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Abstract

In this paper, we propose an algorithm for solving inequality constrained mini-max
optimization problem. In this algorithm, an active set strategy is used together with mul-
tiplier method to convert the inequality constrained mini-max optimization problem into
unconstrained optimization problem. A trust-region method is a well-accepted technique
in constrained optimization to assure global convergence and is more robust when they
deal with rounding errors. One of the advantages of trust-region method is that it does
not require the objective function of the model to be convex.

A global convergence analysis for the proposed algorithm is presented under some
conditions. To show the efficiency of the algorithm numerical results for a number of test
problems are reported.

Mathematics subject classification: 90C30, 90B50, 65K05, 62C20.
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1. Introduction

Many real world applications can be modeled as a mini-max optimization problem. This
problem arises in engineering design, computer-aided design, circuit design, chemical design,
systems of nonlinear equations, problems of finding feasible points of systems of inequalities,
nonlinear programming problems, multi objective problems, optimal control and others. The-
oretical study for the mini-max optimization problem can be found in [1,2].

In this paper, we introduce an active-set trust-region algorithm to solve the following mini-
max problem

mingegn (),
subject to  h(z) <0,

(1.1)

where ¥(z) = maxi<i<m fi(z). The functions f; : R — R, i = 1,...,m, and h(z) : " — R?,
are twice continuously differentiable. The objective function ¥(z) is not necessarily differen-
tiable even though the functions f;(z), ¢ = 1,...,m, are all differentiable. So, the classical
algorithms which are using for solving smooth nonlinear programming problems can not be
applied directly on Problem (1.1). There are several types of algorithms suggested to solve
min-max problems, see [3-13]. The first type of algorithms shows the Problem (1.1) as a con-
strained non-smooth optimization problem. Therefore, general methods is used to solve it,
see [14,15]. The second type of algorithms solves the Problem (1.1) by considering the special
structure of its non-differentiability so as to make use of certain smooth optimization meth-
ods, see [4,16]. The third type of algorithms solves the Problem (1.1) by converting it into
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an equivalent smooth inequality constrained optimization problem by inserting a new variable
z e R
mln(w’r)z) z
subject to  h(z) <0,
filx)—2<0, i=1,..,m.

It is obviously implies that solving the finite min-max inequality constrained Problem (1.1) is
equivalent to solve the above problem, see [1,2]. In this paper, the proposed approach belongs
to the third type.

The above problem can be summarized as follows

ming F(z)

subject to  G(z) <0, (12)

where 7 represent the vector (z7,2) € R"!, F(%) = 2, and G(Z) € R™*P is a vector whose
elements are (h(z), fi(z) —2)T,i=1,..,m.
The Lagrangian function associated with Problem (1.2) is the function

0z, ) = F(z) + \TG(2), (1.3)

where A € R™TP is the Lagrange multiplier vector associated with inequality constraints G(Z).
Let J(Z) be the set of indices of violated or binding inequality constraints at a point z. i.e.,
J(&) ={j : G;(Z) > 0}. If the vectors in the set {VG;(Z),j € J(Z.)} are linearly independent,
then the point Z. is called a regular point for Problem (1.2).

The first-order necessary conditions for the regular point Z, to be a local minimizer of
Problem (1.2) are the existence of the multiplier vector A\, € R™TP such that (Z., \.) satisfies

VaF(7,) + VaG(#)A =0, (1.4)
G(7.) <0, (1.5)
(M\)iGi(2y) =0, i=1,..,m+p, (1.6)
(As)i >0, i=1,....,m+p. (1.7)

Conditions (1.4)-(1.7) are also known as the Karush-Kuhn-Tucker conditions or the KKT con-
ditions. A point (Z., A«) that satisfies the KKT conditions is called a KKT point. For more
details, see [17].

In this paper an active set strategy is used together with a multiplier method to convert
Problem (1.2) into unconstrained optimization problem. The general idea behind the active-
set strategy is to identify at every iteration, the active inequality constraints and treat them
as equalities. This allows the use of the well-developed techniques for solving the equality
constrained optimization problems. Many authors have proposed active-set algorithms for
solving general nonlinear programming problems, see, e.g., [18-21].

Following the active set strategy in [18], we define a 0-1 diagonal indicator matrix D(x) €
RmAPXmADP wwhose diagonal entries are

4:(%) _{ 0 if Gi(7) < 0. (1.8)

Using the above matrix, Problem (1.2) is converted to the following problem

min F(2),
subject to  G(Z)T D(z)G (%) = 0.



