are obtained via a unitary transform be-

tween the space of disk-limited images L
̺
2(R

2) := {f ∈ L2(R
2) | support{FR2f} ⊂

B0,̺} (with ̺ > 0 close to the Nyquist frequency and B0,̺ = {ω ∈ R2 | ‖ω‖ ≤ ̺}), and

the space of orientation scores. The space of orientation scores is a specific reproduc-

ing kernel vector subspace [3,4,21] of L2(R
2 ×S1), see Appendix A for the connection

with continuous wavelet theory. The transform from an image f to an orientation score

Uf := Wψf is constructed via an anisotropic convolution kernel ψ ∈ L2(R
2)∩L1(R

2):

Uf (x, θ) = (Wψ[f ])(x, θ) =

∫

R2

ψ(R−1
θ (y−x))f(y)dy, (1.1)

where Wψ denotes the transform and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Exact reconstruction is

obtained by

f(x) = (W∗
ψ[Uf ])(x) =

(
F−1
R2

[
M−1
ψ FR2

[
1

2π

∫ 2π

0
(ψθ ∗ Uf (·, θ))dθ

]])
(x), (1.2)

for all x ∈ R2, where FR2 is the unitary Fourier transform on L2(R
2) andMψ ∈ C(R2,R)

is given by

Mψ(ωωω) =

∫ 2π

0
|ψ̂(R−1

θ ωωω)|2dθ for all ωωω ∈ R2,

with ψ̂ := FR2ψ, ψθ(x) = ψ(R−1
θ x). Furthermore, W∗

ψ denotes the adjoint of wavelet

transform Wψ : L2(R
2) → C

SE(2)
K , where the reproducing kernel norm on the space of

orientation scores,

C
SE(2)
K = {Wψf | f ∈ L2(R

2)},
is explicitly characterized in [24, Thm.4, Eq. 11]. Well-posedness of the reconstruction

is controlled by Mψ [10,24]. For details see Appendix A. Regarding the choice of ψ in

our algorithms, we rely on the wavelets proposed in [21, ch:4.6.1], [10].
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In this article, the invertible orientation scores serve as the initial condition of left-

invariant (non-) linear PDE evolutions on the rotation-translation group R2 ⋊ SO(2) ≡
SE(2), where by definition, Rd ⋊ Sd−1 := Rd ⋊ SO(d)/({0} × SO(d− 1)). Now in our

case d = 2, so R2 ⋊ S1 = R2 ⋊ SO(2) and we identify rotations with orientations. The

primary focus of this article, however, is on the numerics and comparison to the exact

solutions of linear left-invariant PDE’s on SE(2). Here by left-invariance and linearity

we can restrict ourselves in our numerical analysis to the impulse response, where the

initial condition is equal to δe = δx0 ⊗ δy0 ⊗ δθ0 , where ⊗ denotes the tensor product in

distributional sense.

In fact, we consider all linear, second order, left-invariant evolution equations and

their resolvents on L2(R
2⋊S1) ≡ L2(SE(2)), which actually correspond to the forward

Kolmogorov equations of left-invariant stochastic processes. Specifically, there are two

types of stochastic processes we will investigate in the field of imaging and vision:

• The contour enhancement process as proposed by Citti et al. [19] in the cortical

modeling.

• The contour completion process as proposed by Mumford [46] also called the

direction process.

In image analysis, the difference between the two processes is that the contour en-

hancement focuses on the de-noising of elongated structures, while the contour com-

pletion aims for bridging the gap of interrupted contours since it contains a convection

part.

Although not being considered in this article, we mention related 3D (SE(3)) exten-

sions of these processes and applications (primarily in DW-MRI) in [20, 45, 48]. Most

of our numerical findings in this article apply to these SE(3) extensions as well.

Many numerical approaches for implementing left-invariant PDE’s on SE(2) have

been investigated intensively in the fields of cortical modeling and image analysis. Pe-

titot introduced a geometrical model for the visual cortex V1 [47], further refined to

the SE(2) setting by Citti and Sarti [19]. A method for completing the boundaries

of partially occluded objects based on stochastic completion fields was proposed by

Zweck and Williams [58]. Also, Barbieri et al. [8] proposed a left-invariant cortical

contour perception and motion integration model within a 5D contact manifold. In the

recent work of Boscain et al. [12], a numerical algorithm for integration of a hypoel-

liptic diffusion equation on the group of translations and discrete rotations SE(2, N)
is investigated. Moreover, some numerical schemes were also proposed by August et

al. [6,7] to understand the direction process for curvilinear structure in images. Duits,

van Almsick and Franken [21,25,26,29,32,56] also investigated different models based

on Lie groups theory, with many applications to medical imaging.

The numerical schemes for left-invariant PDE’s on SE(2) can be categorized into 3

approaches:

• Finite difference approaches.
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Numerical Approaches for Linear Diffusions on SE(2) 5

• Fourier based approaches, including SE(2)-Fourier methods.

• Stochastic approaches.

Recently, several explicit representations of exact solutions were derived [2,25,27–29,

56]. In this paper we will set up a structured framework to compare all the numerical

approaches to the exact solutions.

Contributions of the article: In this article, we:

• compare all numerical approaches (finite difference methods, a stochastic method

based on Monte Carlo simulation and Fourier based methods) to the exact so-

lution for contour enhancement/completion. We show that the Fourier based

approaches perform best and we also explain this theoretically in Theorem 5.2;

• provide a concise overview of all exact approaches;

• implement exact solutions, including improvements of Mathieu-function evalua-

tions in Mathematica;

• establish explicit connections between exact and numerical approaches for con-

tour enhancement;

• analyze the poles/singularities of the resolvent kernels;

• propose a new probabilistic time integration to overcome the poles, and we prove

this via new simple asymptotic formulas for the corresponding kernels that we

present in this article;

• show benefits of the newly proposed time integration in contour completion via

stochastic completion fields [58];

• analyze errors when using the DFT (Discrete Fourier Transform) instead of the

CFT (Continuous Fourier Transform) to transform exact formulas in the spatial

Fourier domain to the SE(2) domain;

• apply left-invariant evolutions as preprocessing before tracking the retinal vascu-

lature via the ETOS-algorithm [10] in optical imaging of the eye.

Structure of the article: In Section 2 we will briefly describe the theory of the SE(2)
group and left-invariant vector fields. Subsequently, in Section 3 we will discuss the

linear time dependent (convection-) diffusion processes on SE(2) and the correspond-

ing resolvent equation for contour enhancement and contour completion. In Subsec-

tion 3.3 we provide improved kernels via iteration of resolvent operators and give a

probabilistic interpretation. Then we show the benefit in stochastic completion fields.

For completeness, the fundamental solution and underlying probability theory for con-

tour enhancement/completion is explained in Subsection 3.4.
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In Section 4 we will give the full implementations for all our numerical schemes for

contour enhancement/completion, i.e. explicit and implicit finite difference schemes,

numerical Fourier based techniques, and the Monte-Carlo simulation of the stochastic

approaches. Then, in Section 5, we will provide a new concise overview of all three

exact approaches in the general left-invariant PDE-setting. Direct relations between

the exact solution representations and the numerical approaches are also given in this

section. After that, we will provide experiments with different parameter settings and

show the performance of all different numerical approaches compared to the exact so-

lutions. Finally, we conclude our paper with applications on retinal images to show the

power of our multi-orientation left-invariant diffusion with an application on complex

vessel enhancement, i.e. in the presence of crossings and bifurcations.

2. The SE(2) group and left-invariant vector fields

2.1. The Euclidean motion group SE(2) and representations

An orientation score U : SE(2) → C is defined on the Euclidean motion group

SE(2) = R2 ⋊ S1. The group product on SE(2) is given by

gg′ = (x, θ)(x′, θ′) = (x + Rθ · x′, θ + θ′), for all g, g′ ∈ SE(2). (2.1)

The translation and rotation operators on an image f are given by (Txf)(y) = f(y − x)
and (Rθf)(x) = f((Rθ)

−1x). Combining these operators yields the unitary SE(2) group

representation Ug = Tx ◦ Rθ. Note that

gh 7→ Ugh = UgUh and Ug−1 = U−1
g = U∗

g .

We have

∀g ∈ SE(2) : (Wψ ◦ Ug) = (Lg ◦ Wψ) (2.2)

with group representation g 7→ Lg given by LgU(h) = U(g−1h), and consequently, the

effective operator Υ := W∗
ψ ◦Φ ◦Wψ on the image domain (see Fig. 3) commutes with

rotations and translations if the operator Φ on the orientation score satisfies

Φ ◦ Lg = Lg ◦ Φ, for all g ∈ SE(2). (2.3)

Moreover, if Φ maps the space of orientation scores onto itself, sufficient condition

(2.3) is also necessary for rotation and translation covariant image processing (i.e. Υ
commutes with Ug for all g ∈ SE(2)). For details and proof see [21, Thm.21, p.153].

However, operator Φ should not be right-invariant, i.e. Φ should not commute with the

right-regular representation g 7→ Rg given by RgU(h) = U(hg), as RgWψ = WUgψ and

operator Υ should rather take advantage from the anisotropy of the wavelet ψ.

We conclude that by our construction of orientation scores only left-invariant oper-

ators are of interest. Next we will discuss the left-invariant derivatives (vector-fields)

on smooth functions on SE(2), which we will employ in the PDE of interest presented

in Section 3. For an intuition of left-invariant processing on orientation scores (via

left-invariant vector fields) see Fig. 3.
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Figure 3: Image processing via invertible orientation scores. Operators Φ on the invertible orientation

score robustly relate to operators Υ on the image domain. Euclidean-invariance of Υ is obtained by left-

invariance of Φ. Thus, we consider left-invariant (convection)-diffusion operators Φ = Φt with evolution

time t, which are generated by a quadratic form Q = QD,a(A1,A2,A3) ( cf.Eq.(3.3)) on the left-invariant

vector fields {Ai}, cf. Eq. (2.6). We show the relevance of left-invariance of A2 acting on an image of a

circle (as in Figure 2) compared to action of the non-left-invariant derivative ∂y on the same image.

2.2. Left-invariant tangent vectors and vector fields

The Euclidean motion group SE(2) is a Lie group. Its tangent space at the unity

element Te(SE(2)) is the corresponding Lie algebra and it is spanned by the basis

{ex, ey, eθ}. Next we derive the left-invariant derivatives associated to ex, ey, eθ, re-

spectively. A tangent vector Xe ∈ Te(SE(2)) is tangent to a curve γ at unity element

e = (0, 0, 0). Left-multiplication of the curve γ with g ∈ SE(2) associates to each

Xe ∈ Te(SE(2)) a corresponding tangent vector Xg = (Lg)∗Xe ∈ Tg(SE(2)):

{eξ(g), eη(g), eθ(g)} = {(Lg)∗ex, (Lg)∗ey, (Lg)∗eθ}
= {cos θex+sin θey,− sin θex+cos θey, eθ},

(2.4)

where (Lg)∗ denotes the pushforward of left-multiplication Lgh = gh, and where we

introduce the local coordinates ξ := x cos θ + y sin θ and η := −x sin θ + y cos θ. As the

vector fields can also be considered as differential operators on locally defined smooth

functions [5], we replace ei by using ∂i, i = ξ, η, θ, yielding the general form for a

left-invariant vectorfield

Xg(U) =(cξ(cos θ∂x + sin θ∂y)

+ cη(− sin θ∂x + cos θ∂y) + cθ∂θ)U, for all cξ, cη , cθ ∈ R.
(2.5)

Throughout this article, we shall rely on the following notation for left-invariant vector

fields

{A1,A2,A3} := {∂ξ , ∂η, ∂θ} = {cos θ∂x + sin θ∂y,− sin θ∂x + cos θ∂y, ∂θ}, (2.6)

which is the frame of left-invariant derivatives acting on SE(2), the domain of the

orientation scores.
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3. The PDE’s of interest

3.1. Diffusions and convection-diffusions on SE(2)

A diffusion process on Rn with a square integrable input image f : Rn 7−→ R is

given by

{
∂tu(x, t) = ▽ · D▽u(x, t) x ∈ Rn, t ≥ 0,

u(x, 0) = f(x).
(3.1)

Here, the ▽ operator is defined based on the spatial coordinates with ▽ = (∂x1 , ..., ∂xn),
and the constant diffusion tensor D is a positive definite matrix of size n×n. Similarly,

the left-invariant diffusion equation on SE(2) is given by:





∂tW (g, t) =
(
∂ξ ∂η ∂θ

)



Dξξ Dξη Dξθ

Dηξ Dηη Dηθ

Dθξ Dθη Dθθ







∂ξ
∂η
∂θ


W (g, t),

W (g, t = 0) = U0(g),

(3.2)

where as a default the initial condition is usually chosen as the orientation score of

image f ∈ L2(R
2), U0 = Uf = Wψf . From the general theory for left-invariant scale

spaces [23], the quadratic form of the convection-diffusion generator is given by

QD,a(A1,A2,A3) =
3∑

i=1


−aiAi +

3∑

j=1

DijAiAj


 ,

ai,Dij ∈ R,D := [Dij ] ≥ 0,DT = D,

(3.3)

where the first order part takes care of the convection process, moving along the expo-

nential curves t 7−→ g · exp(t(∑3
i=1 aiAi)) over time with g ∈ SE(2), and the second

order part specifies the diffusion in the following left-invariant evolutions

{
∂tW = QD,a(A1,A2,A3)W,

W (·, t = 0) = U0(·).
(3.4)

In case of linear diffusion, the positive definite diffusion matrix D is constant. Then we

obtain the solution of the left-invariant diffusion equation via a SE(2)-convolution with

the Green’s function KD,a
t : SE(2) → R+ and the initial condition U0 : SE(2) → C:

W (g, t) = (KD,a
t ∗SE(2) U

0)(g) =

∫

SE(2)

KD,a
t (h−1g)U0(h) dh

=

∫

R2

π∫

−π

KD,a
t (R−1

θ′ (x − x′), θ − θ′)U0(x′, θ′) dθ′dx′, (3.5)
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for all g = (x, θ) ∈ SE(2). This can symbolically be written as W (·, t) = etQ
D,a(A1,A2,A3)

U0(·). In this time dependent diffusion we have to set a fixed time t > 0. In the

subsequent sections we consider time integration while imposing a negatively expo-

nential distribution T ∼ NE(α), i.e. P (T = t) = αe−αt. We choose this distribution

since it is the only continuous memoryless distribution, and in order to ensure that the

underlying stochastic process is Markovian, traveling time must be memoryless.

