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Abstract. In this paper, we present a local Fourier analysis framework for analyzing

the different components within multigrid solvers for edge-based discretizations on

triangular grids. The different stencils associated with edges of different orientation
in a triangular mesh make this analysis special. The resulting tool is demonstrated

for the vector Laplace problem discretized by mimetic finite difference schemes.

Results from the local Fourier analysis, as well as experimentally obtained results,
are presented to validate the proposed analysis.
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1. Introduction

In the numerical simulation of problems modeled by partial differential equations,

the linear system solvers play a key role. Efficient algorithms enable large-scale compu-

tations with a satisfactory computing time and memory consumption. As is well-known,

multigrid methods are among the most powerful techniques for this purpose. Since the

70’s, when these methods [5,9,15,18] were developed, they have become very popular

within the scientific community. Many approaches to multigrid theory have been in-

vestigated in the last years; among these, the technique of local Fourier analysis (LFA),

introduced by Brandt [5,6], has become very successful, providing accurate predictions

of performance for a variety of problems.
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LFA does not only provide accurate asymptotic convergence rates of the algorithms,

but also is a useful technique for choosing suitable components for multigrid meth-

ods. Wienands and Joppich [19] provide a useful software tool for experimenting

with Fourier analysis. Recent advances in this context include LFA for multigrid as a

preconditioner [20], for triangular meshes [7, 14], optimal control problems [3], and

discontinuous Galerkin discretizations [8]. In this paper, we present a framework for

performing the local Fourier analysis for edge based discretizations on triangular grids.

Although for simplicity in the presentation, we restrict ourselves to the two-dimensional

case, we would like to emphasize that the technique presented here is easily extended

to the three-dimensional case.

Mainly as a result of its good computational properties, edge-based discretizations

have emerged widely in the simulation of many real applications, including electro-

magnetic field computations. Examples of such discretizations include Nédélec and

Raviart-Thomas finite element methods and mimetic finite difference schemes. While

in standard nodal discretizations, the unknowns are located at the nodes of a target

grid, in case of edge-based schemes, the unknowns are associated with the edges of

the corresponding mesh. Moreover, different stencils are associated with edges of dif-

ferent orientation. It is obvious that existing schemes for multigrid solution on nodal

discretizations can not be used directly for edge-based schemes. Therefore, some ef-

forts to implement multigrid solution schemes for edge based discretizations have been

carried out recently, see for example [1,2,10,11,13]. For edge-based discretizations on

triangular meshes, quantitative estimates of the multigrid methods as a function of the

components chosen are missing in the literature. This question is at the focus of this

paper.

Our aim is therefore to present a tool based on Fourier analysis, which does not only

provide accurate asymptotic convergence rates, but also gives advice for an adequate

composition of methods. To carry out this analysis in the framework of edge-based

discretizations, several particular aspects have to be taken into account. First, the basis

of LFA on triangular grids has to be considered, and also we have to deal with a discrete

operator which is defined in a different way depending on the orientation of the edges,

as we will see. To illustrate this analysis, mimetic finite difference schemes will be

considered as example. This discretization is based on the discrete analogies of first-

order differential operators, div, grad, rot and curl, that satisfy discrete analogies of

the theorems of vector analysis, see for example [16]. Notice that other approaches

e.g., the electromagnetic FIT [17] or Whitney element methods [4], have also been

recognized as mimetic discretizations, see [12] for a review of all these techniques.

The remainder of the paper is organized as follows. In Section 2, a framework for

the local Fourier analysis for general edge-based discretizations is developed. Section 3

introduces the mimetic finite difference scheme considered here to show the suitability

of the presented analysis. To this purpose, in Section 4 some results of LFA for this type

of discretization for a vector model problem, more concretely for the vector Laplace

operator, are presented. Finally, in Section 5 some conclusions are drawn.
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2. Local Fourier analysis for edge-based discretizations

Although for simplicity in the presentation we only consider discretizations having

one unknown per edge, this analysis can be easily extended to discretizations having

several unknowns per edge (high-order discretizations). Local Fourier analysis is based

on the Discrete Fourier Transform, and some reasonable assumptions have to be done to

perform this analysis; an infinite regular grid is considered, where formally the discrete

operator is represented by a constant discretization stencil, and boundary conditions

are not taken into account.

The application of this analysis to edge-based discretizations is not straightforward.

