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Abstract. Sparse grids have become a versatile tool for a vast range of applications
reaching from interpolation and numerical quadrature to data-driven problems and

uncertainty quantification. We review four selected real-world applications of sparse

grids: financial product pricing with the Black-Scholes model, interactive explo-
ration of simulation data with sparse-grid-based surrogate models, analysis of simu-

lation data through sparse grid data mining methods, and stability investigations of
plasma turbulence simulations.
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1. Introduction

The underlying principle of sparse grids is a hierarchical basis that leads to a hi-

erarchical decomposition of function spaces into hierarchical increments. These hier-

archical increments are then the starting point for optimization problems with which

one constructs approximation spaces for function spaces by selecting only those incre-

ments which have a sufficiently good cost-benefit ratio; the costs equal the dimension

of the approximation space, and the benefit is related to the interpolation error in a

given norm. Sparse grid spaces are optimal approximation spaces with respect to these

criteria for the space H2
mix, which contains functions with bounded, mixed derivatives

up to order two. The corresponding theory is presented in the survey article [9].

Sparse grids have been applied to a variety of computational tasks. The purpose of

this article is to highlight four selected and recently presented real-world applications.
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We summarize a few key facts on sparse grids in Section 2 and clarify the notation.

Our presentation particularly emphasizes that sparse grids build on hierarchical and

multi-level principles. In Section 3, we consider financial product pricing, where the

multi-dimensional Black-Scholes equation is solved. In Section 4, a sparse-grid-based

surrogate modeling approach for interactive visual exploration of parametrized simu-

lation data is discussed. We construct a surrogate model for a building information

model (BIM) that simulates a flow through a building. We continue in Section 5 with

a data-driven problem where we analyze simulation data with sparse grid data mining

methods. Finally, multi-dimensional eigenvalue problems for plasma turbulence simu-

lations are solved on sparse grids in Section 6. The eigenvalues and eigenvectors give

information about whether the plasma is stable or not.

2. Sparse grid spaces

We give a brief overview of sparse grids and particularly emphasize the strong re-

lationship to hierarchical and multi-level computational methods. We also discuss the

combination technique, spatial adaptivity, and list a few software libraries that imple-

ment common sparse grid routines. We do not go into the details of sparse grid theory

but only present the preliminaries for the following applications. We refer to the survey

article [9] for details.

2.1. Full grid spaces and their hierarchical decomposition

Let V be a function space with domain Ω = [0, 1] and homogeneous boundaries,

e.g., V = H2
0 (Ω). We discretize a function f ∈ V by constructing its interpolant in the

finite-dimensional space V
(∞)
ℓ ⊂ V of piecewise linear functions with mesh width 2−ℓ.

The accuracy of the interpolant is controlled by the level ℓ of the space. The space V
(∞)
ℓ

is spanned by the basis functions

ϕi(x) := φ(2ℓx− i) , 1 ≤ i < 2ℓ , (2.1)

where φ : [−1, 1] → R with φ(x) = max{1 − |x|, 0}. The interpolant f̂ ∈ V
(∞)
ℓ of f ∈ V

can be represented as a linear combination

f̂ =
N
∑

i=1

aiϕi

of the basis functions (2.1) and coefficients a = [a1, · · · , aN ]T where N = 2ℓ − 1. It

follows that ai = f(i · 2−ℓ) for i = 1, · · · , N . On the one hand this means that f̂
is easy (w.r.t. the implementation effort) and cheap (w.r.t. the computational costs)

to compute. On the other hand, the coefficients a do not lead to an ordering of the

basis functions with respect to the benefit of including a basis function into the linear
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(a) nodal basis (b) hierarchical basis (c) hierarchical basis with coef-

ficients

Figure 1: This plot shows a function represented in the nodal point basis (a) and the hierarchical basis (b).
The hierarchical basis functions multiplied with their coefficients are shown in (c).

combination (2.1). Thus, the basis (2.1) of V
(∞)
ℓ leads to a representation of f̂ that

gives all basis functions equal importance, cf. Fig. 1.

Let us now introduce a basis for V
(∞)
ℓ that follows a hierarchical or multi-level

approach [9,21,69]. We define the one-dimensional hierarchical basis function of level

l ∈ N and index i ∈ N as

φl,i(x) := φ(2lx− i) (2.2)

and define the hierarchical increments

Wl = span
{

φl,i | 1 ≤ i < 2l, i odd
}

.

The space V
(∞)
ℓ can be represented as a direct sum of hierarchical increments,

V
(∞)
ℓ =

ℓ
⊕

l=1

Wl , (2.3)

which lets us represent the interpolant f̂ ∈ V
(∞)
ℓ as

f̂ =
ℓ

∑

l=1

f̂l =
ℓ

∑

l=1

∑

i

αl,iφl,i (2.4)

with f̂l ∈ Wl and the hierarchical coefficients αl,i, see [9] for proofs. The procedure for

obtaining the hierarchical coefficients is called hierarchisation; its inverse operation is

dehierarchisation. It can be shown [9] that for functions that satisfy certain smoothness

assumptions, the coefficients αl,i corresponding to the hierarchical increment Wl of the

interpolant f̂ are of order 2−2l, i.e., |αl,i| ∈ O(2−2l). Thus, the impact of f̂l onto

the overall approximation accuracy of f̂ decreases with the level l of the hierarchical

increment Wl. Thus, we know that the hierarchical increments and its basis functions

with a hierarchically higher level l (i.e., l small) have a higher impact on the result than
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50 B. Peherstorfer et al.

the basis functions of hierarchically lower levels (i.e., l large). Hence, we obtained an

ordering of the basis function with respect to their importance on the interpolation

accuracy, see Fig. 1.

2.2. Multi-dimensional hierarchical basis and sparse grid spaces

Consider now a domain Ω = [0, 1]d with d ∈ N. We extend (2.2) to the d-dimensional

function φl,i as

φl,i(x) =
d
∏

j=1

φlj ,ij(xj) , (2.5)

where l = (l1, · · · , ld) ∈ N
d and i = (i1, · · · , id) ∈ N

d are the level and index multi-

indices, respectively. Furthermore, we introduce the d-dimensional hierarchical incre-

ment Wl of level l which is spanned by the basis functions in

{

φl,i | i ∈ N
d, 1 ≤ ij < 2lj , ij 6∈ 2N, 1 ≤ j ≤ d

}

. (2.6)

We define a function space VL as direct sum of hierarchical increments

VL =
⊕

l∈L

Wl , (2.7)

where the set L ⊂ N
d is a selection of levels. We then define I as the set that contains

the level-index pairs (l, i) of the basis functions and thus can represent a function

f̂ ∈ VL as linear combination

f̂ =
∑

l∈L

f̂l =
∑

l∈L

∑

i

αl,iφl,i =
∑

(l,i)∈I

αl,iφl,i . (2.8)

We might also write (2.8) as f̂ =
∑

i αiφi if we do not emphasize the hierarchical

decomposition. Then, the full grid space V
(∞)
ℓ of piecewise d-linear functions of level ℓ

can be represented as

V
(∞)
ℓ =

⊕

|l|∞≤ℓ

Wl , (2.9)

where |l|∞ = maxj lj and thus L = {l ∈ N
d | maxj lj ≤ ℓ, 1 ≤ j ≤ d}. The sparse grid

space of level ℓ and dimension d with respect to the L2 norm is

V
(1)
ℓ =

⊕

|l|1≤ℓ+d−1

Wl , (2.10)

where |l|1 =
∑

j lj, see [9,71].