There are two specific cases of interest:

• Contour enhancement, where a = 0 and D is symmetric positive semi-definite

such that the Hörmander condition is satisfied. This includes both elliptic diffu-

sion D > 0 and hypo-elliptic diffusion in which case we have D ≥ 0 in such a way

that Hörmander’s condition [37] is still satisfied. In the linear case we shall be

mainly concerned with the hypo-elliptic case D = diag{D11, 0,D33},

• Contour completion, where a = (1, 0, 0) and D = diag{0, 0,D33} with D33 > 0.

Several new exact representations for the (resolvent) Green’s functions in SE(2) were

derived by Duits et al. [25, 27–29, 56] in the spatial Fourier domain, as explicit formu-

las were still missing, see e.g. [46]. This includes the Fourier series representations,

studied independently in [12], but also includes a series of rapidly decaying terms

and explicit representations obtained by computing the latter series representations ex-

plicitly via the Floquet theorem, producing explicit formulas involving only 4 Mathieu

functions. The works in [25,29] relied to a large extend on distribution theory to derive

these explicit formulas. Here we deal with the general case with D ≥ 0 and a ∈ R3

(as long as Hörmander’s condition [37] is satisfied) and we stress the analogy between

the contour completion and contour enhancement case in the appropriate general set-

ting (for the resolvent PDE, for the (convection)-diffusion PDE, and for fundamental

solution PDE). Instead of relying on distribution theory [25,29], we obtain the general

solutions more directly via Sturm-Liouville theory.

Furthermore, in Section 6 we include, for the first time, numerical comparisons

of various numerical approaches to the exact solutions. The outcome of which, is

underpinned by a strong convergence theorem that we will present in Theorem 5.2.

On top of this, in Appendix B, we shall present new asymptotic expansions around

the origin that allow us to analyze the order of the singularity at the origin of the

resolvent kernels. From these asymptotic expansions we deduce that the singularities

in the resolvent kernels (and fundamental solutions) are quite severely. In fact, the

better the equations are numerically approximated, the weaker the completion and

enhancement properties of the kernels.

To overcome this severe discrepancy between the mathematical PDE theory and the

practical requirements, we propose time-integration via Gamma distributions (beyond

the negative exponential distribution case). Mathematically, as we will prove in Sub-

section 3.3, this newly proposed time integration both reduces the singularities, and
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10 J. Zhang, R. Duits, et al.

maintains the formal PDE theory. In fact using a Gamma distribution coincides with

iteration the resolvents, with an iteration depth k equal to the squared mean divided

by the variance of the Gamma distribution.

We will also show practical experiments that demonstrate the advantage of us-

ing the Gamma-distributions: we can control and amplify the infilling property (“the

spread of ink”) of the PDE’s.

3.2. The Resolvent equation

Traveling time of a memoryless random walker in SE(2) is negatively exponential

distributed, i.e.

p(T = t) = αe−αt, t ≥ 0, (3.6)

with the expected life time E(T ) = 1
α . Then the resolvent kernel is obtained by inte-

grating Green’s function KD,a
t : SE(2) → R+ over the time distribution, i.e.

RD,a
α = α

∫ ∞

0
KD,a
t e−αtdt = α

∫ ∞

0
etQδee

−αtdt = −α(Q− αI)−1δe,

where we use short notation Q = QD,a(A1,A2,A3). Via this resolvent kernel, one

gets the probability density Pα(g) of finding a random walker at location g ∈ SE(2)
regardless its traveling time, given that it has departed from distribution U : SE(2) →
R+:

Pα(g) = (RD,a
α ∗SE(2) U)(g) = −α(QD,a(A1,A2,A3)− αI)−1U(g), (3.7)

which is the same as taking the Laplace transform of the left-invariant evolution equa-

tions (3.4) over time. The resolvent equation can be written as

Pα(g) = α

∫ ∞

0
e−αt(etQU0)(g)dt = α((αI −Q)−1U)(g).

However, we do not want to go into the details of semigroup theory [57] and we just

write etQU0 as short notation for the solution of Eq. (3.4). Resolvents can be used in

completion fields [6, 25, 58]. Some resolvent kernels of the contour enhancement and

completion process are given in Fig. 4.

3.3. Improved kernels via iteration of resolvent operators

The kernels of the resolvent operators suffer from singularities at the origin. Espe-

cially for contour completion, this is cumbersome from the application point of view,

since here the better one approximates Mumford’s direction process and its inherent

singularity in the Green’s function, the less “ink” is spread in the areas with missing and

interrupted contours. To overcome this problem we extend the temporal negatively ex-

ponential distribution in our line enhancement/completion models by a 1-parameter

family of Gamma-distributions.
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Numerical Approaches for Linear Diffusions on SE(2) 11

Figure 4: Left: the xy-marginal of the contour enhancement kernel RD
α := RD,0

α with parameters α = 1
100

,

D = {1, 0, 0.08}, numbers of orientations No = 48 and spatial dimensions Ns = 128. Right: the xy-

marginal of the contour completion kernel RD,a
α with parameters α = 1

100
, a = (1, 0, 0), D = {0, 0, 0.08},

No = 72 and Ns = 192.

As a sum T = T1 + . . . + Tk of linearly independent negatively exponential time

variables is Gamma distributed P (T = t) = αktk−1

(k−1)! e
−αt, the time integrated process

is now obtained by a k-fold resolvent operator. While keeping the expectation of the

Gamma distribution fixed by E(T ) = k/α, increasing of k will induce more mass trans-

port away from t = 0 towards the void areas of interrupted contours. For k ≥ 3 the

corresponding Green’s function of the k-step approach even no longer suffers from a

singularity at the origin. This procedure is summarized in the following theorem and

applied in Fig. 5.

Theorem 3.1. A concatenation of k subsequent, independent time-integrated memory-

less stochastic process for contour enhancement(/completion) with expected traveling time

α−1, corresponds to a time-integrated contour enhancement(/completion) process with a

Gamma distributed traveling time T = T1 + . . .+ Tk with

P (Ti = t) = αe−αt, for i = 1, . . . , k, (3.8a)

P (T = t) = Γ(t; k, α) :=
αktk−1

Γ(k)
e−αt. (3.8b)

The probability density kernel of this stochastic process is given by

RD,a
α,k = RD,a

α ∗(k−1)
SE(2) R

D,a
α = αk(QD,a(A)− αI)−kδe, (3.9)

For the linear, hypo-elliptic, contour enhancement case (i.e. D = diag{D11, 0,D33} and

a = 0) the kernels admit the following asymptotical formula for |g| << 1 :

Rα,k(g) =

∞∫

0

αktk−1e−αt

(k − 1)!

e−C
2 |g|2

4t

4πD11D33t2
dt =

αk

(k − 1)!4πD11D33

∞∫

0

tk−3e−C
2 |g|2

4t
−αt dt

=
21−k

πD11D33(k − 1)!
αk||g|C|k−2 K(2− k, |g|C√

α), (3.10)
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12 J. Zhang, R. Duits, et al.

where K(n, z) denotes the modified Bessel function of the 2nd kind, and with C ∈ [2−1, 4
√
2]

and with

|g| =
∣∣∣ec1A1+c2A2+c3A3

∣∣∣ =

√( |c1|2
D11

+
|c3|2
D33

)2

+
|c2|2

D11D33
(3.11)

with

c1 =
θ(y − η)

2(1 − cos θ)
, c2 =

θ(ξ − x)

2(1 − cos θ)
,

c3 = θ if θ 6= 0 and (c1, c2, c3) = (x, y, 0) if θ = 0.

Proof. We consider a random traveling time T =
∑n

i=1 Ti in an n-step approach ran-

dom process GT =
∑N

i=1GTi on SE(2), with GTi independent random random walks

whose Fokker-Planck equations are given by (3.4), and with independent traveling

times Ti ∼ NE(α) (i.e. P (Ti = t) = f(t) := αe−αt). Then for k ≥ 2 we have

T ∼ f ∗k−1
R+ f = Γ(·; k, α),

(with f ∗R+ g(t) =
∫ t
0 f(τ)g(t− τ) dτ), which follows by consideration of the character-

istic function and application of Laplace transform L.

We have αk(Q− αI)−k = (α(Q− αI)−1)k, and for k = 2 we have identity

RD,a
α,k=2(x, θ) =

∞∫
0

p(GT = (x, θ)|T = t,G0 = e) · p(T = t) dt

=
∞∫
0

p(GT = (x, θ) | T = T1 + T2 = t,G0 = e) · p(T1 + T2 = t) dt

=
∞∫
0

t∫
0

p(GT1+T2 = (x, θ) | T1 = t− s, T2 = s,G0 = e)

·p(T1 = t− s) p(T2 = s) dsdt

= α2 L
(
t 7→

t∫
0

(KD,a
t−s ∗SE(2) K

D,a
s ∗SE(2) δe)(x, θ)ds

)
(α)

= α2 L
(
t 7→

t∫
0

(KD,a
t−s ∗SE(2) K

D,a
s )(x, θ)ds

)
(α)

= α2
(
L
(
t 7→ KD,a

t (·)
)
(α) ∗SE(2) L

(
t 7→ KD,a

t (·)
)
(α)

)
(x, θ)

= (RD,a
α,k=1 ∗SE(2) R

D,a
α,k=1)(x, θ).

Thereby main result Eq.(3.9) follows by induction.

Result (3.10) follows by direct computation and application of the theory of weighted

sub-coercive operators on Lie groups [30] to the SE(2) case. We have filtration g0 :=
span{A1,A3}, and g1 = [g0, g0] = span{A1,A2,A3} = L(SE(2)), so w1 = 1, w3 = 1

and w2 = 2 and computation of the logarithmic map on SE(2), g = e
∑3
i=1 c

iAi ⇔∑3
i=1 c

iAi = log g, yields a non-smooth logarithmic squared modulus locally equivalent

to smooth |g|2 given by (3.11), see [25, ch:5.4,eq.5.28]. �
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Numerical Approaches for Linear Diffusions on SE(2) 13

We have the following asymptotical formula for K(n, z):

K(n, z) ≈





− log(z/2) − γEUL if n = 0

1
2(|n| − 1)!

(
z
2

)−|n|
for 0 < z <<1,

with Euler’s constant γEUL, and thereby Eq. (3.10) implies the following result:

Corollary 3.1. If k = 1 then RD
α,k(g) ≡ O(|g|−2). If k = 2 then RD

α,k(g) ≡ O(log |g|−1).

If k ≥ 3 then RD
α,k(g) ≡ O(1) and the kernel has no singularity.

Remark 3.1. As this approach also naturally extends to positive (non-integer) fractional

powers k ∈ Q, k ≥ 0 of the resolvent operator we wrote Γ(k) instead of (k − 1)! in

Eq.(3.8a). The recursion depth k equals (E(T ))2/V ar(T ), since the variance of T equals

V ar(T ) = k/α2.

In Fig. 5, we show that increase of k (while fixing E(T ) = k/α) allows for better

propagation of ink towards the completion areas. The same concept applies to the

contour enhancement process. Here we change time integration (using the stochastic

approach outlined in Section 4.4) in Eq. (3.8a) and Eq.(3.8b) rather than iterating the

resolvents in Eq.(3.9) for better accuracy.

3.4. Fundamental solutions

The fundamental solution SD,a : SE(2) → R+ associated to generator QD,a(A1,A2,
A3) solves

QD,a(A1,A2,A3) S
D,a = −δe , (3.12)

and is given by

SD,a(x, y, θ) =

∞∫

0

KD,a
t (x, y, θ) dt =

(
−(QD,a(A1,A2,A3))

−1δe
)
(x, y, θ)

= lim
α↓0

(−α(QD,a(A1,A2,A3)− αI)−1

α
δe

)
(x, y, θ) = lim

α↓0
RD,a
α (x, y, θ)

α
.

(3.13)

There exist many intriguing relations [14,26] between fundamental solutions of hypo-

elliptic diffusions and left-invariant metrics on SE(2), which make these solutions in-

teresting. Furthermore, fundamental solutions on the nilpotent approximation (SE(2))0
take a relatively simple explicit form [25,35]. However, by Eq. (3.13) these fundamen-

tal solutions suffer from some practical drawbacks: they are not probability kernels, in

fact they are not even L1-normalizable, and they suffer from poles in both spatial and

Fourier domain. Nevertheless, they are interesting to study for the limiting case α ↓ 0
and they have been suggested in cortical modeling [8,9].
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14 J. Zhang, R. Duits, et al.

