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Abstract. In this paper, we use a recent works [5], where the authors provide a new ap-
proach for pseudo almost periodic solution under the measure theory, under Acquistpace-
Terreni conditions, we make extensive use of interpolation spaces and exponential di-
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1 Introduction

In this work, we propose to study the existence of y-pseudo almost periodic solutions
under the measure theory to the class of abstract nonautonomous differential equations

=A(t)u(t)+g(t,C(t)u(t)), teR, (1.1)

& |0+ £ BE)u()

where A(t) for t €R is a family of closed linear operators on D(A(t)) satisfying the well-
known Acquistapace-Terreni conditions, B(t), C(t) (t € R) are families of (possibly un-
bounded) linear operators, and f:R x XX, ¢:IR x X+— X are y-pseudo almost periodic
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in t € R uniformly in the second variable. Recall that the concept of y-pseudo almost pe-
riodicity introduced by [5] is a natural generalization of the classical concept of weighted
pseudo almost periodicity in the sense of Diagana [12,13]. In recent paper [11], results
on the existence and uniqueness of weighted pseudo almost periodic solutions for equa-
tion (1.1) are developed. Classical definition and properties of y-pseudo almost periodic
function solutions introduced in [5] are used.

The organization of this works is as follows. In section 2, we introduce the basic
notations and recall the definitions and lemmas of p-pseudo almost periodic functions
introduced in [5], and we introduce the basic notations of evolution family and exponen-
tial dichotomy. Some preliminary results on intermediate spaces are also stated there.
In Section 3, we study the existence and uniqueness of u-pseudo almost periodic mild
solution of (1.1).

2 Preliminaries

2.1 pu-pseudo almost periodic functions

Let (X,[]-]]), (Y,]]-]]) be two Banach spaces, and BC(IR,X) (respectively, BC(R xY,X))
be the space of bounded continuous functions f:IR — X (respectively, f: R xY — X).

BC(RR,X) equipped with the norm || f|| =sup||f(¢)|| is a Banach space. B(X,Y) denotes
teR
the Banach spaces of all bounded linear operator from X into Y equipped with natural

topology. If Y =X, B(X,Y) is simply denoted by B(X).

Definition 2.1. ([6,7]) A continuous function f:R~— X is said to be almost periodic if for every
€ >0 there exists a positive number | such that every interval of length I contains a number T such
that

|f(t+T)—f(t)]| <€ for teR.

The set of all almost periodic functions from R to X will be denoted by a continuous function
f:RxY — X is said to be almost periodic in t uniformly for y €Y, if for every € >0, and
any compact subset K of Y, there exists a positive number | such that every interval of length |
contains a number T such that

If(t+Ty) = f(Ly)l <e for (ty) ERxK.
We denote the set of such functions APU(R xY;X).

Notice that (AP(R;X),||.||l«), is a Banach space with supremum norm given by

[[14]]eo =sup [[u(t)].
teR

Next, we give the new concept of the ergodic functions developed in [5], and generalizing
the ergodicity given before [12,13].
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We denote by B the Lebesque o-field of R and by M the set of all positive measures
y on B satisfying y(IR) =+co and p([a,b]) < oo, foralla,b€R (a<b).

Definition 2.2. ([1,5]) Let y € M. A bounded continuous function f:R — X is said to be
p-ergodic if

, 1

lim ey 16 duts) =0

r—rtoo yu([—1,r

We denote the space of all such functions by €(R;X, ).
A continuous function f:R — X is said to be p-pseudo almost periodic if it is written in the form

f=g+h,

where g € AP(R;X) and h € E(R;X, ). The collection of such functions will be denoted by
PAP(R;X, ).

It is well known [5] that (£(R;X, ), ]|.||) is a Banach space. In the sequel as in [5],
we need the following assumptions.
(M1) For all 4,b and c € R, such that 0 <a < b <c, there exist 15 >0 and ag > 0 such that

|T|>t=u((a+7,b+7)) >ao([t,c+T]).