Let us summarize a few properties of the sparse grid space V
(1)
ℓ as defined in (2.10)

and the full grid space V
(∞)
ℓ as defined in (2.9) for functions f ∈ H2

mix. The proofs can
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be found in [9]. The full grid space V
(∞)
ℓ of level ℓ and mesh width h = 2−ℓ is spanned

by O(2ℓd) basis functions, whereas the sparse grid space requires only O(2ℓℓd−1). The

interpolation error of f̂ (∞) ∈ V
(∞)
ℓ is in O(2−2ℓ), and the error of f̂ (1) ∈ V

(1)
ℓ is in

O(2−2ℓℓd−1). Thus, whereas we save many basis functions (and thus grid points), the

interpolation error of the sparse grid interpolant deteriorates only slightly compared

to the full grid interpolant. In particular, the number of basis functions of the sparse

grid spaces does not grow so dramatically with the dimension d as for full grid spaces.

Hence, sparse grid spaces are well-suited for moderately high-dimensional problems.

Note that the basis functions in (2.6) evaluate to zero at the boundary ∂Ω and thus

we have restricted this introduction to homogeneous boundary conditions. However,

the applications of the following sections will require inhomogeneous boundary condi-

tions. We do not discuss the corresponding theory here but refer to, e.g., [24]. Note

further that the sparse grid spaces can also be constructed from higher order polyno-

mial basis functions, wavelets, or B-splines [8,19,24,58,61].

2.3. Combination technique

A different approach to sparse grid approximations is the so-called combination

technique [35]. It represents a sparse grid as a superposition of much coarser full

grids. Then, instead of solving the approximation problem (e.g., interpolation, solution

of PDEs) directly in the sparse grid space, the problem is solved on each of these full

grids independently. For each grid, a partial solution is obtained. These are combined

according to the combination technique scheme to eventually obtain the final solution.

The so obtained final solution has similar properties as the sparse grid solution. Under

certain conditions, it can be shown that the combination technique solution is equal to

the sparse grid solution [10–12,38,60].

Let us consider the combination technique for the interpolation problem. Let f ∈

V = H2
mix(Ω) and let f̂ ∈ V

(1)
ℓ be the sparse grid interpolant of f . We define the full grid

spaces V
(∞)
l

=
⊕

k≤l
Wk of level l ∈ N

d and the corresponding interpolants f̂l ∈ V
(∞)
l

of f . To obtain the combination technique interpolant f̂C corresponding to level ℓ we

combine

f̂C =

d−1
∑

q=0

(−1)q
(

d− 1

q

)

∑

∑
i li=ℓ+(d−1)−q

f̂l . (2.11)

For the interpolation task, f̂C equals the sparse grid interpolant f̂ (1). This means, we

combine many coarse approximations and obtain an accurate approximation in the

end (extrapolation) [35]. The same principle is possible for PDEs: We solve a PDE with

the finite element method and the finite-dimensional spaces V
(∞)
ℓ and combine them

according to (2.11) and obtain a solution f̂C that is more accurate than the partial

solutions in the coarse full grid spaces [12]. We discuss eigenvalue problems and the

combination technique in detail in Section 6.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w05si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w05si
https://www.cambridge.org/core


52 B. Peherstorfer et al.

The advantages of the combination technique are that we obtain several indepen-

dent problems that can be solved in parallel, and that these problems are discretized on

ordinary full grid spaces which allow us to reuse available codes. The disadvantage of

the combination technique is that spatial adaptivity is very limited [59]. Furthermore,

for more general problems no error bounds are known for the combination technique

solution [38]. However, there are improved combination technique schemes that allow

to adaptively select the partial solutions [28,37] and there are also optimized schemes

where the coefficients in the combination scheme are optimized with respect to the

current problem at hand, see Section 6.

2.4. Adaptively refined sparse grid spaces

We have seen in Section 2.2 that the sparse grid space V
(1)
ℓ is optimal with respect

to the interpolation error for the approximation of functions in H2
mix. However, since

this has to hold for all functions in H2
mix, the space V

(1)
ℓ cannot take peculiarities of

specific functions of H2
mix into account. Therefore, we speak of the regular sparse grid

space V
(1)
ℓ of level ℓ. However, in many situations, we want to incorporate the proper-

ties of the current function f ∈ H2
mix at hand into the approximation approach. This is

achieved with adaptive refinement, and we obtain an adaptive sparse grid space V(1)

that is adapted to the function f [9]. In many of the following applications, adaptive

refinement plays a crucial role because it allows to further reduce the number of basis

functions (grid points) required to achieve a given approximation accuracy. Further-

more, experience shows that even non-smooth problems can be dealt with if adaptivity

is employed [30,62,63].

An adaptivity criterion is required to decide in which regions of the domain the

sparse grid should be refined. The hierarchical decomposition (2.8) is again advan-

tageous here because the hierarchical coefficients αl,i for (l, i) ∈ I can be used as

adaptivity criterion. The most widely-used criterion of this kind is to refine those grid

points which correspond to the hierarchical coefficients with the largest absolute val-

ues. Even though this simple criterion works well in many situations—see the follow-

ing applications—there are more sophisticated refinement strategies, see [61–63] for

detailed studies. We show an example of a refined sparse grid in Fig. 2 which also

demonstrates that many sparse grid algorithms require creating all hierarchical ances-

tors (gray points), see, e.g., [53,61].

2.5. The SG++ sparse grid software library

All of the following applications where computed with the SG++ sparse grid li-

brary developed primarily by Dirk Pflüger [61]. It is written in C++ but provides

interfaces to Python, Java, and MATLAB. Over the years, it has grown to a vast li-

brary that contains procedures and routines for basic as well as advanced sparse grid

tasks. Besides the standard operations such as creating sparse grids and (spatially)
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Figure 2: The regular grid of level two in (a) is refined to obtain the sparse grid in (b). After another
Figure 2: The regular grid of level two in (a) is refined to obtain the sparse grid in (b). After another refine-
ment step, the hierarchical ancestors (gray points) are created in (c) because most sparse grid algorithms
require that the hierarchical ancestors of all grid points exist.

adaptively refining them, it also contains the basic algorithms for interpolation (hierar-

chisation/dehierarchisation). A strong focus is on data-driven sparse grid routines that

include regression, classification, and density estimation. It also contains methods to

discretize and solve (UpDown algorithm [1,3,8]) second-order parabolic PDEs on spa-

tially adaptive sparse grids. This also includes an environment to solve option pricing

problems, see Section 3. Additionally, several routines for numerical quadrature are

available.

Another widely-used library is the Sparse Grid Interpolation Toolbox for MATLAB

[45, 46]. It contains routines for interpolation, numerical quadrature, optimization,

and others.

3. PDEs: Pricing of financial products

The volume and variety of financial derivative products has grown significantly over

the last years. One computationally challenging task in that context is pricing basket

options which often requires solving the multi-dimensional Black-Scholes equation. To

cope with the curse of dimensionality, we discretize the Black-Scholes equation with

the finite element method on adaptive sparse grids. We then discuss a Krylov subspace

solver for the corresponding system of linear equations. Finally, we present results for

options with up to six underlying assets.