Figure 5: Illustration of Theorem 3.1 and Corollary 3.1, via the stochastic implementation for the k-

step contour completion process (T =
∑k

i=1 Ti) explained in Subsection 4.4. We have depicted the (2D

marginals) of 3D completion fields [58] now generalized to C(x, y, θ) := ((Q − (αk)I)−kδg0)(x, y, θ) ·
((Q∗ − (αk)I)−kδg1)(x, y, θ), with Q = −A1 +D33A

2
3 and with g0 = (x0,

π
6
) and g1 = (x1,−

π
6
), α = 0.1,

D33 = 0.1, via a rough resolution (on a 200× 200× 32-grid) and a finer resolution (on a 400× 400× 64-

grid). Image intensities have been scaled to full range. The resolvent process k = 1 suffers from: ”the

better the approximation, the less relative infilling in the completion” (cf. left column). The singularities

at g0 and g1 vanish at k = 3. A reasonable compromise is found at k = 2 where infilling is stronger, and

where the modes (i.e. curves γ with A2C(γ) = A3C(γ) = 0, cf. [10, App. A], [29]) are easy to detect.

3.5. The Underlying probability theory

In this section we provide an overview of the underlying probability theory belong-

ing to our PDE’s of interest, given by Eq. (3.4), (3.7) and (3.12).

We obtain the contour enhancement case by setting D = diag{D11, 0,D33} and

a = 0. Then, by application of Eq. (2.6), Eq. (3.4) becomes the forward Kolmogorov

equation {
∂tW (g, t) = (D11∂

2
ξ +D33∂

2
θ )W (g, t),

W (g, t = 0) = U(g)
(3.14)

of the following stochastic process for contour enhancement:





X(t) = X(0) +
√

2D11εξ

∫ t

0
(cosΘ(τ)ex + sinΘ(τ)ey)

1

2
√
τ
dτ

Θ(t) = Θ(0) +
√
t
√

2D33εθ, εξ, εθ ∼ N (0, 1).

(3.15)

For contour completion, we must set the diffusion matrix D = diag{0, 0,D33} and

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1411
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:05:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1411
https://www.cambridge.org/core


Numerical Approaches for Linear Diffusions on SE(2) 15

convection vector a = (1, 0, 0). In this case Eq. (3.4) takes the form
{
∂tW (g, t) = (∂ξ +D33∂

2
θ )W (g, t), g ∈ SE(2), t > 0,

W (g, t = 0) = U(g).
(3.16)

This is the Kolmogorov equation of Mumford’s direction process [46]




X(t) = X(t)ex + Y (t)ey = X(0) +

∫ t

0
cosΘ(τ)ex + sinΘ(τ)ey dτ

Θ(t) = Θ(0) +
√
t
√

2D33εθ, εθ ∼ N (0, 1).

(3.17)

Remark 3.2. As contour completion processes aim to reconstruct the missing parts

of interrupted contours based on the contextual information of the data, a positive

direction eξ = cos(θ)ex + sin(θ)ey in the spatial plane is given to a random walker. On

the contrary, in contour enhancement processes a bi-directional movement of a random

walker along ±eξ is included for noise removal by anisotropic diffusion.

The general stochastic process on SE(2) underlying Eq. (3.4) is :
{
Gn+1 := (Xn+1,Θn+1) = Gn +∆t

∑
i∈I

ai ei|Gn
+
√
∆t

∑
i∈I

ǫi,n+1

∑
j∈I

σji ej|Gn
,

G0 = (X0,Θ0),
(3.18)

with I = {1, 2, 3} in the elliptic case and I = {1, 3} in the hypo-elliptic case and where

n = 1, . . . , N −1, N ∈ N denotes the number of steps with stepsize ∆t > 0, σ =
√
2D is

the unique symmetric positive definite matrix such that σ2 = 2D, {ǫi,n+1}i∈I,n=1,...,N−1

are independent normally distributed ǫi,n+1 ∼ N (0, 1) and e1|Gn
= (cosΘn, sinΘn, 0),

e2|Gn
= (− sinΘn, cosΘn, 0), and e3|Gn

= (0, 0, 1). In case I = {1, 2, 3}, Eq. (3.18) boils

down to:



Xn+1

Yn+1

Θn+1


 =




Xn

Yn
Θn


+∆tRΘn




a1
a2
a3


+

√
∆t (RΘn)

T σRΘn




ǫ1,n+1

ǫ2,n+1

ǫ3,n+1


 ,

with Rθ =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

(3.19)

See Fig. 6 for random walks of the Brownian motion and the direction process in

SE(2).

4. Implementation

4.1. Left-invariant differences

4.1.1. Left-invariant finite differences with B-spline interpolation

As explained in Section 2.1, our diffusions must be left-invariant. Therefore, a new

grid template based on the left-invariant frame {eξ, eη, eθ}, instead of the fixed frame

{ex, ey, eθ}, need to be used in the finite difference methods.
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16 J. Zhang, R. Duits, et al.

Figure 6: From left to right: Up row: 20 random walks of the direction process for contour completion in

SE(2) = R2 ⋊ S1 by Mumford [46] with a = (1, 0, 0), D33 = 0.3, time step △t=0.005 and 1000 steps.

Bottom row: 20 random walks of the linear left-invariant stochastic processes for contour enhancement

within SE(2) with parameter settings D11 = D33 = 0.5 and D22 = 0, time step △t=0.05 and 1000 steps.

Figure 7: Illustration of the spatial part of the stencil of the numerical scheme. The horizontal and vertical

dashed lines indicate the sampling grid, which is aligned with {ex, ey}. The black dots, which are aligned

with the rotated left-invariant coordinate system {eξ, eη} with θ = m · ∆θ, where m ∈ {0, 1, ..., No − 1}
denotes the sampled orientation equidistantly sampled with distance ∆θ = 2π

No
.

To understand how left-invariant finite differences are implemented, see Fig. 7,

where 2nd order B-spline interpolation [55] is used to approximate off-grid samples.

The main advantage of this left-invariant finite difference scheme is the improved ro-

tation invariance compared to finite differences applied after expressing the PDE’s in
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Numerical Approaches for Linear Diffusions on SE(2) 17

fixed (x, y, θ)-coordinates, such as in [14, 32, 58]. This advantage is clearly demon-

strated in [33, Fig. 10]. The drawback, however, is the low computational speed and a

small amount of additional blurring caused by the interpolation scheme [32].

4.2. Left-invariant finite difference approaches for contour enhancement
and completion

Eq. (3.14) of the contour enhancement process and Eq. (3.16) of the contour com-

pletion process show us respectively the Brownian motion and direction process of

oriented particles moving in SE(2) ≡ R2 ⋊ S1. Next we will provide and analyze finite

difference schemes for both processes.

4.2.1. Explicit scheme for linear contour enhancement and completion

We can represent the explicit numerical approximations of the contour enhancement

process and contour completion process by using the generator QD,a(A1,A2,A3) in a

general form, i.e. QD,a(A1,A2,A3) = (D11A2
1 + D33A2

3) = (D11∂
2
ξ + D33∂

2
θ ) for the

diffusion process and QD,a(A1,A2,A3) = (∂ξ + D33∂
2
θ ) for the convection-diffusion

process, which yield the following forward Euler discretization:

{
W (g, t+∆t) =W (g, t) + ∆tQD,a(A1,A2,A3)W (g, t),

W (g, 0) = Uf (g).
(4.1)

We take the centered 2nd order finite difference scheme with B-spline interpolation

as shown in Fig. 7 to numerically approximate the diffusion terms (D11∂
2
ξ + D33∂

2
θ ),

and use upwind finite differences for ∂ξ. In the forward Euler discretization, the time

step ∆t is critical for the stability of the algorithm. Typically, the convection process

and the diffusion process have different properties on the step size ∆t. The convection

requires time steps equal to the spatial grid size (∆t = ∆x) to prevent the additional

blurring due to interpolation, while the diffusion process requires sufficiently small

∆t for stability, as we show next. In this combined case, we simulate the diffusion

process and convection process alternately with different step size ∆t according to the

splitting scheme in [20], where half of the diffusion steps are carried out before one

step convection, and half after the convection.

The resolvent of the (convection-)diffusion process can be obtained by integrat-

ing and weighting each evolution step with the negative exponential distribution in

Eq. (3.6). We set the parameters a = (1, 0, 0) and D = diag{1, 0,D33} with D33 =
D33
D11

≈ 0.01 to avoid too much blurring on S1.

Remark 4.1. Referring to the stability analysis of Franken et al. [33] in the general

gauge frame setting, we similarly obtain:

∆t ≤ 1

2
(
1 +

√
2 + 1

q2

)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1411
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:05:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1411
https://www.cambridge.org/core


18 J. Zhang, R. Duits, et al.

in our case of normal left-invariant derivatives. For a typical value of

q =
∆θ

β
=

(π/24)

0.1

in our convention with β2 := D33
D11

= 0.01, in which D33 = 0.01 and D11 = 1, cf. [22],

we obtain stability bound ∆t ≤ 0.16 in the case of contour enhancement Eq. (3.14).

4.2.2. Implicit scheme for linear contour enhancement and completion

The implicit scheme of the contour enhancement and contour completion is given by:
{
W (g, t+∆t) =W (g, t) + ∆tQD,a(A1,A2,A3)W (g, t+∆t),

W (g, 0) = Uf (g).
(4.2)

Then, the equivalent discretization form of the Euler equation can be written as:
{

ws+1 = ws + Q̂ws+1,

w1 = u,
(4.3)

in which Q̂ ≡ ∆t(QD,a(A1,A2,A3)), and ws is the solution of the PDE at t = (s −
1)∆t, s ∈ {1, 2, ...}, with the initial state w1 = u. According to the conjugate gradient

method as shown in [20], we can approximate the obtained linear system (I−Q̂)ws+1 =
ws iteratively without evaluating matrix Q̂ explicitly. The advantage of an implicit

method is that it is unconditionally stable, even for large step sizes.

4.3. Numerical fourier approaches

The following numerical scheme is a generalization of the numerical scheme pro-

posed by Jonas August for the direction process [6]. An advantage of this scheme

over others, such as the algorithm by Zweck et al. [58] or other finite difference

schemes [33], is that (as we will show later in Theorem 5.2) it is directly related to

the exact analytic solutions (approach 1) presented in Section 5.1.

The goal is to obtain a numerical approximation of the exact solution of

α(αI −QD,a(A))−1U = P, U ∈ L2(G), with A = (A1,A2,A3), (4.4)

where the generator QD,a(A) is given in the general form Eq. (3.3) without further

assumptions on the parameters ai > 0, Dii > 0. Recall that its solution is given by

SE(2)-convolution with the corresponding kernel. First we write

F [P (·, eiθ)](ω) = P̂ (ω, eiθ) =
∞∑

l=−∞
P̂ l(ω)eilθ, (4.5a)

F [U(·, eiθ)](ω) = Û(ω, eiθ) =

∞∑

l=−∞
Û l(ω)eilθ. (4.5b)
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Then by substituting (4.5a), (4.5b) into (4.4) we obtain the following 4-fold recursion

(α+l2D33+i a3l +
ρ2

2
(D11 +D22))P̂

l(ω) +
a1(i ωx+ωy)+a2(i ωy−ωx)

2
P̂ l−1(ω)

+
a1(i ωx−ωy) + a2(i ωy+ωx)

2
P̂ l+1(ω) − D11(i ωx+ωy)

2+D22(i ωy−ωx)
2

4
P̂ l−2(ω)

−D11(i ωx−ωy)
2 +D22(i ωy+ωx)

2

4
P̂ l+2(ω) = α Û l(ω), (4.6)

which can be rewritten in polar coordinates

(α+ ila3 +D33l
2 +

ρ2

2
(D11 +D22)) P̃

l(ρ) +
ρ

2
(ia1 − a2) P̃

l−1(ρ) +

ρ

2
(ia1 + a2) P̃

l+1(ρ) +
ρ2

4
(D11 −D22) (P̃

l+2(ρ) + P̃ l−2(ρ)) = α Ũ l(ρ) (4.7)

for all l = 0, 1, 2, . . . with P̃ l(ρ) = eilϕP̂ l(ω) and Ũ l(ρ) = eilϕÛ l(ω), with ω = (ρ cosϕ, ρ sinϕ).
Equation (4.7) can be written in matrix-form, where a 5-band matrix must be in-

verted. For explicit representation of this 5-band matrix where the spatial Fourier

transform in (4.5a) is replaced by the DFT we refer to [21, p.230]. Here we stick

to a Fourier series on T, CFT on R2 and truncation of the series at N ∈ N which yields

the (2N + 1)× (2N + 1) matrix equation:



p
−N q + t r 0 0 0 0
q − t p

−N+1 q + t r 0 0 0

r

.
.
.

.
.
.

.
.
. r 0 0

0
.
.
. q − t p0 q + t r 0

0 0 r

.
.
.

.
.
.

.
.
. r

0 0 0 r q − t pN−1 q + t

0 0 0 0 r q − t pN







P̃−N (ρ)

P̃−N+1(ρ)

.

.

.

P̃0(ρ)

.

.

.