(M2) For all T €, there exist >0 and a bounded interval I such that
u({a+t: acA})<pu(A) when A€ B satisfies ANI=0Q.

It is proved in [5] that whenever y € M satisfies the assumption (M1), the decomposition
of a p-pseudo almost periodic function in the form f = g+h, where g € AP(IR;X) and
he E(R;X,u), is unique. Furthermore, the space (PAP(IR;X,),||-||e), is @ Banach space.
Whenever € M satisfies the assumption (M2), PAP(IR;X, ) is translation invariant, that
is f e PAP(R;X,u) implies fr = f(.+71) € PAP(R;X,u) forall T€R.

Definition 2.3. ([5]) Let p € M. A continuous function f:IR xY — X is said to be y-ergodic in
t uniformly with respect to y €Y if the following conditions are true.

(i) Forally€Y, f(.,y) €E(R,X, ).

(ii) f is uniformly continuous on each compact set K in Y with respect to the second variable y.
The collection of such functions will be denoted by EU(R xY;X,u).

A continuous function f:IR XY — X is said to be uniformly p-pseudo almost periodic if is written
in the form

f=g+h,
where g€ APU(R XY;X) and he EU(R xY;X,u). The collection of such functions denoted by
PAPU(R X Y;X, ).

Theorem 2.1. ([5]) Let e M, FEPAPU(RXY;X,u) and h€ PAP(R;Y,u). Assume that, for
all bounded subset B of Y, F is bounded on R x B. Then t— F(t,h(t)) € PAP(R;X, ).
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2.2 Evolution family and exponential dichotomy

Definition 2.4. ([8-10]) A family of bounded linear operators (U(t,s))>s, on a Banach space X
is called a strongly continuous evolution family if

(1) U(t,r)U(r,s)=U(t,s) and U(s,s)=1forall t >r>sand t,r,sER,

(2) The map (t,s) — U(t,s)x is continuous for all x € X, t >s and t,s €R.

(3) U(-,5) € C1((5,00),B(X)), %—Lf(t,s) — A(DU(ts) and

HA(t)kU(t,s)H <K(t—s)*

for0<t—s<1, k=0,1.
(4) o U(t,s)x=—U(t,s)A(s)x for t >s and x € D(A(s)) with A(s)x€ D(A(s)).
A(t)isasin (1.1).

Definition 2.5. An evolution family (U(t,s))¢>s on a Banach space X is called hyperbolic (or
has exponential dichotomy) if there exist projections P(t),t € R, uniformly bounded and strongly
continuous in t, and constants M >0, § >0 such that
(1) U(t,s)P(s)=P(t)U(t,s) for t>sand t,s€R,
(2) The restriction Ug(t,s):Q(s)X —Q(t)X of U(t,s) is invertible for t >s and t,s € R (and we
set Ug(t,s)=U(s,t)7 ).
(3)

IU(t,5)P(s)[| < Ne (=) (2.1)

[Ug(s,t)Q(t) | < Ne 0= (2.2)

fort>sandt,seR.
Here and below we set Q:=1—P.

To introduce the inter and extrapolation spaces for A(t), we need the following as-
sumptions.

(HO) The family of closed linear operators A(t) for t € R on X with domain D(A(t))
(possibly not densely defined) satisfy the so-called Acquistapace-Terreni condition-
s, that is, there exist constants w€R, 6 € (5,7), K,L>0and p,ve (0,1] with y+v>1
such that

ZQU{O}Cp(A() )9)\ HRAA 2.3)

o vy
14+|A|

and

[(a0-w)R(rA0-0) [R(w.A0) ~R(wa6)] [t EE @

fort,se R, AeXg:={AcC\{0}:|argA| <0}.
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Note that in the particular case when A(t) has a constant domain D=D(A(t)), it is well-
known [2] that equation (2.4) can be replaced with the following: There exist constants L
and 0 <y <1 such that

|(A(t)—A(s))R(w,A(r)))|| <L|t—s]|7,s,t,reR. (2.5)