3.1. Option pricing with the Black-Scholes model

It is common to solve multi-dimensional option pricing problems, e.g., the Black-

Scholes equation of the Black-Scholes model, with Monte Carlo (MC) methods because

they are easy to implement and can cope with high-dimensional problems; however,

they exhibit a poor convergence rate. Even though several techniques (e.g., quasi MC,

adaptive MC, multi-level MC) exist that aim at improving the convergence rate [31–

33], PDE methods have been examined recently because they often exhibit a faster
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convergence rate. Furthermore, with PDE methods, one does not only obtain the price

of the option but also the (so-called) Greeks (derivatives) which are needed for risk

assessment.

Usually, the sparse grid combination technique is employed which allows to reuse

available solvers but which cannot be used with adaptively refined grids, cf. Section 2

and see, e.g., [4,65]. In contrast, we present here a fully adaptive approach that directly

discretizes the Black-Scholes equation on a sparse grid and performs the Galerkin pro-

jection onto a sparse grid space. This is particularly advantageous here, as the payoff

function (terminal condition) is only locally non-smooth and so additional grid points

are only required locally.

The Black-Scholes model assumes that the stock value S follows a geometric Brow-

nian motion defined by the stochastic differential equation

dS(t) = µGMBS(t)dt+ σGMBS(t)dW (t) (3.1)

with drift µGMB, standard deviation σGMB, and stochastic Wiener process W (t). The

Black-Scholes equation is then derived from (3.1). Here, we consider the log-transformed

Black-Scholes equation for a European basket option with d assets and expiration time

T given by

∂u

∂t
+

1

2

d
∑

i,j=1

σiσjρij
∂2u

∂Si∂Sj
+

d
∑

i=1

(

µi −
1

2
σ2i

)

∂u

∂Si
− ru = 0 , (3.2)

where u(S, t) denotes the value of the option at stock price S = (S1, · · · , Sd) ∈ R
d

and forward time t ∈ [0, T ]. The parameters σi, ρij , and µi are the volatilities, asset

correlations, and drifts, respectively. The risk-free interest rate is denoted by r. The

terminal condition is the standard payoff function

V (S, T ) = max

{

K −
1

d

d
∑

i=1

Si, 0

}

(3.3)

that corresponds to a put option and depends on the price (strike) K. We emphasize

that we define the terminal condition rather than the initial condition and so solve

(3.2) backward in time. Note that the payoff function has a sharp bend near which

adaptivity will be beneficial.

3.2. Discretization of the Black-Scholes equation on sparse grids

We solve the multi-dimensional, log-transformed Black-Scholes equation (3.2) with

the finite element method and sparse grids. The weak form of (3.2) is given as

∂

∂t
〈u, ψ〉L2+

1

2

d
∑

i,j=1

σiσjρij

〈

∂u

∂Si
,
∂ψ

∂Sj

〉

L2

−
d

∑

i=1

(

µi −
1

2
σ2i

)〈

∂u

∂Si
, ψ

〉

L2

+r 〈u, ψ〉L2 = 0
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where ψ is a test function of a suitable test space and 〈·, ·〉L2 the L2 dot product. We

choose the domain Ω = [0, Smax
1 ] × · · · × [0, Smax

d ] so large that we can safely impose

homogeneous Dirichlet boundary conditions. We refer to [13] for an estimation of the

error induced by this truncation of the domain. With Ritz-Galerkin projection onto

a (possibly adaptively refined) sparse grid space V(1), which is spanned by the basis

functions in {φ1, · · · , φN}, we obtain a solution û =
∑N

i=1 αiφi ∈ V(1) by solving the

system of ODEs

B
∂

∂t
α(t) = −

1

2

d
∑

i,j=1

σiσjρijC
(ij)α+

d
∑

i=1

(

µi −
1

2
σ2i

)

D(i)α− rBα (3.4)

with the coefficient vector α = [α1, · · · , αN ]T and the matrices B,C(ij),D(i) ∈ R
N×N

with entries Bpq = 〈φp, φq〉L2 , C
(ij)
pq = 〈∂φp

∂Sj
,
∂φq

∂Si
〉L2 , and D

(i)
pq = 〈∂φp

∂Si
, φq〉L2 . The

quadratic Crank-Nicolson scheme is used for the time discretization where a Rannacher

smoothing [64] with backward Euler is employed during the first few time steps due

to the non-smooth payoff function. The result is a non-symmetric system of linear

equations.

In the context of sparse grids, the challenge is now to solve the system (3.4). Due

to the structure of sparse grids and the hierarchical basis functions, the system matrices

in (3.4) are not sparse anymore. Thus, assembling them is too costly.

3.3. Sparse grid Krylov subspace solver

Krylov subspace methods to solve systems of linear equations Ax = b only require

the matrix-vector product with the N × N system matrix A. Because the matrices of

the system (3.4) in the hierarchical basis are dense, a straightforward implementation

would lead to quadratic costs in the number of sparse grid points. However, due to

the tensor product structure of the basis functions (2.5) and the matrices in (3.4),

algorithms can be constructed that provide the matrix-vector product in O(N) rather

than in O(N2).
These algorithms are summarized under the name UpDown scheme [1, 3, 8, 24,

61, 70], which is based on the uni-directional principle. In the context of sparse

grids, d-dimensional algorithms following the uni-directional principle consist of d one-

dimensional algorithms which operate in each dimension. For example, let us consider

the matrix-vector product Bα with the matrix B stemming from the bilinear form

〈·, ·〉L2 , see (3.4). Due to (2.5), we obtain

〈φl,i, φl′,i′〉L2 =

〈

d
∏

j=1

φlj ,ij , φl′j ,i′j

〉

L2

=
d
∏

j=1

〈φlj ,ij , φl′j ,i′j〉L2 ,

where we can rewrite the d-dimensional bilinear form as product of one-dimensional

ones. A similar decomposition can be derived for the bilinear forms corresponding

to the matrices C(ij) and D(i). The one-dimensional subgrids of a multi-dimensional
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ure 3: In the figure on the left, the Up traversal of a two-dimensional tree in the first direction is
Figure 3: In the figure on the left, the Up traversal of a two-dimensional tree in the first direction is shown,
and the corresponding Down traversal on the right. With these tree traversal it is possible to provide the
matrix-vector product with the system matrices in linear complexity with respect to the number of sparse
grid points [13].

sparse grid are traversed according to a nested and recursive scheme so that inter-

mediate values can be stored without requiring additional storage. This is achieved

by splitting the results at each grid point into the contribution from the hierarchically

higher and lower basis functions. This also explains the name UpDown which refers to

the Up and Down traversal of the hierarchical tree representing the basis functions, see

Fig. 3. We refer to [24,61] for details.

This decomposition leads to efficient algorithms that are applicable in case of non-

adaptive sparse grids as well as in the case of adaptively refined sparse grids. Even

though these algorithms are recursive, it is possible to efficiently parallelize them [14,

41]. The matrix-vector procedures can then be used within BiCGStab or other Krylov

subspace methods. The drawback of this approach is that preconditioners are still

required to obtain a fast solver, which is a topic of current research in the context of

sparse grids [23,34,34,70].

3.4. Results for European basket options

We present accuracy results of the presented sparse grid approach for option pric-

ing. The results reported here are presented in detail in [41]. We also refer to

[13, 14, 41] for a detailed study on adaptivity criteria, implementation details, and

runtime measurements on multi- and many-core systems.