P̃N−1(ρ)

P̃N (ρ)




=
4α

D11




Ũ−N (ρ)

Ũ−N+1(ρ)

.

.

.

Ũ0(ρ)

.

.

.

ŨN−1(ρ)

ŨN (ρ)




(4.8)

where

pl = (2l)2+
4α+ 2ρ2(D11 +D22) + 4ia3l

D33
, r =

ρ2(D11 −D22)

D33
, q =

2ρa1i

D33
, t =

2a2ρ

D33
.

Remark 4.2. The four-fold recursion Eq. (4.7) is uniquely determined by P̃−N−1 =
0, P̃−N−2 = 0, P̃N+1 = 0, P̃N+2 = 0, which is applied in Eq. (4.8).

Remark 4.3. When applying the Fourier transform on SE(2) to the PDE’s of interest,

as done in [12,14,29], one obtains a fully isomorphic 5-band matrix system as pointed

out in [29, App.A, Lemma A.1, Thm A.2], the basic underlying coordinate transition to

be applied is given by

(p, φ) = (ρ, ϕ− θ)

where p indexes the irreducible representations of SE(2) and φ denotes the angular

argument of the p-th irreducible function subspace L2(S
1) on which the p-th irreducible

representation acts. For further details see [29, App.A] and [18].

In [29], we showed the relation between spectral decomposition of this matrix (for

N → ∞) and the exact solutions of contour completion. In this paper we do the same

for the contour enhancement case in Section 5.1.4.
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4.4. Stochastic implementation

In a Monte-Carlo simulation as proposed in [8, 50], we sample the stochastic pro-

cess (Eq.(3.18)) such that we obtain the kernels for our linear left-invariant diffusions.

In particular the kernel of the contour enhancement process, and the kernel for the

contour completion process. Fig. 8 shows the xy-Marginal of the enhancement and the

completion kernel, which were obtained by counting the number of paths crossing each

voxel in the orientation score domain. In addition, the length of each path follows a

negative exponential distribution. Within Fig. 8 we see, for practically reasonable pa-

rameter settings, that increasing the number of sample paths to 50000 already provides

a reasonable approximation of the exact kernels. In addition, each path was weighted

using the negative exponential distribution with respect to time in Eq.(3.6), in order to

obtain the resolvent kernels. The implementation of the k-fold resolvent kernels is ob-

Figure 8: Stochastic random process for the contour enhancement kernel (top) and stochastic random

process for the contour completion raw kernel (bottom). Both processes are obtained via Monte Carlo

simulation of random process (3.18). In contour completion, we set step size ∆t = 0.05, α = 10, D11 =
D33 = 0.5, and D22 = 0. In contour completion, we set step size ∆t = 0.005, α = 5, D33 = 1, and

a = (1, 0, 0).

tained by application of Theorem 3.1, i.e. by imposing a Gamma distribution instead of

a negatively exponential distribution. Here stochastic implementations become slower

as one can no longer rely on the memoryless property of the negatively exponential

distribution, which means one should only take the end-condition of each sample path

GT after a sampling of random traveling time T ∼ Γ(t; k, α). Still such stochastic
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implementations are favorable (in view of the singularity) over the concatenation of

SE(2)-convolutions of the resolvent kernels with themselves.

5. Implementation of the exact solution in the fourier and the spatial
domain and their relation to numerical methods

In previous works by Duits and van Almsick [27–29], three methods were applied

producing three different exact representations for the kernels (or ”Green’s functions”)

of the forward Kolmogorov equations of the contour completion process:

1. The first method involves a spectral decomposition of the bi-orthogonal generator

in the θ-direction for each fixed spatial frequency (ωx, ωy) = (ρ cosϕ, ρ sinϕ) ∈ R2

which is an unbounded Mathieu operator, producing a (for reasonably small times

t > 0) slowly converging Fourier series representation. Disadvantages include the

Figure 9: Top row, left: The three marginals of the exact Green’s function RD
α of the resolvent process

where D = diag{D11, 0, D33} with parameter settings α = 0.025 and D = {1, 0, 0.08}. right: The

isotropic case of the exact Green’s function RD
α of the resolvent process with α = 0.025, D = {1, 0.9, 1}.

Bottom row: The fundamental solution SD of the resolvent process with D = {1, 0, 0.08}. The iso-contour

values are indicated in the Figure.
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Gibbs phenomenon. Nevertheless, the Fourier series representation in terms of

periodic Mathieu functions directly relates to the numerical algorithm proposed

by August in [6], as shown in [29, ch:5]. Indeed the Gibbs phenomenon appears

in this algorithm as the method requires some smoothness of data: running the

algorithm on a sharp discrete delta-spike provides Gibbs-oscillations. The same

holds for Fourier transform on SE(2) methods [12,14,29], recall Remark 4.3.

2. The second method unwraps for each spatial frequency the circle S1 to the real

line R, to solve the Green’s function with absorbing boundary conditions at in-

finity which results in a quickly converging series in rapidly decaying terms ex-

pressed in non-periodic Mathieu functions. There is a nice probabilistic interpre-

tation: The k-th number in the series reflects the contribution of sample-paths in

a Monte-Carlo simulation, carrying homotopy number k ∈ Z, see Fig. 10.

3. The third method applies the Floquet theorem on the resulting series of the sec-

ond method and application of the geometric series produces a formula involving

only 4 Mathieu functions [29,56].

We briefly summarize these results in the general case and then we provide the end-

results of the three approaches for respectively the contour enhancement case and the

contour completion case in the theorems below. In Fig. 9, we show an illustration of

an exact resolvent enhancement kernel and an exact fundamental solution and their

marginals.

Furthermore, we investigate the distribution of the stochastic line propagation pro-

cess with periodic boundaries at −π−2kπ to π+2kπ of the exact kernel. The probability

density distribution of the kernel shows us that most of the random walks only move

within k = 2 loops, i.e. from −3π to 3π. See Fig. 10, where it can be seen that the

series of rapidly decaying terms of method 2 for reasonable parameter settings already

be truncated at N = 1 or N = 2.

In Appendix B we analyze the asympotical behavior of the spatial Fourier transform

of the kernels at the origin and at infinity. It turns out that the fundamental solutions

(the case α ↓ 0) are the only kernels with a pole at the origin. This reflects that funda-

mental solutions are not L1-normalizable, in contrast to resolvent kernels and temporal

kernels. Furthermore, the Fourier transform of any kernel restricted to a fixed θ-layer

has a rapidly decaying direction ωη and a slowly decaying direction ωξ. Therefore we

analyze the decaying behavior of the spatially Fourier transformed kernels along these

axes at infinity and we deduce that all resolvent kernels and fundamental solutions

have a singularity at the origin, whereas the time-dependent kernels do not suffer from

such a singularity.

5.1. Spectral decomposition and the 3 general forms of exact solutions

In this section, we will derive 3 general forms of the exact solutions. To this end

we note that analysis of strongly continuous semigroups [57] and their resolvents start
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Figure 10: Top row, left to right: Two random walks in SE(2) = R2 ⋊ S1 (and their projection on

R2) of the direction processes for k = 0, 1, 2 cases (where k denotes the amount of loops) of contour

enhancement with D = {0.5, 0., 0.19} (800 steps, step-size ∆t = 0.005). Bottom row, left to right: the

intensity projection of the exact enhancement kernels corresponding to the three cases in the top row, i.e.

θ range from −π to π for k = 0 case, from −3π to −π and π to 3π for k = 1 case, from −5π to −3π and

3π to 5π for k = 2 case, with α = 1

40
, D = {0.5, 0., 0.19}.

with analysis of the generator QD,a(A). Symmetries of the solutions directly follow

from the symmetries of the generator. Furthermore, spectral analysis of the genera-

tor QD,a(A) as an unbounded operator on L2(SE(2)) provides spectral decomposition

and explicit formulas for the time-dependent kernels, their resolvents and fundamental

solutions as we will see next.

First of all, the domain of the self-adjoint operator QD,a(A) equals

D(QD,a(A)) = H2(R
2)⊗H2(S

1), with second order Sobolev space

H2(S
1) ≡ {φ ∈ H2([0, 2π]) | φ(0) = φ(2π) and dφ(0) = dφ(2π)},

where dφ ∈ H1(S
1) is the weak derivative of φ and where both Sobolev spaces H2(S

1)
are H2(R

2) are endowed with the L2-norm. Operator QD,a(A) is equivalent to the

corresponding operator

BD,a := (FR2 ⊗ idL2(S1)) ◦QD,a(A) ◦ (F−1
R2 ⊗ idH2(S1)),

where ⊗ denotes the tensor product in distributional sense, FR2 denotes the unitary

Fourier transform operator on L2(R
2) almost everywhere given by

FR2f(ω) = f̂(ω) :=
1

2π

∫

R2

f(x)e−iω·x dx,

and where idH2(S1) denotes the identity map on H2(S
1). This operator BD,a is given by

(BD,aÛ)(ω, θ) = (BD,a
ω
Û(ω, ·))(θ),
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where for each fixed spatial frequency ω = (ρ cosϕ, ρ sinϕ) ∈ R2 operator BD,a
ω

:
H2(S

1) → L2(S
1) is a mixture of multiplier operators and weak derivative operators

d = ∂θ:

BD,a
ω

= −
2∑

j=1

ajmj +
2∑

k,j=1

Dkjmkmj + (−a3 + 2Dj3mj)d+D33d
2, (5.1)

with multipliers

m1 = iρ cos(ϕ− θ) and m2 = −iρ sin(ϕ− θ)

corresponding to respectively

∂ξ = cos θ∂x + sin θ∂y and ∂η = − sin θ∂x + cos θ∂y.

By straightforward goniometric relations it follows that for each ω ∈ R2 operator BD,a
ω

boils down to a 2nd order Mathieu-type operator (i.e. an operator of the type d2

dz2
−

2q cos(2z) + a). In case of the contour enhancement we have

(a = 0 and D = diag{D11,D22,D33} and D11,D22 ≥ 0,D33 > 0) ⇒
BD,a
ω

= −D11ρ
2 cos2(ϕ− θ)−D22ρ

2 sin2(ϕ− θ) +D33∂
2
θ .

In case of the contour completion we have

(a = (1, 0, 0) and D33 > 0) ⇒ BD,a
ω

= −iρ cos(ϕ− θ) +D33∂
2
θ .

Operator BD,a
ω

satisfies

(BD,a
ω

)∗Θ = BD,a
ω

Θ,

and moreover it admits a right-inverse kernel operator K : L2(S
1) → H2(S

1) given by

Kf(θ) =

∫

S1

k(θ, ν)f(ν)dν, (5.2)

with a kernel satisfying k(θ, ν) = k(ν, θ) (without conjugation). This kernel k relates to

the fundamental solution of operator BD,a
ω

:

BD,a
ω
ŜD,a(ω, ·) = δθ0 , for all ω = (ρ cosϕ, ρ sinϕ) ∈ R2,

with ŜD,a : SE(2)\{e} → R, infinitely differentiable. By left-invariance of our generator

QD,a(A), we have

k(θ, ν) = ŜD,a(ρ cos(ϕ− θ), ρ sin(ϕ− θ), ν − θ),

where ŜD,a(ω, θ) denotes the spatial Fourier transform of the fundamental solution

SD,a : SE(2) \ {e} → R+. Now that we have analyzed the generator of our PDE

evolutions, we summarize 3 exact approaches describing the kernels of the PDE’s of

interest.
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Exact Approach 1

Kernel operator K given by Eq. (5.2) is compact and its kernel satisfies k(θ, ν) = k(ν, θ)
and thereby it has a complete bi-orthonormal basis of eigenfunctions {Θn}n∈Z:

BD,a
ω

Θω

n = λnΘ
ω

n and KΘω

n = λ−1
n Θω

n , with 0 ≥ λn → ∞.

As operator BD,a
ω

is a Mathieu type of operator these eigenfunctionsΘn can be expressed
in periodic Mathieu functions, and the corresponding eigenvalues can be expressed in
Mathieu characteristics as we will explicitly see in the subsequent subsections for both
the contour-enhancement and contour-completion cases. The resulting solutions of our
first approach are

W (x, y, θ, s) = [F−1

R2 Ŵ (·, θ, s)](x, y) with Ŵ (ω, θ, s) =
∑
n∈Z

esλn(Û(ω, ·),Θω
n )Θω

n (θ),

Pα(x, y, θ) = [F−1

R2 P̂α(·, θ)](x, y) with P̂α(ω, θ) = α
∑
n∈Z

1

α−λn
(Û(ω, ·),Θω

n )Θω

n (θ),

R̂D,a
α (ω, θ) = α

2π

∑
n∈Z

1

α−λn
Θω

n (θ) Θω

n (0),

SD,a(x, y, θ) = [F−1

R2 ŜD,a(·, θ)](x, y) with ŜD,a(ω, θ) = − 1

2π

∑
n∈N

1

λn
Θω

n (θ)Θω

n (0).

(5.3)

Remark 5.1. If a = 0 then (BD,a
ω

)∗ = (BD,a
ω

) and Θω
n = Θω

n and the {Θω

n } form an

orthonormal basis for L2(S
1) for each fixed ω ∈ R2.