2.3 Interpolation Spaces

This setting requires some estimates related to U(t,s). For that, we make extensive use of
the real interpolation spaces of order (x,00) between X and D(A(t)), where a € (0,1). We
refer the reader to [2-4] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on X (assumption (H0) holds when A(t) is replaced with
A) and let a € (0,1). Define the new norm on D(A) (the real interpolation space) by

Xf ={xe€X, Hfo :=sup||r*(A—w)R(r,A—w)x|| <co},

r>0

and which consider the continuous interpolations spaces X2 by the way, is a Banach
space when endowed with the norm ||-||2. For convenience we further write

Xg =X, |x[§ = Ixll, X{':==D(A)

and ||x[|{!:=||(w—A)x||. Moreover, let X4:=D(A) of X. In particular, we will frequently
use the following continuous embedding.

D(A) =Xz = D((w—-A)") =X =XACX, (2.6)

for all 0 <& < B <1, where the fractional powers are defined in the usual way.
In general, D(A) is not dense in the spaces X and X. However, we have the follow-

ing continuous injection

1113

X§ —D(A) (2.7)

for0<a<p<1.
Given the family of linear operators A(t) for t € R, satisfying (H1), we set

for 0<a <1 and t € R, with the corresponding norms. Then the embedding in (2.7)
hold with constants independent of ¢t € R. These interpolation spaces are of class 7, [[4],
Definition 1.1.1] and hence there is a constant c(«) such that

lylle <c(@)llyl*=*1AByl*, y€ D(A()). (2:8)

We have the following fundamental estimates for the evolution family U(#,s).
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Proposition 2.1. ([11]) For x&€ X, 0<a <1 and t > s, the following assertions hold.

(i)

(i1)

There is a constant c¢(«), such that
|U(t,s)P(s)x]ls < cla)e 2 (—s) ~*|x]. (2.9)

There is a constant m(«), such that

U (s,£)QUt)x[ly < m(a)e )| x]. (2.10)

3 Main results

To study the existence and uniqueness of y-pseudo almost periodic solutions of equation
(1.1) we need the following additional assumptions.

(H1)

(H2)

(H3)

(H4)

The evolution family (U(t,s)):>s generated by A(t) has an exponential dichotomy
with constants N >0, § >0, dichotomy projections P(t), t € R.

R(w,A(+)) € AP(B(Xy)). Moreover, there exists a function H : [0,00) — [0,00) with
H € L[0,00) such that for every ¢ >0 there exists [(¢) such that every interval of
length I(€) contains a T with the property

|A(t+T)U(t+T,5+7) = A(H)U(L,5) || px,x,) S eH(t—3)
for all t,s€ R with t>s.
There exists 0 <a < <1 such that
Xfx =X,, X% =Xp

for all t € R, with uniform equivalent norm
If 0<a < B <1, then we let k(a) denote the bound of the embedding Xp = Xq, that
is

[Julle <k(a)|[ullp

foreach u e Xp

Let € M and let 0<a <B<1. We suppose f:IR x X+ X belongs to PAP(X,Xg, 1)
and satisfy

i) For all bounded subset B of X, f is bounded on IR x B.

ii) There exists K¢ > 0 such that

1£(tu) = f(£,0) || p < Kllu—wol|,

forallu,veX and t€R.
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(H5) Let € M and let 0 <a < < 1. We suppose g:R x X +— X belongs to PAP(X, X, u)
and satisfy
i) For all bounded subset B of X, g is bounded on R x B.
ii) There exists K¢ >0 such that

g (t,u)—g(t,0)||lp <Kgllu—o,
forallu,veX and teR.

(H6) We suppose that the linear operators B(t),C(t): X, — X for all t € R, are bounded
and set

teR teR

@ :=max <SUPHBU) IB(x.x), supl|C(t) ’|B(Xa,x)> :

Furthermore, t+— B(t)u and t— C(t)u are almost periodic for each u € X,.