Here, we only consider European basket put options with five and six assets, i.e.,

five- and six-dimensional problems. We use the payoff function (3.3) with strike K =
1 and a time to maturity of T = 1. The drifts µi are in the range [0.05, 0.1], the

standard deviations σi in [0.2, 0.4], and non-zero correlations ρij in [−0.7, 0.7] to obtain

complex and computationally expensive scenarios. We compare with a Monte-Carlo

simulation with 1010 paths. Our adaptive sparse grid approach applies principal axis
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Table 1: Accuracy results of sparse grid approach for pricing basket options with the Black-Scholes model
[41]. Due to the spatially adaptive approach, a small number of grid points (DoFs) leads already to sufficient
accuracy results.

5 asset basket option 6 asset basket option

#DoFs abs. err. rel. err. #DoFs abs. err. rel. err.

1,754 1.2 · 10−3 3.5 · 10−2 559 1.1 · 10−2 2.8 · 10−1

6,157 3.0 · 10−4 8.5 · 10−3 3,588 7.2 · 10−3 1.9 · 10−1

24,566 3.2 · 10−4 9.5 · 10−3 48,969 1.1 · 10−2 2.9 · 10−1

98,039 2.2 · 10−4 6.2 · 10−3 282,257 3.8 · 10−3 9.9 · 10−2

transformation to the Black-Scholes equation and uses a refinement criterion based on

the hierarchical coefficients, see Section 2. The accuracy results in Table 1 demonstrate

that we achieve an accuracy of about 10−4 with a low number of sparse grid points.

4. Surrogate models: Interactive exploration of building information
models

In this section, we consider low-cost surrogate models of parametrized simulations

for interactive visual exploration in cave automatic virtual environments (CAVEs). We

first discuss that interactive response times to parameter changes (below 0.2 seconds)

usually cannot be achieved for large-scale simulations without surrogate models. We

then present sparse-grid-based surrogate models for visual exploration and discuss their

main advantage, namely, that they are non-intrusive, i.e., we can treat the large-scale

simulation solver as a black box. We continue with the properties and characteristics

of our surrogate modeling approach and an application where buildings are explored.

We refer to, e.g., [15–18,57] for details and more applications.

4.1. Interactive visual exploration of parametrized simulations

Numerical simulations depend on many parameters that define, e.g., material prop-

erties, geometry configurations, or initial conditions. A common task during design,

construction, manufacturing, and production phases is to study and examine the de-

pendencies between the parameters and the simulation result. For example, one could

be interested in how the temperature field in a room changes when a window is tilted

instead of closed. A straightforward and effective approach is the visual exploration

of the simulation results for different parameter configurations. Here, the goal is an

interactive exploration where the engineer (user) can change the parameters (e.g., the

angle of the window) on a control panel and the result (e.g., the temperature field in

the room) is immediately visualized. Interactive means that the system has to respond

to parameter changes within 0.2 seconds [15]. However, most of today’s simulations

require vast computing resources to deliver the result corresponding to only a single

parameter configuration, and still require several minutes or even hours to compute.
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Therefore, it is not sufficient to simply attach such simulations to visualization environ-

ments.

With low-fidelity surrogate models we approximate the large-scale, high-fidelity

simulations so that we do not have to perform the expensive simulations for each pa-

rameter change. The computational procedure is divided into an expensive offline

(pre-processing) and a rapid online phase. In the offline phase, the surrogate model

is constructed. Usually, this requires to solve the original, high-fidelity simulation at

several parameter configurations from which then the low-fidelity model is derived. In

the online phase, the actual exploration takes place, i.e., the surrogate model is evalu-

ated many times. Thus, the offline phase is performed only once, but the online phase,

i.e., the evaluation of the surrogate model, is repeated many times. This means, the

expensive offline phase is compensated by many, rapid evaluations of the surrogate

model in the online phase. Still, when we consider the time to solution, the costs of the

offline phase have to be taken into account. In particular, we have to keep the number

of large-scale simulations, which are required to build the surrogate model, low.

4.2. Sparse-grid-based surrogate models

In the following, we denote parametrized, discretized simulations with z : D → R
N

where D ⊂ R
d is the parameter domain. The simulation z evaluated at a parameter

µ ∈ D is an N -dimensional vector z(µ) ∈ R
N . For example, to stay within the thermal

problem introduced above, the components of z(µ) = [z1(µ), · · · , zN (µ)]T could be

the temperature at N grid points with which the domain representing the room is

discretized. In most cases, there is a system of partial differential equations underlying

the simulation z, but we emphasize that this is not important for us because we treat

the simulation z as a black box.

Let us now consider our non-intrusive sparse-grid-based surrogate modeling ap-

proach. In the offline phase, we choose a (possibly adaptively refined) sparse grid

space V(1) that is spanned by the hierarchical basis functions in {φ1, · · · , φN}, evaluate

the simulation z at parameters µ1, · · · ,µN ∈ R
d that correspond to the N sparse grid

points of V
(1)
ℓ , and then construct a sparse grid interpolant ẑi ∈ V(1) from the data

Si = {(µ1, zi(µ1)), · · · , (µN , zi(µN ))} ⊂ R
d × R

N (4.1)

for each component zi, i = 1, · · · ,N of z. Since we interpolate, we know that ẑi(µj) =
zi(µj) holds for all i = 1, · · · ,N and j = 1, · · · , N . An interpolant ẑi is a linear combi-

nation of the basis functions φ1, · · · , φN with the coefficients αi = [αi
1, · · · , α

i
N ]T ∈ R

N .

We have N interpolants that are combined into the surrogate model ẑ : D → R
N with

ẑ(µ) = [ẑ1(µ), · · · , ẑN (µ)]T . We employ the same sparse grid space for each compo-

nent and thus we can write

ẑ(µ) =







ẑ1(µ)
...

ẑN (µ)






=

N
∑

i=1







α1
i
...

αN
i






φi(µ) (4.2)
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Figure 4: For the interactive visual exploration of sparse-grid-based surrogate models, we first build a
sparse grid repository of the original simulation from which the surrogate model is constructed. Then, the
visualization environment does not query the large-scale simulation but the surrogate model.

and so have to evaluate each basis function only once. We emphasize that the linear

combination (4.2) has coefficient vectors with N components, i.e., as many compo-

nents as the large-scale simulation z(µ). The result of the offline phase is the sparse

grid repository as shown in the workflow in Fig. 4.

Sparse grid interpolation is accomplished with the hierarchisation method which

computes the hierarchical coefficients for a given sparse grid space and set of data

points [9]. The hierarchisation is a multi-dimensional algorithm that relies on the uni-

directional principle, i.e., it consists of one-dimensional algorithms that act in each

dimension separately. The runtime is linear in the number N of sparse grid points.

Furthermore, the coefficients are computed in-place, i.e., no additional storage is re-

quired. The runtime and storage complexity of the hierarchisation algorithm are crucial

because we call the hierarchisation procedure for each component of z = [z1, · · · , zN ]T .

Thus, if we have N sparse grid points and N components in z, the overall runtime of

the offline phase is in O(NN ) and the storage in O(NN ). Note that this does not

include the runtime needed to obtain N large-scale simulations. For details of the

hierarchisation algorithm we refer to [9].