Exact Approach 2

The problem with the solutions (5.3) is that the Fourier series representations (5.3) do

not converge quickly for s > 0 small. Therefore, in the second approach we unfold

the circle and for the moment we replace the 2π-periodic boundary condition in θ by

absorbing boundary conditions at infinity and we consider the auxiliary problem of

finding R̂D,a,∞
α : R2 × R \ {e} → R+, such that

(−QD,a + αI)RD,a,∞
α = αδx0 ⊗ δy0 ⊗ δθ0 ,

RD,a,∞
α (·, θ) → 0 as |θ| → ∞.

⇔ ∀ω∈R2 :

{
(−BD,a

ω
+ αI)R̂D,a,∞

α (ω, ·) = α 1
2π δ

θ
0,

R̂D,a,∞
α (ω, θ) → 0 as |θ| → ∞.

(5.4)

The spatial Fourier transform of the corresponding fundamental solution again follows

by taking the limit α ↓ 0: Ŝ∞ := lim
α↓0

α−1R̂D,a,∞
α . Now the solution of (5.4) is given by

R̂D,a,∞
α (ω, θ) =

α

2πD33Wρ

{
Gρ(ϕ)Fρ(ϕ− θ), for θ ≥ 0,
Fρ(ϕ)Gρ(ϕ− θ), for θ ≤ 0,

for all ω = (ρ cosϕ, ρ sinϕ),

(5.5)

where θ 7→ Fρ(ϕ − θ) is the unique solution in the nullspace of operator −BD,a
ω

+ αI
satisfying Fρ(θ) → 0 for θ → +∞, and where Gρ is the unique solution in the nullspace
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of operator −BD,a
ω

+ αI satisfying Gρ(θ) → 0 for θ → −∞, and The Wronskian of Fρ
and Gρ is given by

Wρ = FρG
′
ρ −GρF

′
ρ = Fρ(0)G

′
ρ(0) −Gρ(0)F

′
ρ(0). (5.6)

See Fig. 11. We conclude with the periodized solutions

RD,a
α (x, y, θ) = [F−1

R2 R̂
D,a
α (·, θ)](x, y) with R̂D,a

α (ω, θ) =
∑
n∈Z

R̂D,a,∞
α (ω, θ + 2nπ),

SD,a(x, y, θ) = [F−1

R2 Ŝ
D,a(·, θ)](x, y) with ŜD,a(ω, θ) =

∑
n∈Z

ŜD,a,∞(ω, θ + 2nπ).
(5.7)

For further details see [25, 27–29, 56]. Here we omit the details on these explicit

Figure 11: Illustration of the continuous fit of θ 7→ R̂D,0,∞
α (ω, θ) in Eq. (5.5) for contour enhancement

with parameter settings D11 = 1, D22 = 0, D33 = 0.05 and α = 1
20

, at (ωx, ωy) = ( π
20
, π
20
).

solutions for the general case as the proof is fully equivalent to [29, Lemma 4.4&Thm

4.5], and moreover the techniques are directly generalizable from standard Sturm-

Liouville theory.

Exact Approach 3

In the third approach, where for simplicity we restrict ourselves to both cases of the

contour enhancement and the contour completion, we apply the well-known Floquet

theorem to the second order ODE

(−BD,a
ω

+ αI)F (θ) = 0 ⇔ F ′′(θ)− 2qρ cos((ϕ − θ)µ)F (θ) = −aρ F (θ), (5.8)

with µ ∈ {1, 2}. For the precise settings/formulas of aρ, qρ and µ, in the case of contour

enhancement and contour completion we refer to the next subsections. Note that in

both the case of contour enhancement and completion we have the Mathieu functions

(following the conventions of [1,44] ) with

meν(z; qρ) = ceν(z; qρ) + iseν(z; qρ)
me−ν(z; qρ) = ceν(z; qρ)− iseν(z; qρ)

, (5.9)
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where z = ϕ − θ, ν = ν(aρ, qρ), ceν(z; qρ) denotes the cosine-elliptic functions and

seν(z; qρ) denotes the sine-elliptic functions, given by

ceν(z; qρ) =
∞∑

r=−∞
cν2r(qρ) cos (ν + 2r)z with ceν(z; 0) = cos νz

seν(z; qρ) =
∞∑

r=−∞
cν2r(qρ) sin (ν + 2r)z with seν(z; 0) = sin νz

,

For details see [44]. Then, we have

Fρ(z) = me−ν(z/µ, qρ), Gρ(z) = meν(z/µ, qρ),

with µ = 1 in the contour enhancement case and µ = 2 in the contour completion

case. Furthermore aρ denotes the Mathieu characteristic and qρ denotes the Mathieu

coefficient and ν = ν(aρ, qρ) denotes the purely imaginary Floquet exponent (with

iν < 0) with respect to the Mathieu ODE-equation (5.8), whose general form is

y′′(z)− 2q cos(2z)y(z) = −ay(z).

Application of this theorem to the solutions Fρ and Gρ in Eq. (5.7) yields

Fρ (z − 2nπ) = e
2nπ i ν
µ Fρ (z) and Gρ (z − 2nπ) = e−

2nπ i ν
µ Fρ (z) , z = ϕ− θ.

(5.10)

Substitution of (5.10) into (5.7) together with the geometric series

∞∑

n=0

(
e2νπi/µ

)n
=

1

1− e2iνπ/µ
and

1 + e2iνπ/µ

1− e2iνπ/µ
= −coth (iνπ/µ) = i cot(νπ/µ),

with Floquet exponent ν = ν(aρ, qρ), Im(ν) > 0, yields the following closed form
solution expressed in 4 Mathieu functions:

[R̂D,a
α (·, θ)](ω) = α

D33 iWρ
{(

− cot(νπ
µ
)
(

ceν(
ϕ
µ
, qρ) ceν(

ϕ−θ
µ
, qρ) + seν(

ϕ
µ
, qρ) seν(

ϕ−θ
µ
, qρ)

)
+

ceν(
ϕ
µ
, qρ) seν(

ϕ−θ
µ
, qρ)− seν(

ϕ
µ
, qρ) ceν(

ϕ−θ
µ
, qρ)

)
u(θ) +(

− cot(νπ
µ
)
(

ceν(
ϕ
µ
, qρ) ceν(

ϕ−θ
µ
, qρ)− seν(

ϕ
µ
, qρ) seν(

ϕ−θ
µ
, qρ

)
+

ceν(
ϕ
µ
, qρ) seν(

ϕ−θ
µ
, qρ) + seν(

ϕ
µ
, qρ) ceν(

ϕ−θ
µ
, qρ

)
u(−θ)

(5.11)

with Floquet exponent ν = ν(aρ, qρ) and where θ 7→ u(θ) denotes the unit step func-

tion.

Next we will summarize the main results, before we consider the special cases of

the contour enhancement and the contour completion.

Theorem 5.1. The exact solutions of all linear left-invariant (convection)-diffusions on

SE(2), their resolvents, and their fundamental solutions given by

W (g, t) = (KD,a
t ∗SE(2) U)(g), Pα(g) = (RD,a

α ∗SE(2) U)(g), SD,a = (QD,a(A))−1δe,
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admit three types of exact representations for the solutions. The first type is a series ex-

pressed involving periodic Mathieu functions given by Eq. (5.3). The second type is a

rapidly decaying series involving non-periodic Mathieu functions given by Eq. (5.5) to-

gether with Eq. (5.7), and the third one involves only four non-periodic Mathieu functions

and is given by Eq. (5.11).

5.1.1. The Contour enhancement case

In case D = diag{D11,D22,D33} with D11,D33 > 0 and D22 ≥ 0 and a = 0, the settings

in the solution formula of the first approach Eq.(5.3) are

Θn(θ) =
men(ϕ−θ,qρ)√

2π
, qρ =

ρ2(D11−D22)
4D33

, λn = −an(qρ)D33 − ρ2(D11+D22)
2 , (5.12)

where men(z, q) denotes the periodic Mathieu function with parameter q and an(q) the

corresponding Mathieu characteristic, and with Floquet exponent ν = n ∈ Z.

The settings of the solution formula of the second approach Eq.(5.8) together with

Eq.(5.7) are

aρ =
−α− ρ2

2 (D11 +D22)

D33
, qρ =

ρ2(D11 −D22)

4D33
,

µ = 1, Wρ = −2i se′ν(0, qρ)ceν(0, qρ), (5.13)

where se′ν(0, qρ) =
d
dz seν(z, q)|z=0. The third approach Eq. (5.11) yields for D11 > D22

the result in [25, Thm 5.3].

Remark 5.2. As the generator QD,0(A) = D11A2
1+D33A2

3 is invariant under the reflec-

tion A3 7→ −A3 we have that our real-valued kernels satisfy K(x, y, θ) = K(−x,−y, θ).
As a result the spatially Fourier transformed enhancement kernels given by K̂D

t (ω, θ),
R̂D
α(ω, θ), Ŝ

D(ω, θ) are real-valued. This is indeed the case in e.g. Eq.(5.5), Eq.(5.11),

as for q, z ∈ R and ν = −ν, we have

meν(z, q) = meν(−z, q) = meν(z, q),

so that seν(z, q) ∈ iR and ceν(z, q) ∈ R.

5.1.2. The Contour completion case

In case D = diag{0, 0,D33} with D33 > 0 and a = (1, 0, 0), the settings in the solution

formula of the first approach Eq.(5.3) are

Θn(θ) =
cen(ϕ−θ2

,qρ)√
π

, n ∈ N ∪ {0}, λn = −an(qρ)D11

4 , qρ =
2ρi
D33

, (5.14)

where cen denotes the even periodic Mathieu-function with Floquet exponent n.

The settings of the solution formula of the second approach Eq.(5.8) together with

Eq.(5.7) are

aρ = − 4α
D33

, qρ =
2ρi
D33

, µ = 2, Wρ = −i se′ν(0, qρ)ceν(0, qρ). (5.15)

See Fig. 12 for plots of completion kernels.
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Figure 12: The marginals of the exact Green’s functions for contour completion. All the figures have the

same settings: σ = 0.4, D = {0, 0, 0.08} and a = (1, 0, 0). Top row, left: The resolvent process with

α = 0.1, right: The resolvent process with α = 0.01. Bottom row: The fundamental solution of the

resolvent process with α = 0. The iso-contour values are indicated in the Figure.

5.1.3. Overview of the relation of exact solutions to numerical implementation

schemes

Theorem 5.1 provides three type of exact solutions for our PDE’s of interest, and the

question rises how these exact solutions relate to the common numerical approaches

to these PDE’s.

The solutions of the first type relate to SE(2)-Fourier and finite element type (but

then using a in Fourier basis) of techniques, as we will show for the general case in Sec-

tion 4.3. The general idea is that if the dimension of the square band matrices (where

the bandsize is atmost 5) tends to infinity, the exact solutions arise in the spectral de-

composition of the numerical matrices.

To compare the solutions of the second/third type of exact solutions to the numerics

we must sample the solutions involving non-periodic Mathieu functions in the Fourier
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domain. Unfortunately, as also reported by Boscain et al. [14], well-tested and complete

publically available packages for Mathieu-function evaluations are not easy to find. The

routines for Mathieu function evaluation in Mathematica 7,8,9, at least show proper

results for specific parameter settings. However, in case of contour enhancement their

evaluations numerically break down for the interesting cases D11 = 1 and D33 < 0.2,

see Fig. 17 in Appendix C. Therefore, in Appendix C, we provide our own algorithm

for Mathieu-function evaluation relying on standard theory of continued fractions [40].

This allows us to sample the exact solutions in the Fourier domain for comparisons. Still

there are two issues left that we address in the next section: 1. One needs to analyze

errors that arise by replacing CFT−1 (Inverse of the Continuous Fourier Transform)

by the DFT−1 (Inverse of the Discrete Fourier Transform), 2. One needs to deal with

singularities at the origin.

5.1.4. The Direct relation of fourier based techniques to the exact solutions

In [29] we have related matrix-inversion in Eq. (4.8) to the exact solutions for the con-

tour completion case. Next we follow a similar approach for the contour enhancement

case with (D22 = 0, i.e. hypo-elliptic diffusion), where again we relate diagonalization

of the five-band matrix to the exact solutions.

Theorem 5.2. Let ωωω = (ρ cosϕ, ρ sinϕ) ∈ R2 be fixed. In case of contour enhancement
with D = diag{D11, 0,D33} and a = 0, the solution of the matrix system (4.6), for
N → ∞, can be written as

P̂ = SΛ−1ST
û (5.16)

with

P̂ = {P̃ ℓ(ρ)}ℓ∈Z, û = {ũℓ(ρ)}ℓ∈Z, S = [Sℓn] = [cnℓ (qρ)],

Λ = diag{α− λn(ρ)}, λn(ρ) = −a2n(qρ)D33 − ρ2D11

2 , qρ =
ρ2D11

4D33
,

(5.17)

and where

cnℓ =

{
Mathieu Coefficient cnℓ , if ℓ is even
0, if ℓ is odd.

In fact Eq. (4.6), for N → ∞, boils down to a steerable SE(2) convolution [32] with

the corresponding exact kernel RD,a
α : SE(2) → R+.