To study the existence and uniqueness of pseudo almost periodic solutions to equation
(1.1), we first introduce the notion of mild solution.

Definition 3.1. A function u:IR—X, is said to be a mild solution to equation (1.1) provided that
the function s—A(s)U(t,s)P(s) f(s,B(s)u(s)) is integrable on (s,t), s—A(s)U(t,s)Q(s) f(s,B(s)u(s))
is integrable on (t,s) and

u<t>=—f(t,B<t>u<t>>+u<t,s>(u<s>+f<s,B<s>u<s>>>
- /tAsunsPsm u(s)ds+ [ A5 Ug(t5)QE)f (s Blo)u(s)ds @)
+ [ U(e3)P(s)3(5,C(5 () [ Ua(t5)Q)g(6,Cls)u(s))ds,

for t>s and for all t,5 €R.

In a first step, we proved the following result.

Theorem 3.1. Assume that assumptions (HO)-(H1) hold and let u be a mild solution of (1.1) on
R. Then, for all t€ R

u(t) =~ (6 BO0) ~ [ AGIU(LS)P()(5,B(E)u(s)ds
+ [ A Uo(t9)Q) S (s Bls)u(s)ds
[ us)Pe)sls Ce)uls)ds

— [ Uo(t5)Qs)s (s, Clu(s))s.

t
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Proof. Let u be the mild solution of (1.1) on R. For all t >s and all s € R, we have
u(s)=—f(s,B(s)u(s ))—/_;A(U)U(SIU)P(U)f(U/B(U)u(U))dU
+/ o) Uo(s,0)Q(0) f(0,B(c)u(c))do
+[m 5,0 0,C(0)u())do
- [ Uols)Q()g(0,Cle)u(e))de

S

Multiply both sides of the equality by U(t,s), we get
U(t,s)u(s)=—U(t,s)f(s,B(s)u(s))

+/SooU(t,U’)P(U)g(U,C((T)u(U))dU—/sooUQ(t,(T)Q(U’)g(U’,C(U’)u(U’))dU’
=—U(t,s)f(s,B(s)u(s))

—/tOOUQ(t,a)Q(U g(o,C(o)u(o))do— / Ug(t, (0)u(c))do
= —U(t,8)f(s,B(s)u(s))+u(t)+f(t,B(t)u(t))
+ [CAGUs)PE) (s, B(s)uls)ds— [ A Uat9)QE) (5, B(s)us) s

_ / U (L5)P(s)g(s,C(s)u(s))ds+ /t Ug(t,5)Q(s)g(s,C(s)u(s))ds,

Hence u is a mild solution of equation (1.1). O

Throughout the rest of the paper we denote by I';,I'5,I'3 and I'y, the nonlinear integral
operators defined by

(Tqu)(t)= /:OA(S) U(t,s)P(s)f(s,B(s)u(s))ds,
(T2 (t)= [~ A$)Ug(t5)Q(s)F(5,BS)u(s))ds,
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(Tau)(t) :/tooU(t,s)P(s)g(S,C(s)u(s))ds
and -
(F4M)(f)¢=/t Uq(t,5)Q(s)8(s,C(s)u(s))ds.
We next ned the following preliminary technical results.
Lemma 3.1. Let yu € M satisfying (M1)-(M2) and u € PAP(IR,X,, 1), if the linear operators
C(.) satisfy (H6) then C(.)u(.) € PAP(R,X, ).

Proof. Let u € PAP(R, Xy, 1) then u=uq+uy where u; € AP(R,X,) and uy € E(R, Xy, 1).
We have, C(t)u(t) =C(t)uy(t)+C(t)ua(t) for all t € R. Since u; € AP(R,X,), for every
€ >0 there exists /. such that every interval of length /. contains a T such that

< € , teR.
“ (suprer il +w)

Similarly, since C(t) € AP(B(X4,X)), we have
HC(t+T)—C(t)

‘ul(t—l—r)—ul(t)

< € teR.