First of all, the ideas about the recently introduced LFA on triangular grids [7,14] have

to be taken into account. The key fact for this extension is to consider an expression of

the Fourier transform in new coordinate systems in space and frequency variables. To

this purpose, we establish a non-orthogonal unit basis of R2, {e1, e2}, which is chosen

fitting the geometry of the given mesh, as seen in Fig. 1 (a), and the basis corresponding

to the frequencies space, {e′1, e′2}, is taken as its reciprocal basis, see Fig. 1 (b); that is,

the vectors of the bases satisfy (ei, e
′
j) = δij , 1 ≤ i, j ≤ 2.
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Figure 1: (a) {e1, e2} non-orthogonal basis on R
2, and (b) reciprocal bases {e1, e2} and {e′

1, e
′

2}.

Furthermore, the notion of staggered grids for discretizations of systems of partial

differential equations on rectangular grids has to be extended to edge-based discretiza-

tions on triangular grids. In this type of discretizations, there are unknowns located at

different types of grid-points, and therefore the stencils defining the discrete operator

on each point-type involve different surrounding unknowns, hence the discrete opera-

tor is not defined in the same way at all grid-points. This fact has to be considered in

the analysis for this type of discretizations.

First of all, as an infinite grid has to be considered, the original grid is extended to

the following infinite grid Gh =
⋃3

j=1G
j
h, see Fig. 2 (a), given as the union of three

different subgrids

Gj
h := {xj

k1,k2
= ((k1 + δj1)h1 e1, (k2 + δj2)h2 e2) | k1, k2 ∈ Z}, (2.1)
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(a) (b)

Figure 2: (a) Infinite grid, composed of three different infinite subgrids. (b) Location of the different
unknowns, and correspondence to the three different subgrids, together with the local numbering for the
grid-points.

where

(δj1, δ
j
2) =





(1/2, 0), if j = 1,
(0, 1/2), if j = 2,
(1/2, 1/2), if j = 3.

(2.2)

Notice that each of these subgrids Gj
h is associated with a type of edge, that is, to each

one of the three different orientations, as we can see in Fig. 2 (b). In order to extend the

definition of the discrete operator to the infinite grid Gh, we have to take into account

that the resulting equations at grid-points on G1
h, G2

h and G3
h are different. Thus, we

can define the application of the discrete operator to a grid function uh on Gh in the

following way:

Lh uh(x) =





L11
h uh(x

1
k1,k2) + L12

h uh(x
2
k1,k2) + L13

h uh(x
3
k1,k2), x = x1

k1,k2 ∈ G1
h

L21
h uh(x

1
k1,k2

) + L22
h uh(x

2
k1,k2

) + L23
h uh(x

3
k1,k2

), x = x2
k1,k2

∈ G2
h

L31
h uh(x

1
k1,k2

) + L32
h uh(x

2
k1,k2

) + L33
h uh(x

3
k1,k2

), x = x3
k1,k2

∈ G3
h

=





3∑

l=1

( ∑

(i,j)∈I1l
s1li,juh(x

l
k1+i,k2+j)

)
, x = x1

k1,k2 ∈ G1
h,

3∑

l=1

( ∑

(i,j)∈I2l
s2li,juh(x

l
k1+i,k2+j)

)
, x = x2

k1,k2 ∈ G2
h,

3∑

l=1

( ∑

(i,j)∈I3l
s3li,juh(x

l
k1+i,k2+j)

)
, x = x3

k1,k2 ∈ G3
h,

(2.3)

where values skli,j are the coefficients corresponding to the stencil of discrete operator

Lkl
h which gives the relation that exists in the corresponding equation between one un-

known in Gk
h and the unknowns in Gl

h. Subsets Ikl give the connections of a grid-point

located at Gk
h with those in Gl

h. In order to illustrate the definition of the discrete op-

erator, we consider the lowest order Nédélec finite element discretization of operator
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Figure 3: Stencils for operator curl rot obtained by the lowest order Nédélec FEM for equilateral triangular
grids, corresponding to grid-points located at (a) G1

h, (b) G
2
h, and (c) G3

h.

curl rot on equilateral triangular grids. The obtained stencils for the three different

grid-points are given in Fig. 3. However, we can write these stencils with the notation

previously given in the following way:

L11
h = 8√

3h2




0 0 0
0 1 0
0 0 0


, L12

h = 4√
3h2




0 0 0
0 0 1
0 1 0


, L13

h = −4√
3h2




0 0 0
0 1 0
0 1 0


,

L21
h = 4√

3h2




0 1 0
1 0 0
0 0 0


, L22

h = 8√
3h2




0 0 0
0 1 0
0 0 0


, L23

h = −4√
3h2




0 0 0
1 1 0
0 0 0


,

L31
h = −4√

3h2




0 1 0
0 1 0
0 0 0


, L32

h = −4√
3h2




0 0 0
0 1 1
0 0 0


, L33

h = 8√
3h2




0 0 0
0 1 0
0 0 0


.