After we have obtained the surrogate model ẑ in the offline phase, we have to

evaluate it in the online phase, see Fig. 4. Evaluating ẑ means to compute the linear

combination (4.2). Because the hierarchical basis functions have non-overlapping sup-

port in each hierarchical increment, only O(ℓd) basis functions have to be evaluated

from the linear combination (4.2), cf. Section 2. This means, the procedure to evaluate

ẑ at a point µ ∈ D is split into two parts. First, the so-called affected basis functions

are determined. These are the basis functions which evaluate to non-zero values at

the point µ. Sophisticated algorithms (and implementations) exist to determine the

affected basis functions in O(ℓd) rather than in O(N) = O(2ℓℓd−1) as is required by

a straightforward algorithm. After it is know which basis functions have to be evalu-
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ated, the corresponding N -dimensional coefficients vectors are loaded and combined

with SAXPY operations. Overall, the evaluation of the interpolant ẑ is in O(ℓdN ). We

note that for other applications it has been shown that a direct evaluation of the linear

combination (4.2) is faster on modern hardware than first detecting the affected basis

functions with a multi-recursive algorithm and then evaluating only those [40]; how-

ever, this is not the case for us here, because each point has a vector of size N . Thus,

it is worth the effort to first find the affected basis functions and than take only those

into account [15].

4.3. Achieving interactive response times

With our sparse-grid-based surrogate model we circumvent the large-scale simula-

tion in the online phase and thus achieve tremendous savings, cf. Section 4.4. However,

to achieve interactive response times, i.e., a respond within 0.2 seconds, a straightfor-

ward implementation is not sufficient. That is why we consider spatial adaptivity and

a parallel implementation here.

The evaluation costs of ẑ are in O(ℓdN ). We cannot change N , because it is given

by the simulation, but with spatially adaptive sparse grids we can keep the number

of affected basis functions O(ℓd) low. We already discussed in Section 2 that we can

refine a sparse grid according to the refinement indicator based on the hierarchical

coefficients. Adaptive sparse grids do not only reduce the runtime of the online phase

but also the runtime of the offline phase because fewer large-scale simulations are

required to obtain an interpolant ẑ with sufficient accuracy.

Besides adaptivity, an efficient and parallel implementation of the sparse-grid-based

surrogate modeling approach is crucial for the interactive exploration. In [16], a paral-

lel CPU implementation of the online phase is proposed. First, the affected basis func-

tions are determined on a single core. The so obtained basis functions are distributed

among the other cores of the CPU where the actual SAXPY operations of (4.2) are per-

formed. With an all gather operation, the results are combined and finally visualized.

We refer to [15,16] for details.

4.4. Exploration of building information models

BIMs (building information models) give a detailed description of the geometry of

a building and additionally auxiliary information such as material parameters or mea-

sured information. These BIMs are used to assess buildings with respect to specific

objectives such as efficiency of heating, ventilation, and air conditioning. We con-

sider here a building of the Technische Universität München and simulate a flow (e.g.,

ventilation) through the building. In particular, we want to investigate the effect of

closing and opening two doors at the main entrance, see Fig. 5. Thus, the parameters

of our BIM are the angles γ1, γ2 ∈ [6◦, 90◦] of these two doors and the inflow veloc-

ity v ∈ [5 m/s, 15 m/s]. The flow field is discretized on a fixed Cartesian grid of size

[512 × 128 × 128] where we store four values at each point (velocity in x1, x2, and x3
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Figure 5: Model of a building on the campus of the Technische Universität München. In the derived building
information model, the two doors can be opened and closed.

(a) door is still open (b) door is almost closed

ure 7: Our sparse-grid-based surrogate model also captures the case where one door is closed and
Figure 6: Our sparse-grid-based surrogate model also captures the case where one door is closed and the
flow has to enter the building through the other door. This corresponds to a sharp bend in the interpolant
ẑ.

direction, as well as the pressure). Overall, we have about N ≈ 33 million degrees

of freedom. The simulation is solved with proprietary software, i.e., we do not have

access to the underlying equations and so intrusive methods are not an option here.

Our approach is non-intrusive and thus applicable. Furthermore, we do not concen-

trate on only a few outputs of interest (e.g., average velocity) but we reconstruct the

whole flow field. Computing one simulation z(µ) for a parameter µ on several nodes

of the KAUST Shaheen† supercomputer needs about one hour, and thus the response

time would clearly be non-interactive.

†http://www.hpc.kaust.edu.sa
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Figure 8: In (a) we plot the accuracy of our sparse-grid-based surrogate model. We achieve accuraciesFigure 7: In (a) we plot the accuracy of our sparse-grid-based surrogate model. We achieve accuracies below
10

−4 which is sufficient for visual exploration. In (b) we report the time needed to evaluate our surrogate
model. The evaluation time is below 0.2 seconds (interactive response) if eight threads are employed.

We build our sparse-grid-based surrogate model by starting with a relatively coarse

sparse grid of level 3 with 31 grid points only (no boundary points). After two refine-

ment steps we obtain a surrogate model with N = 111 grid points, see [15] for details.

The refinement indicator relies on the hierarchical coefficients of all N nodes of the

simulation to determine which grid points to refine.

Let us first have a look at the accuracy of our surrogate model. We compare in

Fig. 7(a) the averaged and maximal approximation error over a test set T containing

the parameter configurations that match a 5× 5× 5 grid in the domain [16.08, 83.28] ×
[16.08, 83.28] × [6.2, 14.2]. Note that we do not cover all of D because special basis

functions to better approximate the simulations corresponding to parameters near the

boundary of D are necessary [15]. As shown in Fig. 7, we achieve accuracies below

10−4 in both norms which is a sufficient accuracy for visual exploration.

After we made sure that we match the large-scale simulation with sufficient accu-

racy, we have to discuss the runtime of our surrogate modeling approach. The dominat-

ing part of runtime of the offline phase is the computation of the simulation results. We

require 111 simulations, needing about 1 hour each, see above. The more interesting

runtime for our visual exploration application is the response time in the online phase.

We show in Fig. 7(b) the time required to evaluate the surrogate model (4.2) with the

implementation discussed in Section 4.3. We evaluate the surrogate model on 1,000

random points and report the averaged result. From the 111 basis functions included

in our surrogate model, only 23 are active on average. The plot in Fig. 7 shows that

we require eight threads to reach a response time below 0.2 seconds. Compared to the

time required to obtain a full simulation z, we achieve a speedup of about 18,000.

5. Data mining: Analysis of simulation data

In the previous section, we discussed an interactive visual exploration approach to

investigate the influence of parameters onto simulation results. In this section, we go
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one step further and automatically extract information from simulation data. For that,

we employ a sparse-grid-based data mining method (clustering). We demonstrate our

approach on car crash test simulation data.

5.1. Clustering for the analysis of simulation data

The result of a simulation run is a huge pile of data. Only after a careful analysis,

one is able to draw conclusions that can eventually get communicated back into the

development process. In Section 4, visual exploration was presented as a tool to inves-

tigate simulation runs. This exploration can become a tedious task if, for example, one

has to browse through several layers of data. That is why we present now data mining

methods that take over this exploration task and indicate to the users those parts (e.g.,

nodes) of the simulation run that might be of interest for a more detailed analysis. Of

course, what is to be considered as important highly depends on the context of the ap-

plication. We focus therefore on car crash test simulations, even though the following

methods are readily applicable to other simulations.