B(Xy,X) (supthHMl(t)Ha""D)

Now
|C(t+ Ty (t4+7) ~ (1 (1)
<l [C(t+T)=C) |m(t+D) |+ CE) [ (1) = ()] |

< C(t+71) = C(8) |30 11 (E+T) la + 0 [[ua (E4T) — 11 (8) ||
<eg,

and hence t— C(t)uq(t) belongs to AP(R,X).
To complete the proof, it suffices to prove that t—C(#)uy(t) belongs to £(R,X, ). Indeed,

we have 1 .
u([=r.1]) /—r

. 1 r
o L

CD r
COpat)dp(t) < s [ Ia(®)lledie(t)

and hence

C(t)uz(t)de(t):O.
|

Lemma 3.2. ([11]) Assume that assumptions (HO)-(H1)and (H3 hold and let 0 < <a < <1
with 20 > 6+1. Then, there exist two constants m(w,B),n(a,0) > 0 such that

|A(s)Uqg(t,5)Q(s)x|l« <m(a,B)e’H|x||g  fort<s, (3.2)
and

||A(s)ll(t,s)P(s)x||a§n(oc,f))(t—s)_‘"e_g(t_s)||x||l;, fort>s. (3.3)
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Lemma 3.3. Let assumptions (H0)-(H4) and (H6) hold, then the integral operators T'y and I'
defined above map PAP(Xq, 1) into itself.

Proof. Let u € PAP(Xy, ). From Lemma 3.1 it follows that the function ¢t — B(t)u(t)
belongs to PAP(X). Using assumption (H4) and Theorem 2.1 it follows that () =
f(-,Bu(-)) is in PAP(Xg,u) whenever u € PAP(X,,u). In particular,

1 lloo,s =supl| £ (£, Bu(t)) | s < oo.
teR

Since ¢(-) = f(-,Bu(-)) is in PAP(Xg,pt) then ¢ = $1+¢2, where ¢1 € AP(RR,Xg) and ¢ €
E(R,Xg,p), thatis, T1p =E(¢1) +E(¢2) where

Epi(t):= /_tooA(s) U(t,s)P(s)¢p1(s)ds

and
Eo(t) := /_ A U(S)P(s)ga(s)ds

Firstly, we show that E¢; € BC(IR,X 5). Indeed, using estimate (3.3), we obtain

2 (1)< [_IAG)U(LS)PE) ()]s
<n@d) [ (1=5) e 1 gullpds

< n(a,@)(g)l_“r(l—“) 91l

Then E¢; € BC(IR,Xp). Next, we prove that Z(¢;) € AP(R,X,). Since ¢; € AP(R,Xg),
then for every € > 0 there exists I(€) >0 such that every interval of length I(€) contains a
T with the property

o

[p1(t+T7) —¢1(t)||g <ev foreachtcR

4a7151704
where v=——+-—————. Hence,

n(a,0)T(1—a)
E(P](f—FT) —:(Pl(f)
AU TP (s~ [ AGIULS)P(s)r (5)ds
)

/. .
/.
.

A(
A(s+D)U(t+T,5+T)P(s+T (4)1 s+HT)— ))ds
+ [ (A )-

u(
A(s+T)U(t+7,5+T)P(s+7)— A(s)U(t,s)P ())(Pl()
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Using equation (3.3) it follows that

||/ (s+T)U(t+7T,54+T)P(s+7) (4>1 (5+7)—¢1 (s))ds”a <e.

Similarly, using assumption (H2), it follows that

||/ A(s+T)U(t 1,54+ T)P(s+7)
—A(s)U(t,s)P(s))p1(s)ds|[a <eN|H|| 1|10

where || H||11 :/ H(s)ds < co. Therefore,
0

IE(¢1) (t+7) = E(1) (Do < (1 NI H] 11 l| 1o )

for each t € R, and hence E(¢;) € AP(R,X,).