Then, from the assumptions and the definition of the operators on the infinite grid,

the discrete solution, its current approximation and the corresponding error can be

represented by formal linear combinations of the so-called Fourier modes, that should

be appropriately defined for this case. In standard local Fourier analysis for node-

based discretizations, the Fourier modes have the following form ϕh(θ,x) = eıθ·x/h =
eı(θ1x1/h1+θ2x2/h2) with θ = (θ1, θ2) ∈ Θh = [−π, π)2, and x being a grid-point, and

they turn out to be eigenvectors of grid operators that can be represented by a single

stencil, see [5, 19]. However, in our case we have to define suitable “Fourier modes”

for the particular problem of edge-based discretizations. We define the following grid-

functions:

φh(θ,x) = α1φ1
h(θ,x) + α2φ2

h(θ,x) + α3φ3
h(θ,x), x ∈ Gh, α1, α2, α3 ∈ C, (2.4)
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where

φ1
h(θ,x) = ϕh(θ,x)χG1

h
(x), φ2

h(θ,x) = ϕh(θ,x)χG2
h
(x),

φ3
h(θ,x) = ϕh(θ,x)χG3

h
(x),

denoting by χ
Gj

h

(x) the characteristic function of Gj
h, that is, one if x belongs to Gj

h and

zero elsewhere. In this way, grid-functions given in (2.4) will play the role of “Fourier

modes” for the edge-based discretizations considered here, and then we can define the

following space of grid-functions

F(Gh) = {φh(θ, ·) = α1φ1
h(θ, ·) + α2φ2

h(θ, ·) + α3φ3
h(θ, ·), α1, α2, α3 ∈ C, θ ∈ Θh},

(2.5)

which will play the role of our “Fourier space”. With these new definitions of Fourier

modes and Fourier space, we can prove that any discrete operator given as in (2.3)

leaves the subspace F(Gh) invariant. More concretely, the application of operator Lh

to a grid-function φh ∈ F(Gh) reads

(Lhφh(θ, ·))(xm
k1 ,k2) =

3∑

l=1

(
αl

∑

(i,j)∈Iml

sml
i,jφ

l
h(θ,x

l
k1+i,k2+j)

)
(2.6)

= e
ıθ·xm

k1,k2
/h

3∑

l=1


αl

∑

(i,j)∈Iml

sml
i,j e

ı(θ1(i+δl1−δm1 )+θ2(j+δl2−δm2 ))


 ,

where xm
k1,k2

∈ Gm
h . Then, from the previous expressions we can obtain

(Lhφh(θ, ·)) = Lh

[
φ1
h φ2

h φ3
h

]



α1

α2

α3


 =

[
φ1
h φ2

h φ3
h

]
L̃h(θ)




α1

α2

α3




=
[
φ1
h φ2

h φ3
h

]



β1

β2

β3


 , (2.7)

where

L̃h(θ) =




L̃11
h (θ) L̃12

h (θ) L̃13
h (θ)

L̃21
h (θ) L̃22

h (θ) L̃23
h (θ)

L̃31
h (θ) L̃32

h (θ) L̃33
h (θ)


 ,

with L̃ml
h (θ) =

∑

(i,j)∈Iml

sml
i,j e

ı(θ1(i+δl
1
−δm

1
)+θ2(j+δl

2
−δm

2
)), (2.8)

is the representation of Lh in F(Gh). Therefore, from expression (2.7) we can conclude

that the invariance property is fulfilled. In the particular case of the discrete operator
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given in Fig. 3, we easily obtain the Fourier representation, L̃h(θ). For instance, to

compute L̃12
h (θ), one needs to consider the stencil form of the discrete operator

L12
h =

4√
3h2




0 0 0
0 0 1
0 1 0


 .