We consider a frontal crash of a Chevrolet pick-up truck, see Fig. 8. To simulate

the crash, a finite element model of a truck is created. Each node contains its position

in R
3. Overall, the model with N nodes is described by a matrix X0 ∈ R

N×3. The

actual simulation is performed by proprietary software (LS-Dyna‡) at the Fraunhofer

SCAI§. The result of the simulation are the positions of the nodes Xend ∈ R
N×3 of the

car model after the crash. In the following, we want to detect similar moving patterns

in the nodes. This is an unsupervised learning task, where we want to detect hidden

structure in the data [5]. Therefore, we define the displacements

D =







d1
...

dN






= Xend −X0 =







xend
1
...

xend
N






−







x0
1
...

x0
N






(5.1)

and consider the rows S = {d1, · · · ,dN } of D as the data points. We then cluster S
with respect to the Euclidean distance. The rows, i.e., nodes, that are grouped into

one cluster have a similar moving pattern. This and other similar criteria are used in,

e.g., [50,67].

We employ a sparse-grid-based clustering method that is well-suited for large data

sets and that automatically detects the number of clusters. Furthermore, our method

distinguishes between strong and weak (“noise”) clusters. At this point, we emphasize

that we employ sparse grids for unsupervised learning here [53,55]. Sparse grids have

also successfully been applied to supervised learning tasks (classification, regression),

see, e.g., [26,61].

‡http://www.lstc.com
§http://www.scai.fraunhofer.com
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(a) Chevrolet truck before crash (X
0) (b) Chevrolet truck after crash (X

end)

Figure 9: The Chevrolet pick-up truck before and after the crash.
Figure 8: The Chevrolet pick-up truck before and after the crash.

5.2. Density-based clustering with sparse grids

There is a wide variety of clustering methods that are based on very different no-

tions of clustering. We follow a density-based approach where we consider a cluster

as a dense region (“where many data points are”) surrounded by a low-density region

(“where few data points are”). To distinguish between high- and low-density regions,

we estimate the probability density function from the data. For other density-based

methods we refer to, e.g., DBSCAN [20] and DENCLUE [43].

Let S = {d1, · · · ,dN } be the data points (i.e., displacements) as defined in (5.1).

Our sparse-grid-based clustering method consists of the following five steps (cf. [56]):

First, we estimate the probability density function p̂ from the data points S. We consider

that step in detail in the next paragraph. Then, we construct a similarity graph G =
(S, E) with vertices S and edges E from data S with respect to the Euclidean distance.

The density function p̂ is evaluated at each point in d ∈ S and if p̂(d) is below a

threshold value ǫ, it is removed from the set S, and we obtain Ŝ. We also remove

the corresponding edges and obtain a new graph Ĝ = (Ŝ, Ê) = (S \ S̃, E \ Ẽ) with k
(connected) components. A cluster number in {1, · · · , k} is assigned to each point in

Ŝ depending on its corresponding component. The result is the set of cluster labels

{yi1 , · · · , yiN̂ } ⊆ {1, · · · , k} that assigns each point in Ŝ to one cluster. We can now

either treat the points in S̃ = S \ Ŝ as noise points (they are in low-density regions), or

we train a classifier on the data Ŝ with labels yi1 , · · · , yiN̂ and evaluate at the points in

S̃ to obtain labels for the removed data points.

All the graph operations required for our density-based clustering method can be

performed with standard graph libraries (e.g., the BOOST Graph library¶). Further-

more, any classification method can be employed in the last (optional) step of the al-

gorithm. However, a crucial component is the density estimation method. For that, we

employ a sparse-grid-based method that heavily relies on the idea presented in [39].

Its advantage is that it discretizes the density function on a sparse grid rather than

on kernels centered at data points which becomes computationally expensive for large

data sets. Let pǫ be an initial guess of the estimated density function of S. We are then

¶http://www.boost.org
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looking for a function p̃ ∈ V in a function space V such that

p̃ = argmin
f∈V

∫

Ω
(f(x)− pǫ(x))

2 dx+ λ‖Λf‖2L2 .

where ‖Λ · ‖2
L2 is a regularization term to impose a smoothness constraint on p̃. If we

set pǫ =
1
N

∑

i δdi
, where δdi

is the Dirac delta function centered at the data point di,

we obtain the variational equations

∫

Ω
p̃(x)ψ(x) dx+ λ

∫

Ω
Λp̃(x) · Λψ(x) dx =

1

M

M
∑

i=1

ψ(xi), ψ ∈ Ψ (5.2)

for the test functions ψ ∈ Ψ. We solve (5.2) with Ritz-Galerkin projection onto a sparse

grid space V(1). This can be achieved by solving the system of linear equations

(R+ λC)α = b ,

where Rij = (φi, φj)L2 , Cij = (Λφi,Λφj)L2 and the right hand side bi =
1
N

∑

j φi(dj).
For details, and the computational procedure, we refer to [53,54,56].

5.3. Indicator for the number of clusters and noise points

Most density-based clustering methods, which directly implement the notion that a

cluster is a dense region surrounded by a region with low density, require a parameter

that controls what is to be considered a high- and low-density region. In our sparse-

grid-based method, this parameter is the threshold ǫ.

Let us consider Fig. 9 to demonstrate its effect on the clustering result. In Fig. 9(a)

we see a surface plot of the estimated density function for a data set with three clus-

ters. The density function was estimated with the sparse grid method discussed in

Section 5.2. The density function evaluates to higher values at the two clusters on the

left than at the cluster on the right. Therefore, we call the two clusters on the left strong

clusters, and the one on the right a weak cluster. In Fig. 9(d) we plot the number of

connected components versus the threshold ǫ. For ǫ < 0.2, we obtain only two compo-

nents, because the threshold is set too low and so the two strong clusters on the left

are not separated. If we choose ǫ > 0.4, it is too large, and we miss the weak cluster on

the right. For the large range between 0.2 and 0.4 we capture all three clusters (three

connected components), except for one outlier. The corresponding cluster assignments

are plotted in Figs. 9(b)-(c) and 9(e)-(f). Thus, with the threshold ǫ, we can create a

graph as in Fig. 9(d) and so determine for what values of the threshold parameter the

clusters are present. If they appear for a wide range, we know that the density function

has to evaluate to high values and so we consider it as strong cluster. If a cluster is only

present for a very narrow range, it probably is just noise and we can ignore it.

However, the threshold cannot only be used to distinguish between strong and weak

clusters but also to determine the number of clusters. Therefore, we plot the graph as
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Figure 9: This simple example demonstrates the effect of the threshold ǫ on the clustering. If the threshold
is set too low (b) we may miss clusters consisting of many points, if it is set too high (f) we may not be
able to capture clusters with just a few points.

in Fig. 9d and look for flat regions. A flat region means that the number of clusters (i.e.,

the number of connected components) stays constant for a wide range which in turn

means all the present clusters have to be strong clusters. This indicator is, for example,

used in [6] where it is also shown that it yields similar results as statistically motivated

methods.

5.4. Analysis of a frontal crash of a Chevrolet truck

We now use the presented sparse-grid-based clustering method to analyze car crash

test simulation data as discussed in Section 5.1. Note that we do not conduct a com-

parison of our sparse grid clustering method with other clustering methods here. We

refer to [56] for such a study.