Now, we show that Z(¢2) € BC(IR,X;). Using estimate (3.3) and replacing &(¢1) by E(¢2)
in the previous case we get the result. To complete the proof, we will prove that Z(¢») €
E(R,X Br ). Now, let ¥ > 0. Again from equation (3.3), we have

1 s
m/r\\(u%)(t)uady(g
1 r p+too
<o L A U= P=s)gai=s)]dsd(t)
n(ﬂé,f)) r p+oo a _%_S
SM//O s~ 4%\ ga(t—s)||pdsdp(t)

<nlap). [ s (ﬁ [ lnte=s) st ) s

tim - [ 4a(=9)llpd(6)=0,

r—o0 ‘u

Now

Since p satisfy (M2) then t— ¢2(t—s) €E(R,Xg, 1) for every s €R. To complete the proof,
we use the well known Lebesgue’s dominated convergence theorem.

The proof for Tpu(+) is similar to that of T'1u(-) except that one makes use of equation
(3.2) instead of equation (3.3). O

Lemma 3.4. Let € M satisfying (M1) and (M2). Assume further that (H0)-(H3), (H5) and
(H6) hold, then the integral operators I's and T4 defined above map PAP (IR, X, 1) into itself.
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Proof. Let u € PAP(R,X,,u). From Lemma 3.1 we get C(-)u(-) € PAP(R,X, ). Let h(t) =
<(t,Cu(t)). Using assumption (H5 and Theorem 2.1 it follows that h€ PAP(R,X, ). Now
write 1 = ¢; + ¢, where ¢ € AP(R,X) and 9, € E(R,X, ), that is, [3h =E (1) +E(¢h2)
where

El[)l(t)::/tooU(t,S)P(S)ll)l (s)ds
and ,
Egn(t):= /_ _U(L)PE)ga(s)ds.

Firstly, we show that Ei; € BC (]R,Xﬁ). Indeed, using estimate (2.9), we obtain
t
159 (0) 5 [ U P(s)n () s

<e(@) [ (t=s) e 0 s
)
<e(@) ()T (1) i 5

Then Zip; € BC(R,Xp). Next, we prove that Z(¢1) € AP(R,X,). Since ¢ € AP(R,Xp),
then for every € > 0 there exists I(€) >0 such that every interval of length I(€) contains a
T with the property

[1(t+7)—1(t)||p <en foreachteR,

h _ 1
W = e T=ac ()T (1 —a)

E1(t+1) —E¢1(t)
:/tZTU(t+T,S)P(s)1/J1(s)ds—/tmu(t,s)P(s)zpl(s)ds

:/t U(t+T1,5+T)P(s+7) (1p1 (s+7)—1 (S))ds

. Hence,

+/_foo <u(t+r,s+T)P(s+T) - U(t,s)P(s)) 1 (s)ds.

Using equation (2.9) it follows that
f €
|| Ut+ms+0P(s+7)(91(s+7) —91(5) )dsll < 5.
Similarly, using assumption (H2). Let € >0, from [10] we know that r = T'(t+r,5+7) €
AP(B(X)) for t,s € R, where we may take the same almost periods for t,s with ||t —s|| <

h>0. Hence, there exists I(€) >0 such that every interval of length I(€) contains a number
T >0 with the properties that, for t€R, ¢ >0

€

U754+ T)Pls+7) = U(L)P(E)] < g
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and

U (t4+T,5+T)P(s+7) — U (£,8) P(s) ]| < =
2|yl

Therefore,

1E(w1) (t+7) —E(1) (1) [l <€,

for each t€R, and hence E(¢; ) € AP(IR,X,). Next, using similar techniques as previously,
we get Z() € BC(R,Xp). In fact, using estimate (2.10) and replacing E(¢p1) by Z(¢2) we
get the result. Now, to complete the proof, we will prove that Z(¢») € £(R,Xg,u). Let
r>0. Again from equation (2.10), we have