From this latter, we can derive that I12 = {(1, 0), (0,−1)}, and by taking into account

values of (δj1, δ
j
2) in (2.2), one can write out the following,

L̃12
h (θ) =

∑

(i,j)∈I12
s12i,je

ı(θ1(i+δ2
1
−δ1

1
)+θ2(j+δ2

2
−δ1

2
))

= s121,0e
ı(θ1/2+θ2/2) + s120,−1e

ı(−θ1/2−θ2/2)

=
4√
3h2

(
e
ı
(

θ1+θ2
2

)

+ e
−ı

(

θ1+θ2
2

))
=

8√
3h2

cos

(
θ1 + θ2

2

)
.

Finally, by computing the rest of the symbols L̃ml
h (θ) appearing in (2.8), the Fourier

domain representation of the discrete operator reads

L̃h(θ) =
8√
3h2




1 cos
(
θ1+θ2

2

)
− cos θ2

2

cos
(
θ1+θ2

2

)
1 − cos θ1

2

− cos θ2
2 − cos θ1

2 1


 . (2.9)

In the same way, many smoothing procedures have also the property that F(Gh) re-

mains invariant under the action of the smoothing operator. In particular, those that

are based on a splitting of the discrete operator Lh as Lh = L+
h + L−

h , fulfill this prop-

erty. This latter is a decomposition of Lh on the positive and negative parts of the

operator, which correspond to the updated and non-updated unknowns before the cur-

rent step, see [15]. From this decomposition, we define the relaxation operator as

Sh = −(L+
h )

−1 L−
h , and since each of the operators in the splitting is given as in (2.3),

they satisfy the invariance property, and therefore Sh as well. For example, if we con-

sider a decoupled Gauss-Seidel smoother in which first grid-points in G1
h are relaxed,

after that, those in G2
h and finally those in G3

h, we can write the splitting of the discrete

operator in (2.9) as follows,

L̃+
h (θ) =

8√
3h2




1 0 0

cos
(
θ1+θ2

2

)
1 0

− cos θ2
2 − cos θ1

2 1


 , L̃−

h (θ) = L̃h(θ)− L̃+
h (θ). (2.10)

From this invariance property of the smoother, one can perform a local Fourier smooth-

ing analysis by considering the corresponding Fourier domain representation of the

smoothing operator on the high frequencies, that is, on the subset Θh\(−π/2, π/2]2 ,

when standard coarsening is considered.
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However, in order to investigate the interplay between relaxation and coarse-grid

correction, which is crucial for an efficient multigrid method, it is necessary to per-

form a two-grid analysis which takes into account the effect of transfer operators. For

this purpose, one needs to consider the error propagation operator from the two-grid

method, that is,

M2h
h = Sν2

h (Ih − Ih2hL
−1
2h I

2h
h Lh)S

ν1
h ,

where Sh is the smoothing procedure and the coarse-grid correction operator is com-

posed of the discrete operators on the fine and coarse grids, Lh and L2h, respectively,

and the inter-grid transfer operators: restriction, I2hh and prolongation Ih2h. The two-

grid analysis is the basis for the classical asymptotic multigrid convergence estimates,

and the spectral radius ρ(M2h
h ) of the operator M2h

h indicates the asymptotic conver-

gence factor of the two-grid method. To estimate this value, the crucial observation

is that the coarse-grid correction operator, as well as the smoother, leave the so-called

spaces of 2h-harmonics, F4(θ00), invariant. These subspaces are given by

F4(θ00) = span{φh(θ
α1α2 ,x)|α1, α2 ∈ {0, 1}}, with θ

00 ∈ (−π/2, π/2]2,

and where θ
α1α2 = θ

00 − (α1sign(θ001 )π, α2sign(θ002 )π). For this reason, M2h
h is equiv-

alent to a block-diagonal matrix consisting of 12 × 12-blocks denoted by M̃2h
h (θ00) =

M2h
h |F4(θ00), that is its Fourier domain representation. In this way, one can determine

the spectral radius ρ(M2h
h ) by calculating the spectral radii of (12 × 12)-matrices, that

is:

ρ(M2h
h ) = sup

θ00∈(−π/2,π/2]2
ρ(M̃2h

h (θ00)). (2.11)

3. Mimetic finite difference schemes on triangular grids

We consider mimetic finite differences on triangular grids. This discretization is

based on the discrete analogues of the differential operators gradient, divergence and

rotor, satisfying discrete analogues of theorems of vector analysis. A remarkable advan-

tage of these schemes is that we do not have to define a concrete coordinate system,

which is especially interesting for considering non-structured grids. The stability and

convergence of these methods is for example analyzed in [16], whose notation we

follow and which we summarize next.