Let us consider the Chevrolet pick-up truck of Section 5.1 again. First, we are only

interested in four beams which are in the front of the truck, see Fig. 10. These beams

distinctly influence the crash behavior of the whole truck. We cluster the corresponding

≈ 7, 000 displacements. The density function is approximated on a (non-adaptive)

sparse grid of level five with 1,505 grid points (including boundary points). We refer

to [56] for details on the parameter selection process and runtime results. Following

the indicator discussed in Section 5.3, we mark four flat regions in the plot shown in

Fig. 11(a). The corresponding cluster assignments of the nodes of the four beams are

shown in Figs. 11(b)-(e). We can verify that the boundaries of the clusters correspond

to the nodes at which a different bending behavior occurs, cf. Fig. 10(b). Furthermore,

for small ǫ, we have many small clusters in the front of the beams, but they disappear
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(a) before the crash (b) after the crash

Figure 10: The figures shows four beams where the two on the top and the two on the bottom are connected.
Each color indicates a separate beam. They are shown in (a) before the crash and in (b) after the crash,
where they are deformed in the rear (left) and in the front (right).
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Figure 11: The number of connected components of the similarity graph for the Chevrolet pick-up truck
versus the threshold parameter ǫ is shown in (a). The black circles indicate a stable cluster assignment.
The corresponding clustering of the beams is shown in (b),(c),(d),(e). Note that the two beams at the top
and at the bottom are connected, cf. Fig. 10.

soon when ǫ is increased. Therefore, we consider them as noise. In contrast, the

clusters in the rear of the beams are present for a wide range of ǫ and so this suggests

that these are strong clusters that heavily contribute to the crash behavior of the truck.

We now cluster the displacements of all nodes of the truck. Again, we do not know

the number of clusters and therefore first plot the number of connected components

versus the threshold ǫ, see Fig. 12(a). With the help of a moving average, we find a flat

region near ǫ = 0.2 and plot the corresponding cluster assignment of the four beams in

Fig. 12(b). We obtain a similar clustering as before which confirms that the indicator

for the number of clusters yields reasonable results.

We have shown that we can automatically detect moving patterns in the nodes of

the car model. This allows us to analyze simulation data in an unsupervised fashion.

Details of this approach can be found in [6]. Our sparse grid method allows us to
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Figure 12: In (a) we show the number of components versus the threshold ǫ for the whole car, and in (b)
the resulting clustering of the four beams with threshold ǫ = 0.2. Note that the two beams at the top and
at the bottom are connected, cf. Fig. 10.

process large data sets because the employed density estimation method discretizes

the density function on a sparse grid rather than on kernels centered at the data points,

cf. [56].

6. Eigenvalue problems: Plasma turbulence simulation

Sparse grids with their hierarchical basis are in some cases hard to deploy on exist-

ing simulation software, since it would require a major code redesign. The sparse grid

combination technique, in contrast, can directly use existing code which is handling

regular Cartesian grids. In this section the combination technique is used to decrease

the computational effort of computations related to plasma microturbulence.

6.1. The gyrokinetic eigenvalue problem

Achieving a positive and economically sound energy balance by magnetically con-

fined nuclear fusion can be one remedy to the increasing demand for energy in the

21st century. One milestone to this ambitious goal is the successful operation of the

fusion experiment ITER, which is a tokamak [68] currently being built in southern

France. But its success also depends on extensive numerical simulation [44] for the

operation of the experiment on the one hand and for understanding and interpreting

its outcomes on the other hand. The efficiency of the magnetic confinement in such a

tokamak is determined by the transport of heat and particles out of the hot core zone

of the plasma. The transport is a result of small scale turbulent effects in the plasma.

These microturbulences are driven by imminent gradients of temperature and density

and the resulting transport is also often referred to as anomalous transport since it is

much larger than predicted by classical transport models.
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Numerical simulations are used to quantitatively and qualitatively understand the

phenomenon of microturbulence. Macroscopic models of describing a plasma like

magneto-hydrodynamics cannot be applied for the simulation of microturbulence and

thus a rather microscopic model is applied. It is based on the Vlasov-Maxwell equation

∂gs
∂t

+ v
∂gs
∂x

+

(

qs
ms

(E(gs) + v ×B(gs))

)

∂gs
∂v

= ∆(gs) , (6.1)

where E and B correspond to electric and magnetic fields and gs represents the dis-

tribution function of a certain plasma species s (either certain ions or electrons) in the

plasma. The normalized distribution function gs(x,v, t) gives the probability to find a

particle of species s at time t at position (x,v) in the 6D phase space. The constant

qs and ms give the charge and mass of a single particle of species s. Whereas the

advection of particles through phase space is governed on the left-hand side of (6.1),

the right-hand side governs their collision. This collision term can be neglected, since

collisions only have a minor influence on the dynamics of hot fusion plasmas. The elec-

tromagnetic fields E and B have to be calculated by solving the Maxwell equations

self-consistently using moments of the distribution function itself, thus making (6.1) a

nonlinear problem.

For the simulation of microturbulence, the direct application of the Vlasov-Maxwell

equation is not suited. In a homogeneous magnetic field, charged particles rotate (gy-

rate) around a guiding center, which can move freely parallel to the magnetic field.

Since the magnetic field is, despite small perturbations, nearly homogeneous on the

microscale, the gyration is preserved and only slow drifts of the guiding centers in-

fluence the dynamics of the plasma. Simulations using (6.1) would fully resolve the

gyration by using small time- and spatial scales, whereas microturbulence is driven by

much slower drifts. In gyrokinetics, (6.1) is transformed to not resolve the gyration

anymore and to align the model parallel to the magnetic field. The spatial coordinates

of the distribution function are then not x and v anymore but only X, the position

of the guiding center, v‖, the velocity of the guiding center parallel to the magnetic

field, and the magnetic moment µ = msv
2
⊥/2B‖, which is representing the velocity of

gyration. The position of the particles is thus not fully resolved anymore. The equa-

tions describing the advection and collision of this five-dimensional problem are the

gyrokinetic equations, which take the simplified form

∂gs
∂t

+ ṽ
∂gs
∂x

+ F̃
∂gs
∂v‖

= ∆(gs) , (6.2)

with ṽ and F̃ being rather complex expressions describing the transformed drift veloc-

ities and electromagnetic forces respectively. A full representation of the gyrokinetic

equation is out of scope here and an extensive derivation can be found in [7]. Since

(6.2) is still coupled to the Maxwell equations, the equation is again nonlinear. The

equation can be separated into a linear operator L and a non-linear operator N acting

on the five-dimensional distribution function gs to get

∂gs
∂t

= L(gs) + N(gs) . (6.3)
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Interestingly, the linear operator L already models the microinstabilities of the plasma

which are driving the microturbulence. Discretizing the distribution function gs using

spectral methods and finite differences, the linear operator can be expressed as a matrix

L and the linear discretized gyrokinetic equation as

∂g

∂t
= Lg . (6.4)

Since the problem is moderately high dimensional, even the coarsest useful resolutions

require a size of g of a few hundreds of thousands unknowns.

The eigenvalue spectrum of L exhibits mostly eigenvalues with a non-positive real

part [66]. These are the ones representing damped or stable modes in the plasma.

There are only a few eigenvalues with positive real parts and those are the ones rep-

resenting the unstable modes driving the microturbulence. Knowing the growth rates

of these modes allows an estimation of the turbulent transport even without full non-

linear simulations [2].

The GENE code‖ is a mature and well documented code for simulations and com-

putations in linear and non-linear gyrokinetics. It is developed in the IPP (Max-Planck

Institute for Plasma Physics) in Garching, Germany, widely used in the fusion commu-

nity and has been proved to be an HPC application [49].