M/_V,H(E%xt)nady@
: M/:/oﬂo [U(tt—s)P(t—s)pa(t —s)||adsdp(t)

5 ﬁ/_:/om”e%s o (t—s) | pdsdpu(t)

Foo s 1 r
Sc(zx)./o 5_"‘3_75(m/rH%(t_s)Hﬁdﬂ(t)) ds.
Now observe that

. 1 r
fim s [ Ia(t=s)lsd(e) =0

Since y satisfy (M2) then t— 2 (t—s) € E(RR,Xg,u) for every s € R. Finally the proof is
acheived using the as well the Lebesgue’s dominated convergence theorem.

The proof for T4u(+) is similar to that of T'su(-) except that one makes use of equation
(2.9) instead of equation (2.10). O

Now, we are able to state our second main result.

Theorem 3.2. Let u € M satisfying (M1) and (M2). Assume further that assumptions (HO)-
(H6) hold and that x <1. Then, the equation (1.1) has a unique p-pseudo almost periodic mild
solution, where

k=K@ [5’1171(&) +c(w)2t7*6%7Ir(1 —oc)]

+Ky¢@ [1 +07  m(a, B)+4" 6% T (w,0)T (1 —a)] :
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Proof. Consider the nonlinear operator M defined on PAP(X,, 1) by

Mu(t)= —f(tB0R())~ [ AGIU(L)PE)f s Bls)uls)ds
+/ $)Ug (t,5)Q(s) f(5,B(s)u(s))ds
+/ 2(s,C(s)u(s))ds

~ [ Uo(t)Q(s)g(s,Cls)us) s

t

for all t € R. Next, in view of Lemma 3.4 and Lemma 3.3, it follows that M maps
PAP(R,X,, pt) into itself. To complete the proof one has to show that M is a contractive
on PAP(R,X,, ). Let u,v € PAP(R,X,, ). Firstly, we have

T2 (0) () =T () (£)]]a

(0K [ (t=5) e 0 o(s) ~u(s)fods

t
< (@)K sllo—ullwa [ (=5) "¢ 30-ds

= 4176 1 (0,0) T (1— &) K50 |0 — 1t oo 0

Next, we have

I (0) ()~ L))

< m(wp) [ (s Bs)o(s)) — (5 BEIu(s)) s
m(wp)Kse [ B(s)o(s) ~ B(s)u(s) s
Bk [ o(s) —u(s)

[ee]

+
< m(a,,B)KchHv—uHoo,“/ =) ds
t
= 0"'m (e, B)Ks@|[0— ]| oo a-
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Now, we have
IT3(0) (1) = T3 () (1) [« < /;HU(ES)P(S) [§(s,C(s)v(s)) —&(s,C(s)u(s))] [lads

< KC(!X)/t (t=5) e 2= |C(s)o(s) = C(s)u(s) | ds

—00

¢ A
< @Keelw) [ (1=9)7 1 o(e)—u(s)ods
< ngc(oc)Zl”"(S“’lF(l—a)Hv—uHoo,“,

Finally, we have
T (@) () ~Tal) (o = [ m(a)ellg(s,C)o(s)) — (s, C(s)u(s) s
< [ m@Ke I |C(s)o(s) - Cls)u(s) s
< @m(a)Kq [ fo(s) ~u(s)]ds

+oo
< Kgm(oc)cDHv—uHoo,a/t *(=5)ds
< Koo om(a)||[v—1t|coa-
Combining previous approximations it follows that
Mo —Mt o0 < ][0 =100

Then M is a contraction map on PAP(R,X,, ). Therefore, M has unique fixed point in
PAP(R,X,, 1), that is, there exist unique u € PAP(R,X,, 1) such that Mu =u. Therefore,
(1.1), has a unique p-pseudo almost periodic mild solution. O
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