We start with an acute Delaunay triangulation which consists of ND nodes, xDi , i =
1, 2, · · · , ND see Fig. 4 (a), and we consider its associated dual mesh, known as Voronoi

grid, see Fig. 4 (b). This mesh consists of convex polygons, each one composed of the

points which are the centers of the circumscribed circles on each triangle, and that we

denote as xVk , k = 1, 2, · · · , NV .

For a given Delaunay grid point xDi , we can define its associated Voronoi polygon,

which contains the points that are closer to this node than to all the other Delaunay

grid-points,

Vi = {x ∈ Ω | |x− xD
i | < |x− xD

j |, j = 1, · · · , ND, j 6= i}, (3.1)
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(a) (b)

Figure 4: (a) Initial Delaunay grid; and (b) corresponding Voronoi mesh.
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Figure 5: Voronoi polygons associated with Delaunay grid points, and corresponding notation.

and we denote by δVij the common edge of the Voronoi polygons associated with two

Delaunay grid-points, if it exists, see Fig. 5.

In order to approximate the scalar functions of the continuous argument, we use

scalar grid-functions that are defined on the nodes of the Delaunay grid, whose set is

given by

HD = {u(x) |u(x) = u(xD
i ) = uDi , i = 1, · · · , ND}. (3.2)

The approximation of continuous argument vector functions is however a more difficult

task, and for this issue we use projections of the vectors on the directed edges. Then,

we will orient the edge between two Delaunay grid-points, xD
i and xD

j , by considering

the unit vector, eDij , in the direction from the node with the smallest index to the node

with the largest index, that is,

eDij = eDji, i = 1, · · · , ND, j ∈ WV (i) = {j | ∂Vij 6= ∅, j = 1, · · · , ND},

see Fig. 6 (a). In this way, we define HD as the set of vector grid functions u(x) on the

Delaunay grid which are given by their components

uDij = u · eDij , i = 1, · · · , ND, j ∈ WV (i),
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Figure 6: (a) Orientation of the edge between two Delaunay grid-points, and (b) notation for the description
of the divergence operator.

defined in the middle of the edges of the triangulation xD
ij = 1

2(x
D
i + xD

j ).

Once we have introduced the corresponding sets of grid functions, we can define

the discrete gradient operator from the scalar grid functions to the representations of

the vector grid functions, gradh : HD → HD, in the following way,

(gradh u)
D
ij := (gradh u)(x

D
ij ) · eDij = η(i, j)

uDj − uDi

lDij
,

with η(i, j) =

{
1, if j > i,
−1, if j < i,

(3.3)

where lij is the length of the edge between nodes xD
i and xD

j , and η(i, j) is one or minus

one depending on the direction assigned to that edge. Now, to construct the discrete

operator divergence, we start from the divergence theorem on any Voronoi polyhedron

Vi, ∫

Vi

divu dx =
∑

j∈WV (i)

∫

∂Vij

(u · nV
ij) dx,

where nV
ij is the outwards normal vector to the Voronoi edge ∂Vij . By using some

formulae of integration for the left- and right-hand sides, we get the expression of the

discrete operator divh from the set of vector grid functions to the set of scalar grid

functions on the Delaunay grid, divh : HD → HD, resulting as follows

(divh u)
D
i =

1

meas(Vi)

∑

j∈WV (i)

(uDij e
D
ij ) · nV

ij meas(∂Vij). (3.4)

Here meas(Vi) is the area of the Voronoi Polygon Vi around the Delaunay node xDi ,
the sum appearing in the formula goes over all the neighboring points to xDi , and

meas(∂Vij) is the length of the common edges of the corresponding Voronoi polygons,

see Fig. 6 (b).
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In the two dimensional case, there are two different continuous rotor operators:

rotu = −∂u1
∂y

+
∂u2
∂x

, with u = (u1, u2), and curl u =

(
∂u

∂y
,−∂u

∂x

)
.