Proof. Both

{
1√
2π
eiℓ(ϕ−θ)|ℓ ∈ Z

}
and

{
1√
2π

Θωωωn(θ) :=
men(ϕ− θ, qρ)√

2π
|n ∈ Z

}

form an orthonormal basis of L2(S
1). The corresponding basis transformation is given

by S. As this basis transformation is unitary, we have S−1 = S† = S̄T . As a result we
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have

P̃ ℓ(ρ) =
∑

m,n,p∈Z
Sℓmδ

m
n

1

α− λn(ρ)
(S†)np ũ

p(ρ) =
∑

n∈Z

∑

p∈Z

cnℓ (qρ)c
n
p (qρ)ũ

p(ρ)

α− λn(ρ)
. (5.18)

Thereby, as men(z) =
∑

ℓ∈Z c
n
ℓ (qρ)e

iℓz, we have:

P̂α(ωωω, θ) = α
∑

ℓ∈Z
P̃ ℓ(ρ)eiℓ(ϕ−θ) = α

∑

n∈Z

∑

p∈Z

men(ϕ− θ, qρ)c
n
p (qρ)e

ipϕûp(ρ)

α− λn(ρ)
, (5.19)

where we recall ũp = eipϕûp. Now by setting

u = δe ⇔ û(ωωω, θ) =
1

2π
δθ0 ⇔ ∀p∈Z, ûp =

1

2π
.

We obtain the exact kernel

RD,a
α (ωωω, θ) =

α

2π

∑

n∈Z

Θωωωn(θ)Θ
ωωω
n(0)

α− λn(ρ)
. (5.20)

From which the result follows. �

Conclusion: This theorem supports our numerical findings that will follow in Sec-

tion 6. The small relative error are due to rapid convergence 1
(α−λn(ρ)) → 0 (n→ ∞),

so that truncation of the 5-band matrix produces very small uniform errors compared

to the exact solutions. It is therefore not surprising that the Fourier based techniques

outperform the finite difference solutions in terms of numerical approximation (see

experiments Section 6).

5.2. Comparison to the exact solutions in the fourier domain

In the previous section we have derived the Green’s function of the exact solutions

of the system

{
(αI −QD,a)RD,a

α = αδe

RD,a
α (x, y,−π) = RD,a

α (x, y, π)
(5.21)

in the continuous Fourier domain. However, we still need to produce nearly exact

solutions RD,a
α (x, y, θr) in the spatial domain, given by

RD,a
α (x, y, θr) =

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
R̂D,a
α (ωωω, θr)e

iωωωxxxdωωω

=

(
1

2π

)2 ∫ ςπ

−ςπ

∫ ςπ

−ςπ
R̂D,a
α (ωωω, θr)e

iωωωxxxdωωω + Iς(x, r),

(5.22)
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where xxx = (x, y) ∈ R2, ωωω = (ωx, ωy) ∈ R2, θr = ( 2π
2R+1 · r) ∈ [−π, π] are the discrete

angles and r ∈ {−R,−(R−1), ..., 0, ..., R−1, R}, ς is an oversampling factor and Iς(x, r)
represent the tails of the exact solutions due to their support outside the range [−ςπ, ςπ]
in the Fourier domain, given by

Iζ(x, r) =

(
1

2π

)2 ∫

R2\[−ςπ,ςπ]2
e−s|ωωω|

2
R̂D
α(ωωω, θr)e

iωωωxdωωω. (5.23)

However in practice we sample the exact solutions in the Fourier domain and then

obtain the spatial kernel by directly applying the DFT−1. Here errors will emerge by

using the DFT−1 instead of the CFT−1. More precisely, we shall rely on the CDFT−1

(Inverse of the Centered Discrete Fourier Transform). Next we analyze and estimate

the errors via Riemann sum approximations [54]. The nearly exact solutions of the

spatial kernel in Eq. (5.22) can be written as

RD,a
α (x, y, θr) =

(
1

2π

)2 ςP∑

p′=−ςP

ςQ∑

q′=−ςQ
R̂D,a
α (ω1

p′ , ω
2
q′ , θr)e

i(ω1
p′x+ω

2
q′y)∆ω1∆ω2

+Iς(x, r) +O

(
1

2P + 1

)
+O

(
1

2Q+ 1

)

=
1

2P + 1

1

2Q+ 1

ςP∑

p′=−ςP

ςQ∑

q′=−ςQ
R̂D,a
α (ω1

p′ , ω
2
q′ , θr)e

i(ω1
p′x+ω

2
q′y)

+Iς(x, r) +O

(
1

2P + 1

)
+O

(
1

2Q+ 1

)
, (5.24)

where ∆ω1 = 2π
2P+1 = 2π

xdim
,∆ω2 = 2π

2Q+1 = 2π
ydim

and P, Q ∈ N determine the number

of samples in the spatial domain, with discrete frequencies and angles given by

ω1
p′ =

2π

2P + 1
· p′ ∈ [−ςπ, ςπ], ω2

q′ =
2π

2Q+ 1
· q′ ∈ [−ςπ, ςπ],

θr =
2π

2R + 1
· r ∈ [−π, π]. (5.25)

There are three approximation terms in Eq. (5.24), and two of them, i.e. O
(

1
2P+1

)

and O
(

1
2Q+1

)
are standard due to Riemann sum approximation. However, Iς(x, r) is

harder to control and estimate. This is one of the reasons why we include a spatial

Gaussian blurring with small scale 0 < s ≪ 1. This means that instead of solving

RD,a
α = α(αI −QD,a(A1,A2,A3))

−1δe, we compute

RD,a,s
α = es∆α(αI −QD,a(A1,A2,A3))

−1δe

= α(αI −QD,a(A1,A2,A3))
−1es∆δe. (5.26)
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So instead of computing the impulse response of a resolvent diffusion we compute the

response of a spatially blurred spike Gs⊗ δθ0 with Gaussian kernel Gs(x) =
e−

||x||2
4s

4πs . An-

other reason for including a linear isotropic diffusion is that the kernels RD,a,s
α are not

singular at the origin. The singularity at the origin (0, 0, 0) of RD,a
α reproduces the orig-

inal data, whereas the tails of RD,a
α take care of the external actual visual enhancement.

Therefore, reducing the singularity at the origin by slight increase of s > 0, amplifies

the enhancement properties of the kernel in practice. However, s > 0 should not be too

large as we do not want the isotropic diffusion to dominate the anisotropic diffusion.

Theorem 5.3. The exact solutions of RD,a,s
α : SE(2) → R+ are given by

(
FR2RD,a,s

α (·, θ)
)
(ωωω) =

(
FR2RD,a

α (·, θ)
)
(ωωω)e−s|ωωω|

2
, (5.27)

where analytic expressions for R̂D,a
α (ωωω, θ) = [FR2(RD,a

α (·, θ))](ωωω) in terms of Mathieu func-

tions are provided in Theorem 5.1. For the spatial distribution, we have the following error

estimation:

RD,a,s
α (x, θr) =

(
[CDFT]−1 (R̂D,a,s

α (ωωω1
· ,ωωω

2
· , θr))

)
(x) + Isς (x, r)

+O

(
1

2P + 1

)
+O

(
1

2Q+ 1

)
, (5.28)

for all x = (x, y) ∈ ZP × ZQ, with discretization in Eq. (5.25), ς ∈ N denotes the over-

sampling factor in the Fourier domain and s = 1
2σ

2 is the spatial Gaussian blurring scale

with σ ≈ 1, 2 pixel length, and

Isς (x, r) =

∫

R2\[−ςπ,ςπ]2
e−s|ωωω|

2
R̂D,a
α (ωωω, θr)e

iωωω·xdωωω. (5.29)

First of all we recall Eq. (5.26), from which Eq. (5.27) follows. Eq. (5.28) follows

by standard Riemann-sum approximation akin to Eq. (5.24). Finally, we note that due

to Hörmander theory [37] the kernel RD,a
α is smooth on SE(2) \ {e} = (0, 0, 0). Now,

thanks to the isotropic diffusion, RD,a,s
α is well-defined and smooth on the whole group

SE(2).

Remark 5.3. In the isotropic caseD11 = D22 we have the asympotic formula (for ρ≫ 0
fixed):

(D11ρ
2 +D33ρ

2
θ + αI)R̂D,a

α (ωωω, θ) = 1 =⇒ R̂D,a
α (ωωω, ρθ) =

1
D11ρ2+D33ρ2θ+α

≈ O( 1
ρ2
).

(5.30)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1411
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:05:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1411
https://www.cambridge.org/core


34 J. Zhang, R. Duits, et al.

Now for

|Isς (x, r)| =
∣∣∣∣
∫

R2\[−ςπ,ςπ]2
e−s|ωωω|

2
R̂D,a
α (ωωω, θr)e

iωωωxdωωω|

≤ 2π

∫ ∞

ςπ
e−sρ

2C

ρ
dρ = πC Γ(0, π2sς2), (5.31)

for fixed a, C ≈ 1
D11

(for D33 small), and where Γ(a, z) denotes the incomplete Gamma

distribution. We have s = 1
2σ

2. For typical parameter settings in the contour enhance-

ment case, σ = 1 pixel length, D11 = 1,D33 = 0.05, we have

|Isς (x, r)| ≤
{
(0.00124)πC, ς = 1

(10−10)πC, ς = 2
(5.32)

which is sufficiently small for ς ≥ 2.

5.2.1. Scale selection of the gaussian mask and inner-scale

In the previous section, we proposed to use a narrow spatial isotropic Gaussian window

to control errors caused by using the DFT−1. In R, we have
√
4πsFGs = G 1

4s
, i.e.

(FGs)(ω) = e−s||ω||
2
, Gs(x) =

1√
4πs

e
−||x||2

4s , σs · σf = 1. (5.33)

where σf denotes the standard deviation of the Fourier window, and σs denotes the

standard deviation of the spatial window. In our convention, we always take ∆x = l
Ns

as the spatial pixel unit length, where l gives the spatial physical length and Ns denotes

the number of samples.

The size of the fourier Gaussian window can be represented as: 2σf = ν · ςπ, where

ν ∈ [12 , 1] is the factor that specifies the percentage of the maximum frequency we

are going to sample in the fourier domain and ς is the oversampling factor. Then, we

can represent the size of the continuous and discrete spatial Gaussian window σs and

σDiscretes as:

σs =
2

νςπ
, σDiscretes = σs ·

l

Ns
=

2

νςπ

(
l

Ns

)
. (5.34)

From Fig. 13, we can see that a Fourier Gaussian window with ν < 1 corresponds to a

spatial Gaussian blurring of slightly more than 1 pixel unit.

If we set the oversampling factor ς = 1, one has 2σDiscretes ∈ [∆x, 2∆x]. Then, the

scale of the spatial Gaussian window

ss =
1

2
(σDiscretes )2 ≤ 1

2
(∆x)2,

in which 1
2(∆x)

2 is called inner-scale [31], which is by definition the minimum reason-

able Gaussian scale due to the sampling distance.
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Figure 13: Illustration of the scales between a Fourier Gaussian window and the corresponding spatial

Gaussian window. Here we define the number of samples Ns = 65.

5.2.2. Comparison by relative ℓK−errors in the spatial and fourier domain

Firstly, we explain how to make comparisons in the Fourier domain. Before the compar-

ison, we apply a normalization such that all the DC components in the discrete Fourier

domain add up to 1, i.e.

R∑

r=−R

P∑

x=−P

Q∑

y=−Q
RD,a
α (x, y, θr)∆x∆y∆θ

=

R∑

r=−R

(
[CDFT]RD,a

α (·, ·, θr)
)
(0, 0) ·∆θ = 1,

where the CDFT and its inverse are given by

[
CDFT

(
RD,a
α (·, ·, θr)

)]
[p′, q′] :=

P∑
p=−P

Q∑
q=−Q

RD,a
α (p, q, θr)e

−2πipp′
2P+1 e

−2πiqq′
2Q+1 ,

[
CDFT

−1

(
[p′, q′] → R̂D,a

α (ω1
p′ , ω

2
q′ , θr)

)]
[p, q]

:=
(

1
2P+1

1
2Q+1

) P∑
p′=−P

Q∑
q′=−Q

RD,a
α (ω1

p′ , ω
2
q′ , θr)e

2πipp′
2P+1 e

2πiqq′
2Q+1 ,

(5.35)

in order to be consistent with the normalization in the continuous domain:
∫ π

−π
R̂D,a
α (0, 0, θ)dθ =

∫ π

−π

∫

R

∫

R

RD,a
α (x, y, θ)dxdydθ = 1.

The procedures of calculating the relative errors ǫfR in the Fourier domain are given

as follows:

ǫfR =

∣∣R̂D,a,exact
α (ω1

· , ω
2
· , θ·)− R̂D,a,approx

α (ω1
· , ω

2
· , θ·)

∣∣
ℓK(ZP×ZQ×ZR)∣∣R̂D,a,exact

α (ω1· , ω2· , θ·)
∣∣
ℓK(ZP×ZQ×ZR)

, (5.36)
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where K ∈ N indexes the ℓK norm on the discrete domain ZP × ZQ × ZR. Akin

to comparisons in the Fourier domain, we compute relative errors ǫsR in the spatial

domain as follows:

ǫsR =

∣∣RD,a,exact
α (x·, y·, θ·)−RD,a,approx

α (x·, y·, θ·)
∣∣
ℓK(ZP×ZQ×ZR)∣∣RD,a,exact

α (x·, y·, θ·)
∣∣
ℓK(ZP×ZQ×ZR)

, (5.37)

where we firstly normalize the approximation kernel with respect to the ℓ1(ZP × ZQ ×
ZR) norm.

6. Experimental results

To compare the performance of different numerical approaches with the exact so-

lution, Fourier and spatial kernels with special parameter settings are produced from

different approaches in both enhancement and completion cases. The evolution of

all our numerical schemes starts with a spatially blurred orientation score spike, i.e.