GENE can solve the gyrokinetic eigenvalue problem using SLEPc [42]. Solving the

eigenvalue problem in GENE is time consuming. The performance of the eigenvalue

computation is diminished if finer grids are used since the computational complexity

of the parallel Jacobi-Davidson eigenvalue solver is worse than linear in the number

of grid points if the problem is distributed across large numbers of processors [51,

66]. Thus we like to reduce the overall amount of grid points of the five-dimensional

problem using the sparse grid combination technique.

6.2. Combination technique for the gyrokinetic eigenvalue problem

The sparse grid combination technique has been applied to eigenvalue problems

before in the context of the Schrödinger equation [29]. In the classical combination

technique approach, the eigenvalue problem is solved on each of the grids Vl and the

eigenvectors are combined according to (2.11). The corresponding eigenvalues could

then be computed using the Rayleigh quotient [27]. Different problems can arise: For

example, changing the resolution of the underlying problem can lead to a change in

the ordering of the eigenvalues, so that they have to be identified comparing their

corresponding eigenvectors [25]. Another problem is that this approach requires a

consistent scaling of the eigenvectors in order to apply the combination technique.

Furthermore, the gyrokinetic eigenvalue problem is neither symmetric nor Hermitian

and thus computing the eigenvalues using the Rayleigh quotient is not possible. A

straightforward direct combination is also not possible because the eigenvectors are

‖http://www.ipp.mpg.de/˜fsj/gene/
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rotated in the complex plane. That is why we consider here the optimized combination

technique (Opticom) as introduced in [26,38].

The Opticom was developed to improve the approximation quality of the classical

combination technique. The combination coefficients c in

f̂C =
∑

l∈L

clf̂l (6.5)

are computed to suit the underlying problem, cf. Section 2 and (2.11). The active set

L contains all n different l, i.e. all n full grids used for combination. In the Opticom,

the optimization of c can be done if the problem is accessible in a suited Galerkin

formulation and the operator norm is at hand. The method was later extended to solve

eigenvalue problems. There, all full grid approximations f̂l are used as a basis, in which

a generalized eigenvalue problem is solved in a Galerkin formulation again [27].

We follow here another approach where the minimization problem corresponding

to the Opticom is modified to especially take the gyrokinetic eigenvalue problem into

account. To find the optimal coefficients, the Opticom minimizes the functional

J(c, λ) = ‖LgC − λgC‖2 = ‖(LG− λG)c‖2 , (6.6)

with gC =
∑

l∈L Plgl = Gc being the combined eigenvector and λ being the approxi-

mation of the correct eigenvalue λ0 [48]. The matrix G is containing the eigenvectors

gl in its columns such that

G =
[

Pl1
gl1

· · · Plngln

]

, (6.7)

with P being the operator which projects the n approximations of the eigenvector from

the small full grid spaces with level vector li into the space corresponding to the grid

of the gC . Minimizing the functional J by least-squares minimization leads to

[(LG− λG)∗(LG− λG)]c = K(λ)c = 0 , (6.8)

which is has to be fulfilled so that the combination coefficients c minimize the func-

tional J(c, λ) for a fixed λ.

To obtain a λ close to the exact eigenvalue λ0, (6.8) can be interpreted as an eigen-

value problem again, since a λ = λ0 results in a singular K. The retrieved eigenvector

is containing the sparse grid combination coefficients determining the combined eigen-

vector gC . A method for solving such eigenvalue problems [36, 52] is to embed the

original eigenvalue problem in the slightly enlarged system

(

K(λ) x

s∗ 0

)(

c

β

)

=

(

0
1

)

(6.9)

with nearly arbitrary non-zero vectors x and s of size n, with s giving a scaling of

the obtained eigenvector. Solving the system is retrieving c which minimizes J for the

given λ. The scalar β is indicating how close the chosen λ is to the actual eigenvalue λ0,
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since for a singular K, β is zero. In this case, c represents the combination coefficients

to obtain the eigenvector to the eigenvalue λ0.

Now, to obtain the correct λ, the Newton method can be employed, if a sufficiently

close initial guess is at hand. In our case, the initial guess can be obtained by a com-

bination using the classical combination coefficients given by (2.11). From this initial

guess the iteration

λ(i+1) = λ(i) −
s∗c

s∗K(λi)−1 dK
dλ c

(6.10)

is used. Solving the linear system in the denominator can be numerically demanding.

But since the dimension, i.e., number of unknowns, of this system is the number of

full grids used in the combination technique, it is rather small compared to the system

matrix L. For our problem the Newton iteration might not always converge, since the

β(λ) might not have a root because the chosen basis G might not be sufficient to exactly

represent the eigenvector of L and thus K can not get singular. We then fall back to a

gradient descent method using the gradient

∂β

∂λ
= β

s∗K(λi)
−1 dK

dλ c

s∗c
. (6.11)

6.3. Results

First studies for the above algorithm have been performed to demonstrate its appli-

cability to the gyrokinetic eigenvalue problem [47,48,51]. It was tested if the classical

combination of the eigenvalues λl computed with GENE is retrieving a good initial

guess for the application of the Opticom described in the previous section. Combining

the computed eigenvalues λl of several full grids of resolution l actually retrieves a

rather close approximation of the reference eigenvalue computed by a full resolution

computation by GENE [47]. The combination behavior can be seen in Fig. 13. The plots

show that the combined eigenvalues give in most cases a better approximation than the

approximation of the eigenvalue created by each of the grids used for combination.

The Opticom for the computation of an eigenpair has so far been studied for re-

trieving the eigenfunction of the ODE [48]

∂u

∂t
= λu (6.12)

in the unit interval Ω = [0, 1]. It has the eigenfunction and eigenvalues

u(t) = eλ0t, λ0 = 2πki, k ∈ Z . (6.13)

Since it contains a first derivative, it can serve as the simplest model for which the

method has to work in order to be applicable to the gyrokinetic eigenvalue problem.

This eigenfunction can be retrieved using three semi-coarsened approximations [22]

u1, u2 and u3 of the eigenfunction, which are depicted in Fig. 14. The Opticom can

retrieve the combination coefficients with the Newton iteration (6.10) as well as using
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Figure 14: The three semi-coarsened functions used for the combination of the eigenfunction represented
by their real (solid line) and imaginary (dashed line) parts [48].

the gradient-descent approach (6.11). Even when scaled functions are used, the algo-

rithm retrieves the correct eigenfunction. The results so far show that the approach is

applicable to other large scale gyrokinetic eigenvalue calculations using GENE, since

the computational effort can be regarded as small compared to retrieving the eigenpair

using the Jacobi-Davidson algorithm in GENE.

7. Conclusions

In this contribution, we presented four recent real-world applications to show that

sparse grids are widely used to tackle today’s problems in computational science and

engineering: We considered basket option pricing where we discretized the multi-

dimensional Black-Scholes equation on a sparse grid. A key ingredient was spatial

adaptive refinement based on the hierarchical coefficients which allowed us to place

grid points only were they are needed, i.e., near the locally non-smooth region of the

payoff function. We then looked into interactive visual exploration with sparse-grid-
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based surrogate model that also required adaptive refinement to minimize the number

of large-scale simulations for the construction of the surrogate model. With a sparse

grid clustering method, we analyzed car crash test simulation data and showed that

the underlying non-parametric sparse grid density estimation method yields a cluster-

ing method that allows us to distinguish between strong and weak clusters. Finally,

we considered eigenvalue problems arising in the context of plasma turbulence sim-

ulation. There, the combination technique was employed to reuse available plasma

problem solvers.
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