In order to describe the discrete rotor operators, we introduce the set of scalar grid

functions defined on the Voronoi grid, which are given by

HV = {u(x) |u(x) = u(xV
k ) = uVk , k = 1, · · · , NV }. (3.5)

By using the Stokes theorem

∫

S
(rotu · n) dx =

∮

∂S
(u · l) dτ,

the corresponding discrete rotor operators can be defined, one from vector grid func-

tions to scalar grid functions, roth : HD → HV , and another on the opposite direction,

that is, curlh : HV → HD. The scalar rotor operator is defined on the Voronoi grid-

points and it is given by

(roth u)
V
k =

η(i, j)uDij l
D
ij + η(j, l)uDjl l

D
jl + η(l, i)uDli l

D
li

meas(Dk)
, (3.6)

where meas(Dk) is the area of the triangle with vertices xD
i ,x

D
j ,x

D
l , associated with

the Voronoi point xV
k , lij , ljl and lli are the lengths of its edges, and η is the previously

defined function which is one or minus one, depending on the direction of the edges,

see Fig. 7 (a). The vector rotor operator however is defined on the midpoints of the

edges and is given by this difference quotient,

(curlh u)
D
ij = η(k,m)

uVk − uVm
lVkm

, (3.7)

where lVkm is the distance between both Voronoi grid points xV
k and xV

m. Notice that

lVkm = meas(∂Vij), see Fig. 7 (b). All these operators that we have just introduced are

consistent with the most important properties of the vector operators. In particular,

doing some computations we can prove that the defined discrete operators fulfill the

following properties:

roth gradh = 0, divh curlh = 0. (3.8)

Since we are interested in validating the presented local Fourier analysis, we define

such discrete operators on a structured triangular grid. When such a type of grid is

considered, it is usual to work in stencil notation, taking advantage of the structured

ordering of the unknowns appearing in the equation on each grid-point. With this

purpose it is necessary to introduce a suitable numbering of the grid-points. Here,

this is done by using a double index numeration, according to the unitary basis of

R
2 introduced in Section 2. It is chosen in the directions of two of the edges of the
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Figure 7: Notation for the definition of the (a) scalar rotor operator and the (b) vector rotor operator.
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Figure 8: New basis in R
2 fitting the geometry of a triangular domain, and local numbering for the regular

grid obtained after two refinement levels.

considered triangle, as we can see in Fig. 8, where the grid obtained after applying

ℓ = 2 iterations of regular refinement (which is done by dividing each triangle into

four congruent ones, connecting the midpoints of the edges), is also depicted. In this

way, we have fixed the numbering for the grid-points in which scalar grid functions are

defined. However, as previously commented, for vector grid functions we consider the

projections on the midpoints of the edges, so we also need a numbering for such points.

To do that, we differentiate between the components on each ”type of edge”, as we can

see in Fig. 2 (b). Then, we assign the same index to four different points, one vertex

and the three midpoints of these associated edges.

A structured triangular grid can be characterized by two angles α and β. Since

all the parameters (areas, distances, etc.) involved in the expressions of the discrete

operators can be easily written as a function of the angles α and β, after simple compu-

tations we can obtain the stencils of gradient, divergence and rotor operators in terms

of these geometric parameters, as we can see in Fig. 9. Notice that gradh and curlh
operators are defined on the midpoints of the edges, and in the figure we only display

such stencils corresponding to a grid-point located at the midpoint of a horizontal edge.

However, the corresponding stencils for the other two types of grid-points can be anal-
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Figure 9: Stencils for the discrete (a) gradh, (b) divh, (c) roth and (d) curlh operators on a general
triangular grid characterized by angles α and β.
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Figure 10: Stencils for the discrete (a) gradh, (b) divh, (c) roth and (d) curlh operators on equilateral
triangular grids.

ogously computed. As an example, the stencils corresponding to the discrete gradient,

divergence and rotor operators on an equilateral triangular grid are shown in Fig. 10.

The obtained stencils can be combined to discretize more complex operators.

4. Local Fourier analysis results

To illustrate the performance of the previously described local Fourier analysis, we

use the vector Laplace operator as model problem,

−graddivu+ curl rotu = f , in Ω. (4.1)

Considering the discrete operators previously introduced, we can obtain the stencils

corresponding to our problem on a structured triangular grid characterized by angles

α and β. The stencils corresponding to the discretization of the −graddiv operator on
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Figure 11: Stencils composing the discretization of the vector Laplace operator on equilateral triangular
grids.

a grid-point located at the horizontal edges are given by

L11
1,h =

1− cotα cot β

h2




0 0 0
−1 2 −1
0 0 0


 ,

L12
1,h =

cotα

h2 sin β




0 0 0
0 1 −1
0 −1 1


 , L13

1,h =
cot β

h2 sinα




0 0 0
0 1 −1
−1 1 0


 .