(Gσs ∗ δR
2

0 ) ⊗ δS
1

0 , which corresponds to the Fourier Gaussian window mentioned in

Section 5.2 for the error control of the exact kernel in Theorem 5.3. We vary σs > 0
in our comparisons. We analyze the relative errors of both spatial and Fourier kernels

with changing standard deviation σs of Gaussian blurring in the finite difference and

the Fourier based approaches for contour enhancement, see Fig. 14.

All the kernels in our experiments are ℓ1− normalized before comparisons are done.

In the contour completion experiments, we construct all the kernels with the number of

orientations No = 72 and spatial dimensions Ns = 192, while in the contour enhance-

ment experiments we set No = 48 and Ns = 128. Our experiments are not aiming for

speed of convergence in terms of No and Ns, as this can be derived theoretically from

Theorem 5.2, we rather stick to reasonable sampling settings to compare our methods,

and to analyze a reasonable choice of σs > 0.

From Fig. 14 we deduce that the relative errors of the ℓ1 and ℓ2 normalized finite

difference (FD) spatial kernels converge to an offset of approximately 5%, which is

understood by additional numerical blurring due to B-spline approximation in Section

4.1.1, which is needed for rotation covariance in discrete implementations [33, Fig-

ure 10], but which does affect the actual diffusion parameters. The relative errors of

the Fourier based techniques (FBT) are very slowly decaying from 0.61% along the axis

σs. We conclude that an appropriate stable choice of σs for fair comparison of our

methods is σs = 1, recall also Section 5.2.1.

Table 1 shows the validation results of our numerical enhancement kernels, in com-

parison with the exact solution using the same parameter settings. The first 5 rows and

the last 5 rows of the table show the relative errors of the ℓ1 and ℓ2 normalized kernels

separately. In all the three parameter settings, the kernels obtained by using the FBT

method provides the best approximation to the exact solutions due to the smallest rela-

tive errors in both the spatial and the Fourier domain. Overall, the stochastic approach

(a Monte Carlo simulation with ∆t = 0.02 and 108 samples) performs second best.
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Figure 14: The relative errors, Eq. (5.37), of the finite difference (FD), and Fourier based techniques

(FBT) with respect to the exact methods (Exact) for contour enhancement. Both ℓ1 and ℓ2 normalized

spatial and Fourier kernels are calculated based on different standard deviation σs ranging from 0.5 to

1.7 pixels, with parameter settings D = {1., 0., 0.03}, α = 0.05 and time step size ∆t = 0.005 in the FD

explicit approach.

Table 1: Enhancement kernel comparison of the exact analytic solution with the numerical Fourier based

techniques, the stochastic methods and the finite difference schemes.

Relative Error D = {1., 0., 0.05} D = {1., 0., 0.05} D = {1., 0.9, 1.}
(%) α = 0.01 α = 0.05 α = 0.05

ℓ1-norm Spatial Fourier Spatial Fourier Spatial Fourier

Exact-FBT 0.12 1.30 0.35 1.92 2.27 0.60

Exact-Stochastic 2.18 3.94 1.74 3.82 2.66 2.54

Exact-FDExplicit 5.07 1.82 5.70 2.34 2.99 3.56

Exact-FDImplicit 5.08 2.29 5.70 3.03 3.00 5.59

ℓ2-norm Spatial Fourier Spatial Fourier Spatial Fourier

Exact-FBT 1.40 1.37 2.39 2.30 2.24 1.23

Exact-Stochastic 2.26 2.32 3.50 3.16 2.93 2.65

Exact-FDExplicit 4.80 1.72 4.97 1.60 2.90 3.15

Exact-FDImplicit 5.17 2.11 5.80 2.29 5.42 5.56

Measurement method abbreviations: (Exact) - Ground truth measurements based

on the analytic solution by using Mathieu functions in Section 5.1, (FBT) - Fourier

based techniques in Section 4.3 and Section 5.1.4, (Stochastic) - Stochastic method in

Section 4.4 (with ∆t = 0.02 and 108 samples), (FDExplicit) and (FDImplicit) - Explicit

and implicit left-invariant finite difference approaches with B-Spline interpolation in

Section 4.2, respectively. The settings of time step size are ∆t = 0.005 in the FDExplicit

scheme, and ∆t = 0.05 in the FDImplicit scheme.
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Although the finite difference scheme performs less, compared to the more com-

putationally demanding FBT and the stochastic approach, the relative errors of the FD

explicit approach are still acceptable, less than 5.7%. The 5% offset is understood by

the B-spline interpolation to compute on a left-invariant grid. Here we note that fi-

nite differences do have the advantage of straightforward extensions to the non-linear

diffusion processes [19,20,32,33], which will also be employed in the subsequent ap-

plication section. For the FD implicit approach, larger step size can be used than the

FD explicit approach in order to achieve a much faster implementation, but still with

negligible influence on the relative errors.

Table 2 shows the validation results of the numerical completion kernels with three

sets of parameters. Again, all the ℓ1 and ℓ2 normalized FBT kernels show us the best

performance (less than 1.2% relative error) in the comparison.

Table 2: Completion kernel comparison of the exact analytic solution with the numerical Fourier based

techniques, the stochastic methods and the finite difference schemes.

Relative Error D = {0., 0., 0.08} D = {0., 0., 0.08} D = {0., 0., 0.18}
a = (1., 0., 0.) a = (1., 0., 0.) a = (1., 0., 0.)

(%) α = 0.01 α = 0.05 α = 0.05

ℓ1-norm Spatial Fourier Spatial Fourier Spatial Fourier

Exact-FBT 0.02 1.06 0.11 1.17 0.05 0.52

Exact-Stochastic 2.49 3.31 2.37 5.40 1.95 4.26

Exact-FDExplicit 1.91 8.36 4.29 8.68 4.57 9.03

ℓ2-norm Spatial Fourier Spatial Fourier Spatial Fourier

Exact-FBT 0.94 1.21 1.20 1.50 0.65 0.79

Exact-Stochastic 4.96 3.40 4.84 3.25 4.39 2.45

Exact-FDExplicit 6.60 5.50 7.92 6.56 8.46 6.48

Measurement method abbreviations: (Exact) - Ground truth measurements based

on the analytic solution by using Mathieu functions in Section 5.1, (FBT) - Fourier

based techniques in Section 4.3 and Section 5.1.4, (Stochastic) - Stochastic method in

Section 4.4 (with ∆t = 0.02 and 108 samples), (FDExplicit) - Explicit left-invariant finite

difference approaches with B-Spline interpolation in Section 4.2. The settings of time

step size are ∆t = 0.005 in the FDExplicit scheme.

7. Application of contour enhancement to improve vascular tree detection
in retinal imaging

In this section, we will show the potential of achieving better vessel tracking re-

sults by applying the SE(2) contour enhancement approach on challenging retinal im-

ages where the vascular tree (starting from the optic disk) must be detected. The

retinal vasculature provides a convenient mean for non-invasive observation of the hu-
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man circulatory system. A variety of eye-related and systematic diseases such as glau-

coma [16], age-related macular degeneration, diabetes, hypertension, arteriosclerosis

or Alzheimer’s disease affect the vasculature and may cause functional or geometric

changes [39]. Automated quantification of these defects enables massive screening

for systematic and eye-related vascular diseases on the basis of fast and inexpensive

imaging modalities, i.e. retinal photography. To automatically extract and assess the

state of the retinal vascular tree, vessels have to be segmented, modeled and analyzed.

Bekkers et al. [10] proposed a fully automatic multi-orientation vessel tracking method

(ETOS) that performs excellently in comparison with other state-of-the-art algorithms.

However, the ETOS algorithm often suffers from low signal to noise ratios, crossings

and bifurcations, or some problematic regions caused by leakages/blobs due to some

diseases. See Fig. 15.

Figure 15: Three problematical cases in the ETOS tracking algorithm [10]. From left to right: blurry

crossing parts, small vessels with noise and small vessels with high curvature.

We aim to solve these problems via left-invariant contour enhancement processes

on invertible orientation scores as pre-processing for subsequent tracking [10], recall

Fig. 2. In our enhancements, we rely on non-linear extension [33] of finite difference

implementations of the contour enhancement process to improve adaptation of our

model to the data in the orientation score. Finally, the ETOS tracking algorithm [10] is

performed on the enhanced retinal images with respect to various problematic tracking

cases, in order to show the benefit of the left-invariant diffusion on SE(2).

As a proof of concept, we show examples of tracking on left-invariantly diffused in-

vertible orientation scores on cases where standard ETOS-tracking without left-invariant

diffusion fails, see Fig. 16.

All the experiments in this section use the same parameters. All the retinal images

are selected with the size 400 × 400. Parameters used for tracking are the same as the

parameters of the ETOS algorithm in [10]: Number of orientations No = 36, wavelets-

periodicity = 2π. The following parameters are used for the non-linear coherence-

enhancing diffusion (CED-OS): spatial scale of the Gaussian kernel for isotropic diffu-

sion is ts = 1
2σ

2
s = 12, the scale for computing Gaussian derivatives is t′s = 0.15, the

metric β = 0.058, the end time t = 20, and c = 1.2 for controlling the balance between

isotropic diffusion and anisotropic diffusion, for details see [33].
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Figure 16: Vessel tracking on retinal images. From up to down: the original retinal images with erroneous

ETOS tracking, the enhanced retinal images with accurate tracking after enhancement.

8. Conclusion

We analyzed linear left-invariant diffusion, convection-diffusion and their resol-

vents on invertible orientation scores, following both 3 numerical and 3 exact ap-

proaches. In particular, we considered the Fokker-Planck equations of Brownian mo-

tion for contour enhancement, and the direction process for contour completion. We

have provided 3 exact solution formulas for the generic left-invariant PDE’s on SE(2)
to place previous exact formulas into context. These formulas involve either infinitely

many periodic or non-periodic Mathieu functions, or only 4 non-periodic Mathieu func-

tions.

Furthermore, as resolvent kernels suffer from severe singularities that we analyzed

in this article, we propose a new time integration via Gamma distributions, correspond-

ing to iterations of resolvent kernels. We derived new asymptotic formulas for the re-

sulting kernels and show benefits towards applications, illustrated via stochastic com-

pletion fields in Fig. 5.

Numerical techniques can be categorized into 3 approaches: finite difference, Fourier

based and stochastic approaches. Regarding the finite difference schemes, rotation and

translation covariance on reasonably sized grids requires B-spline interpolation [33]

(towards a left-invariant grid), including additional numerical blurring. We applied

this both to implicit schemes and explicit schemes with explicit stability bound. Re-

garding Fourier based techniques (which are equivalent to SE(2) Fourier methods,

recall Remark 4.3), we have set an explicit connection in Theorem 5.2 to the exact rep-

resentations in periodic Mathieu functions from which convergence rates are directly

deduced. This is confirmed in the experiments, as they perform best in the numerical
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comparisons.

We compared the exact analytic solution kernels to the numerically computed ker-

nels for all schemes. We computed the relative ℓ1 and ℓ2 errors in both spatial and

Fourier domain. We also analyzed errors due to Riemann sum approximations that arise

by using the DFT−1 instead of using the CFT−1. Here, we needed to introduce a spatial

Gaussian blurring with small “inner-scale” due to finite sampling. This small Gaussian

blurring allows us, to control truncation errors, to maintain exact solutions, and to

reduce the singularities. We implemented all the numerical schemes in Mathematica,

and constructed the exact kernels based on our own implementation of Mathieu func-

tions to avoid the numerical errors and slow speed caused by Mathematica’s Mathieu

functions.

We showed that FBT, stochastic and FD provide reliable numerical schemes. Based

on the error analysis we demonstrated that best numerical results were obtained us-

ing the FBT with negligible differences. The stochastic approach (via a Monte Carlo

simulation) performs second best. The errors from the FD method are larger, but still

located in an admissible scope, and they do allow non-linear adaptation. Preliminary

results in a retinal vessel tracking application show that the PDE’s in the orientation

score domain preserve the crossing parts and help the ETOS algorithm [10] to achieve

more robust tracking.
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A. Invertible orientation scores of 2D-images
and continuous wavelet theory

The continuous wavelet transform constructed by unitary irreducible representations

of locally compact groups was first formulated by Grossman et al. [36]. Given a Hilbert

space H and a unitary irreducible representation g 7→ Ug of any locally compact group
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G in H, a vector 0 6= ψ ∈ H is called admissible if

Cψ :=

∫

G

|(Ugψ,ψ)|2
(ψ,ψ)H

dµG(g) <∞, (A.1)

where µG denotes the left-invariant Haar measure. Given an admissible vector ψ and

a unitary representation of a locally compact group G in H, the CS transform W̃ψ :

H → L2(G) is given by (W̃ψ[f ])(g) = (Ugψ, f)H . It is well known in mathematical

physics [3], that W̃ψ is an isometric transform onto a closed reproducing kernel space

CGKψ with Kψ(g, g
′) = 1

Cψ
(Ugψ,Ug′ψ)H as an L2-subspace.