Regarding the operator curl rot, the obtained stencils are:

L11
2,h =

−4(cotα+ cot β)

h2 cot(α+ β)




0 0 0
0 1 0
0 0 0


 ,

L12
2,h =

2

h2 sinβ cot(α+ β)




0 0 0
0 0 −1
0 −1 0


 , L13

2,h =
2

h2 sinα cot(α+ β)




0 0 0
0 1 0
0 1 0


 .

As an example, the stencils corresponding to an equilateral triangle are shown in

Fig. 11. Note that we only present the corresponding stencils for the vector compo-

nent located at the midpoints of the “horizontal” edges. However, the expressions for

the other two components can be similarly obtained.

Our aim is to find an efficient multigrid method for this vector problem. A geometric

multigrid method is going to be applied, so we need to define the hierarchy of grids

necessary to perform the algorithm. To this purpose, we apply regular refinement to

an initial triangular domain, obtaining a regular structured triangular grid, and we

consider the midpoints of the edges as the grid-points where the unknowns will be

located, see Fig. 12. Notice that we have a hierarchy of non nested grids.

Once we have established the hierarchy of grids, we have to find appropriate com-

ponents for the multigrid algorithm. To this purpose, we use the local Fourier analysis
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Figure 12: Hierarchy of grids to perform the geometric multigrid method, and location of the unknowns.

RED-BLACK CELL SMOOTHER:

First step: Coupled Gauss-Seidel

iteration for the up-cells
 

Second step: Coupled Gauss-Seidel

iteration for the down-cells
 

Figure 13: Two relaxation steps composing the red-black cell smoother.

presented in Section 2. Regarding the inter-grid transfer operators, weighted averages

of the nearest neighbors are considered to define the restriction and the interpolation

methods. We focus on the choice of the smoother, since it is usually the component of

the algorithm which has more influence on the performance of the geometric multigrid

method. We have designed the called here red-black cell smoother. This relaxation

process consists of two partial steps, as seen in Fig. 13. In the first one we visit each

up-oriented triangle and we simultaneously relax the three components located at its

edges. And in the second step, we go over all the down-oriented triangles, and the

corresponding three components are updated together. The combination of these two

steps gives rise to a very efficient smoother for the problem considered, as we will see.

Notice that small 3× 3 systems must be solved in the relaxation process.

In order to show the good behavior of this smoother, we present some results ob-

tained by the local Fourier analysis introduced in Section 2. First, we consider a struc-

tured equilateral triangular grid, and in Table 1 we compare the behavior of the multi-

grid based on the red-black cell relaxation with that based on a decoupled symmetric

Gauss-Seidel smoother. In this latter, first the components associated with the horizon-

tal edges are relaxed, after that, those corresponding to the edges in the direction of

the second axis in the system of coordinates, and finally the third type of components

are updated. Notice that a decoupled symmetric Gauss-Seidel is used in order to have

a fair comparison regarding the amount of work per iteration step, since in this way,
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Table 1: LFA two-grid convergence factors, ρ, and measured W-cycle asymptotic convergence rates, ρh for
an equilateral triangle, comparing the behavior of the multigrid algorithm using the red-black cell smoother
and a decoupled symmetric Gauss-Seidel smoother.

Red-Black cell Decoupled Symmetric GS

ν ρ ρh ρ ρh

1 0.260 0.262 0.448 0.443

2 0.196 0.192 0.281 0.276

3 0.118 0.115 0.213 0.210

4 0.101 0.098 0.171 0.171

both smoothers update twice each unknown. Then, for different numbers of smooth-

ing steps, the two-grid convergence factors predicted by local Fourier analysis, ρ, are

shown together with the asymptotic convergence factors experimentally computed by

using a W-cycle, ρh. First of all, we observe that the LFA predicts very accurately the

convergence rates obtained in all the cases. Moreover, we see that this new smoother

improves the results obtained with the decoupled Gauss-Seidel smoother.

However, the highly satisfactory factors obtained with the red-black cell smoother

for equilateral triangles deteriorate as the triangular grid becomes anisotropic. This

behavior can be seen in Fig. 14, where for a wide range of triangulations characterized

by two of their angles, the two-grid convergence factor predicted by LFA is displayed.

From this figure, it is clear that the red-black cell smoother is not robust with respect to

the geometry of the grid, and then, the convergence becomes significantly worse when

one of the angles characterizing the triangular grid is very small.
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Figure 14: Spectral radius ρ predicted by LFA for different triangular grids as a function of two of their
angles, using the red-black cell smoother.

Therefore, when an anisotropic grid is considered, a stronger smoother is needed in

order to obtain an efficient multigrid algorithm. It is well-known that for node-based

discretizations on triangular grids, line-wise relaxation procedures are preferred over
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ZEBRA LINE-CELL SMOOTHER:

First step: Line Gauss-Seidel

iteration for the up-cells
 

Second step: Line Gauss-Seidel

iteration for the down-cells
 

Figure 15: Two relaxation steps composing the zebra line-cell smoother.

point-wise smoothers to deal with such meshes characterized by a small angle, see [14].

Then, our purpose here is to extend the idea of the red-black cell smoother to a line-

wise procedure. This is done by combining again two separate partial steps, which are

schematized in Fig. 15. In the first one we visit each row of up-oriented triangles and

we simultaneously relax the unknowns located at the edges of all these triangles. Then,

the second partial step consists of simultaneously updating the unknowns located in the

rows of down-oriented triangles. Both steps are done in the direction from the edge

to the vertex of the triangular domain, and in a Gauss-Seidel manner. In this way, we

will see that combining both partial steps, we obtain a very strong smoother, capable

to deal with the problematic anisotropic grids. Notice that for the relaxation of a row

of unknowns, a block-tridiagonal system has to be solved.

To demonstrate the suitability of the zebra line-cell relaxation to deal with anisotropic

triangular meshes, we have performed a local Fourier analysis for this kind of smoother.

Notice that the extension of the analysis to this type of line smoothers is standard since

in this case, each partial step composing the whole iteration can be written in terms of

a splitting of the discrete operator, as commented in Section 2. This analysis turns out

very useful to know exactly when this type of block-smoother has to be used instead

of the cheaper red-black cell relaxation. To illustrate this situation, we will use a rep-

resentative triangular grid giving rise to this type of anisotropies obtained when one

of the angles characterizing the triangular grid is very small. For example, an isosce-

les triangular grid with common angle α = β = 80o is considered. In Table 2, both

relaxations proposed in this work are considered: the red-black cell and the zebra line-

cell smoothers. The two-grid convergence factors predicted by LFA are compared with

those experimentally computed by using a W-cycle for different numbers of smoothing

steps, and it is clearly seen the good correspondence between the theoretical and the

computational results. Moreover, as we can observe, while the red-black cell smoother

is not capable to handle the effects of the anisotropic grid, the zebra line-cell smoother

provides very good convergence factors. Then, we can conclude that the proposed

zebra line-cell smoother is strong enough to deal with anisotropic triangular grids.
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Table 2: LFA two-grid convergence factors, ρ, and measured W-cycle asymptotic convergence rates, ρh
for an isosceles triangular grid with common angle α = β = 80

o, comparing the behavior of the multigrid
algorithm using the red-black cell smoother and a the zebra line-cell smoother.

Red-Black cell Zebra line-cell

ν ρ ρh ρ ρh

1 0.834 0.823 0.246 0.242

2 0.696 0.685 0.196 0.185

3 0.580 0.570 0.097 0.091

4 0.484 0.470 0.089 0.085

5. Conclusions and future work

In this work, we have introduced a local Fourier analysis technique for edge-based

discretizations on triangular grids. To perform this analysis we had to take into account

that for the considered discretizations the stencil corresponding to the discrete opera-

tor is not the same for the grid-points located at edges of different orientation, which

makes the analysis special. This technique is developed for two-dimensional problems

and for discretizations that have only one unknown per edge. However, it can be easily

extended to three-dimensional problems and to discretizations with several unknowns

per edge, as for example high-order discretizations. The presented local Fourier anal-

ysis tool has been validated by using the mimetic finite difference discretization of the

vector Laplace problem, and the results presented show that the analysis gives very

accurate predictions of the convergence of the multigrid method. For this model prob-

lem, also appropriate smoothers have been designed to its efficient solution on different

grid geometries. This latter could be valuable for the solution of the problem on more

complex computational domains, by the design of a block-wise multigrid algorithm on

semi-structured grids, that can adjust easily relative complex geometries. Regarding

other future research lines, the local Fourier analysis presented in this paper will be the

basis for the design of special smoothers for more complicated vector problems in the

future.
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