Now in our orientation score transform f 7→ Wψf , Eq. (1.1), we restrict to disk-

limited images†:

f ∈ L
̺
2(R

2) = {g ∈ L2(R
2) | suppFR2g ⊂ B0,̺},

With B0,̺ = {ω ∈ R2 | ‖ω‖ ≤ ̺}, with ̺ > 0 close to the Nyquist-frequency. We set

the left-regular representation g 7→ Ug given by (Ug=(x,θ)f)(y) = f(R−1
θ (y − x)) as the

unitary representation.

We distinguish between the isometric wavelet transform W̃ψ : L
̺
2(R

2) → L2(G)
and the unitary wavelet transform W̺

ψ : L2(R
2) → CGK , as they have different adjoint

transforms. We drop the formal requirement of U being square-integrable and ψ being

admissible in the sense of (A.1), as it is not strictly needed/applicable for lots of cases.

This includes our case of interestG = SE(2) and its left-regular action on L2(R
2) where

Wψf(g) = (Ugψ, f)L2(R2) gives rise to an orientation score. We call ψ ∈ L2(R
2)∩L1(R

2)
an admissible vector if

0 < Mψ(ω) := (2π)

π∫

−π

∣∣FR2ψ(R−1
θ ω)

∣∣2 dθ <∞ for all ω ∈ B0,̺. (A.2)

Note that L1(R
2) implies that FR2ψ and Mψ are continuous functions vanishing at

infinity.

From the general theory of reproducing kernels spaces, see e.g. [3] and [21, Thm.18,

Cor.4], it follows that Wψ : L
̺
2(R

2) 7→ C
SE(2)
K is unitary, where C

SE(2)
K denotes the

unique [4] reproducing kernel space consisting of complex-valued functions on SE(2)
with reproducing kernel

K(x,θ)(x
′, θ′) = (U(x,θ)ψ,U(x′,θ′)ψ)L2(R2).

Unfortunately, the characterization of the inner-product and norm on the space of ori-

entation scores C
SE(2)
K via its reproducing kernel is relatively complicated [42]. There-

fore, we provide a basic characterization of this inner-product next. For an admissible

vector ψ ∈ L2(R
2), the span of {Ugψ | g ∈ G}, is dense in L2(R

2). The next construction

is in line with general admissibility conditions in [34, Ch.5].

†Such a restriction is convenient and reasonable for applications in view of the Nyquist frequency. Never-

theless, it is not strictly necessary for an L2-isometry, when one extends continuous wavelets to distribu-

tional wavelet transforms [10, Thm 1,App. B].
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Theorem A.1. Let ψ be an admissible vector in the sense that (A.2) is satisfied. Then

Wψ : Lρ2(R
2) → C

SE(2)
K is unitary, and we have

(f, g)L2(R2) = (Wψf,Wψg)Mψ
,

where (U, V )Mψ
= (TMψ

U,TMψ
V )L2(SE(2)) with operator TMψ

: C
SE(2)
K → L2(SE(2))

given by

[TMψ
U ](x, θ) = F−1

R2

[
ω 7→ (2π)−

1
2M

− 1
2

ψ (ω)FR2U(ω, θ)

]
(x).

Corollary A.1. Let Mψ(ω) > 0 for all ω ∈ R2. The space of orientation scores C
SE(2)
K is

a closed subspace of Hψ ⊗ L2(S
1), where

Hψ :=

{
f ∈ L2(R

2) |M− 1
2

ψ FR2f ∈ L2(B0,̺)

}
.

The orthogonal projection Pψ of Hψ ⊗ L2(S
1) onto C

SE(2)
K is given by

(PψU)(x, θ) = (K(x,θ), U)Mψ
= (WψW∗,ext

ψ U)(x, θ),

where W∗,ext
ψ : H̺

ψ ⊗ L2(S
1) → L2(R

2) is the natural extension of the adjoint given by

W∗,ext
ψ U = F−1

R2


M−1

ψ FR2


x 7→

π∫

−π

(ψθ+π ∗ U(·, θ))(x)dθ




 . (A.3)

Remark A.1. In Theorem A.1 we have restricted ourselves to disk-limited images. In

Corollary A.1 we did not apply such a restriction, as it is not needed. Indeed, if U ∈ Hψ

is such that FU(·, θ) has support outside the disk with radius ̺ for all θ ∈ (−π, π], then

it is mapped to zero in (A.3), i.e. then W∗,ext
ψ U = 0.

However, in order to ensure that the Sobolev type of space Hψ is a true L2-space en-

dowed with L2-norm a restriction to disk limited images f ∈ L
̺
2(R

2) is necessary, asMψ

is a continuous function vanishing at infinity. In that case (using L
̺
2(R

2), 0 < ̺ < ∞,

as input space) we need to replace Hψ by the space

H
̺
ψ :=

{
f ∈ L

̺
2(R

2) |M−1
ψ Ff ∈ L2(R

2)
}
.

In case Mψ is uniformly bounded from below on B̺
0, the set H

̺
ψ coincides with the set

L
̺
2(R

2), although it is equipped with a different equivalent norm. In case Mψ = 1B0,̺
,

the norms coincide and then H
̺
ψ ⊗ L2(S

1) = L2(SE(2)), and (A.3) reduces to

(W∗,ext
ψ U)(x) =

π∫

−π

(ψθ+π ∗ U(·, θ))(x)dθ =
∫

SE(2)

U(g) (Ugψ)(x) dµG(g).
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B. Asymptotical behavior of the kernels around the origin
in the fourier domain

Asymptotical analysis is done for the contour enhancement case in B.1, while asymp-

totical analysis is done for the contour completion case in B.2.

B.1. Contour enhancement asymptotic formulas along ωξ and ωη-axis

By freezing cos2(ϕ− θ) = 1 and dividing by D33 within the generator in the Fourier

domain Eq. (5.1). The formula are given as follows:
(
(
D11

D33
ρ2 +

α

D33
)− ∂2θ

)
R̂D11,D33
α (ω, ·) = α

2πD33
δθ0 , (B.1)

in which ρ = ωξ = cos θωx + sin θωy, and ω = (ρ cosϕ, ρ sinϕ) ∈ R2. This is solved by

making continuous fit of solutions in null-space akin to Fig. 11. Then we find

R̂D11,D33
α (ω, ·) = α

2πD33Wρ

{
e
√
λθ, for θ ≤ 0,

e−
√
λθ, for θ ≥ 0,

(B.2)

where λ = D11
D33

ρ2 + α
D33

, and Wρ = 2
√
λ denotes the Wronskian according to Eq. (5.6).

Then, the approximation of the exact solution for contour enhancement is written as:

R̂D11,D33
α (ρ cos θ, ρ sin θ, θ) ≈ α

4πD33

e
−
√

ρ2
D11
D33

+ α
D33

|θ|
√
ρ2D11

D33
+ α

D33

, (B.3)

in which D33
D11

should be small. Then, we can find the fundamental solution by taking

limα↓0
R̂
D11,D33
α (ωωω,θ)

α , which can be represented as:

ŜD11,D33(ρ cos θ, ρ sin θ, θ) ≈ 1

4π

1

ρ
√
D11D33

− |θ|
4πD33

+O(θ2). (B.4)

Similarly, we can also get the resolvent equation along ωη− axis for small ρ. Here

we cannot freeze cos(ϕ − θ) = 0 because the ρ dependence will be lost, and we must

rely on higher order expansion producing the following asymptotic formula:

R̂D11,D33
α (ρ cos θ, ρ sin θ, θ) ≈ α

4π

1√
ρ2D11D33 + αD33

− 1

4π


1− e

−
√

α
D33

|θ|

√
α
√
D33


 , (B.5)

and again for 0 < ρ≪ 1

ŜD11,D33(ρ cos θ, ρ sin θ, θ) ≈ 1

4π

1

ρ
√
D11D33

− |θ|
4πD33

. (B.6)

Conclusion: From Eqs. (B.3) and (B.6), we deduce that R̂D11,D33
α (ωωω, θ) does not

have a pole at ωωω = 0 for α > 0. ŜD11,D33(ωωω, θ) has a pole of order 1 at ωωω = 0.
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B.2. Contour completion asymptotic formulas along ωξ and ωη-axis

We again freeze cos(ϕ − θ) = 1 for ϕ = θ, i.e. along the ωξ-axis, where ρ =
ωξ = cos θωx + sin θωy in the generator in the Fourier domain Eq. (5.1) and apply

Taylor approximation. Then we have the approximation of the resolvent equation in

the Fourier domain, which is given by

R̂D33
α (ρ cos θ, ρ sin θ, θ) ≈ α

4π

e
− |θ|

√
D33√

α+iρ

√
αD33 + iρD33

. (B.7)

Note that the fundamental solution

ŜD33(ρ cos θ, ρ sin θ, θ) ≈ lim
α↓0

1

α
R̂D33
α (ρ cos θ, ρ sin θ, θ)

=
1

4π
√
ρ
e
− |θ|

√
D33√
2ρ

(
cos

( |θ|√D33√
2ρ

− π

4

)
− i sin

( |θ|√D33√
2ρ

− π

4

))
. (B.8)

Therefore, we do not have a pole in the resolvent kernel, but in the fundamental so-

lution we have a pole of order 1
2 in the Fourier domain. The behavior at ∞ is given

by

ŜD33(ρ cos θ, ρ sin θ, θ) ≈ e
− |θ|

√
D33√
2ρ

4π
√
ρ

. (B.9)

Unlike the enhancement case, we cannot expect local isotropy at the origin.

C. Algorithm for evaluation of non-periodic Mathieu functions

Consider the Mathieu equation

y′′(z) + (a− 2q cos(2z))y(z) = 0 (C.1)

for a ≤ 0 and q 6= 0. The Floquet theorem [44] yields the existence of solutions

y(z) = eiν(a,q)z
∞∑

ρ−∞
e2iρzc2ρ(a, q) (C.2)

with ν(a, q) ∈ C the Floquet exponent (which is correctly implemented in Mathematica)

and with (c2ρ(a, q))ρ∈Z ∈ ℓ2(Z). Now the ODE has real-valued coefficients and for our

second type of exact formulas in Theorem 5.1 we are aiming for the two real-valued

solutions

meν(z) → 0 if z → ∞, me−ν(z) → 0 if z → −∞,

with ν = −ν and where we take the convention Im(ν) ≥ 0. Substitution of (C.2) into

the Mathieu ODE directly provides the two-fold recursion

c2ρ+2 +
−a+ (2ρ+ ν)2

q
c2ρ + c2ρ−2 = 0,
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for all ρ ∈ Z, with c0 and c2 such that

lim
ρ±∞

|c2ρ|
1
|ρ| = 0, (C.3)

cf. [44], from which it follows that (c2ρ)ρ∈Z ∈ ℓ1(Z) we deduce that the series represen-

tations are uniformly converging (Weierstrass criterium) and furthermore their limits

are continuously differentiable. Now we have me−ν(z) = meν(−z) and the solutions

are real-valued if c−2ρ = c2ρ. The two-fold recursion is of the type

c2ρ+2 −D2ρc2ρ + c2ρ−2 = 0,

with D2ρ =
a−(2ρ+ν(a,q))

q and we enter the theory of continued fractions via division by

c2ρ

fρ = D2ρ −
1

fρ−1
, with fρ :=

c2ρ+2

c2ρ
,

and indeed under condition (C.3) [44, Eq.(3), p.106] we obtain converging solutions

of type II. For definitions see [44, Section 2.22, p.107].

Algorithm C.1.

input: a ≤ 0, R ∋ q 6= 0, L ∈ N recursion-depth at last coefficient,

2N + 1 ∈ N number of coefficients.

initialization: c0 = 1, f0 = 1, fN+L = 1
D2(N+L)

.

For k = 1, . . . , N + L− 2 do fN+L−k :=
1

D2(N+L−k+1)−fN+L−k+1
.

Then build (c2, . . . , c2N ) by c2l = fl−1c2l−2, for l = 1, . . . , N .

Then build (c2N , . . . , c2, 1, c2, . . . , c2N ).

Then compute by means of DFT, meν(z) and me−ν(z) from their coefficients via

Eq.(C.2).

Compared to the implementation of the contour enhancement kernel based on the

Mathematica Mathieu functions, our own implementation of Mathieu functions is more

robust and does not suffer from the numerical problems. They are much faster, see

Table 3. Fig. 17 shows us the final kernels obtained by using the Mathieu functions

of Mathematica (left) and our own implementation (right). The Mathematica Mathieu

functions are shown to break down when the sampling enters into certain regions, es-

pecially with small angular diffusion. Another big advantage of our implementation is
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Figure 17: From left to right: the final contour enhancement kernel based on the Mathematica Mathieu

functions, the final contour enhancement kernel based on our own implementation of Mathieu functions.

Both kernels use the same plot range and parameter settings: D = {1, 0, 0.03}, α = 0.025, with sampling

size No = 48 and Ns = 128.

that the speed of sampling a kernel is almost 30 times faster than the Mathematica im-

plementation. Table 3 shows us the time requirements of the two routines for different

parameter settings. We can see that our own Mathieu based implementation (OMI) is

even 30 times faster than the Mathematica Mathieu based implementation (MMI).

Table 3: Speed of two implementations (kernel size: 48× 128 × 128).

Parameters MMI time (s) OMI time (s)

D = {1, 0, 0.03}, α = 0.025 4037 139

D = {1, 0, 0.12}, α = 0.025 3272 137

D = {1, 0, 0.03}, α = 0.05 3220 137

Measurement method abbreviations: (OMI) - Own Mathieu based implementation,

(MMI) - Mathematica Mathieu based implementation.
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