778 B. EL-SOBKY AND A. ABOTAHOUN

In this algorithm, the multiplier method is used to replace the above equality constrained
optimization problem to the following unconstrained optimization problem and at the same
time the penalty parameter needs not to go to infinity,

min 0z, \) + %HD(@G(@”;

1.
subject to I € R (1.9)

where p is positive parameter. For more details about the multiplier methods see [22].
The first-order necessary condition for the point Z, to be a local minimizer of Problem (1.9)
is the existence of the multiplier vector A, € R™¥P such that (Z,, \.) satisfies

Vil(Fs, ) + pVG(E.)D(3,)G(E) = 0, (1.10)

where Vz0(Z., As) = VF(Z.) + VG(Z4) s

We note that if the point (Z., \.) satisfies the KKT conditions of Problem (1.1), then it
also satisfies the first-order necessary optimal conditions of Problem (1.9) but the converse is
not necessarily true. We design our algorithm in such a way that, if the point (Z., \.) satisfies
the first-order necessary optimal condition of Problem (1.9), then it also satisfies the first-order
necessary optimal conditions of Problem (1.1).

As we know a trust-region method is a well-accepted technique in nonlinear optimization
to assure global convergence and is more robust when they deal with rounding errors, so we
used it in this paper. One of the advantages of trust-region method is that it does not require
the objective function of the model to be convex. However, in traditional trust-region method,
after solving a trust-region subproblem, we need to use some criterion to check if the trial step
is acceptable. If not, the subproblem must be resolved with a reduced trust-region radius. For
more details see [20,23-28].

In this paper, a global convergence theory for the proposed algorithm is introduced under
some assumptions.

Subscripted functions denote function values at particular points; for example, Gy, = G(Zx),
VGr = VG(Zy), Dy, = D(Zg), Ly = (T, i), Vil = Vzl(Zk, Ar), and so on. Finally, all
norms are [o-norms.

The rest of this section introduces some notations. In Section 2, we present an outline of
the proposed trust-region algorithm. Section 3 is devoted to analysis of the global convergence
of the proposed algorithm. Section 4 contains implementation of the proposed algorithm and
the results of test problems. Section 5 contains concluding remarks.

2. Algorithm Outline

This section is devoted to presenting the detailed description of the proposed trust-region
algorithm for solving Problem (1.1).

2.1. Compute a step s

In this section, a trial step si is evaluated by solving the following trust-region subproblem
(2.1).
: — _yT 1.7 Pk T 2
min Qi (sk) = bx + Vil s + 55" Hys + 55| Di(Gr + VG s)||

2.1
subject to ||s|| < I, (2.1)
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where Hj, is the Hessian of the Lagrangian function (1.3) or an approximation to it and d§; > 0
is a trust-region radius. We represent the quadratic form of the objective function of Problem
(1.9) by gr(sk). For complete survey see [29, 30].

It is not necessary to obtain a very accurate approximation to the solution of the subproblem
(2.1). Instead any approximation to the solution of the subproblem (2.1) can be used as long
as the predicted decrease obtained by the step sj is greater than or equal to a fraction of the
predicted decrease obtained by the Cauchy step s;”. This means that the following condition
must be achieved

ar(0) — ai(sk) = @lar(0) — g (s;”)], (22)
for some ¢ € (0,1]. The Cauchy step s;” is defined as

st = =P (Valy + pVGr Dy Gy), (2.3)
where o” is given by

| Vil + prVGr DGy ||
(Vily + px VG DrGr)T Bp(Vzly + pr VG D Gy,)
" | Vili + pVGr DGy | < by
af = (Valy + pp VG DpGr)T Bp(Valy + pe VGRDpGy) —
and (Valy + pr VG DLGy)" By (Vily + pr VG Dy Gy) > 0,
Ok
| Vali + pr VG DGl |

Otherwise,

and B, = Hp + VGkaVGz.
Therefore, we use a generalized dogleg algorithm introduced by [31] to compute sj.

2.2. Testing s, and Updating J;

Once s is evaluated, it needs to be tested to determine whether it will be accepted. To
do that, a merit function is needed. We use the following augmented Lagrangian function as a

merit function p
(2, A p) = £(T,\) + §||D(56)G(56)H2- (2.4)

To test the step, we need to estimate the Lagrange multiplier A\x41. Our way of estimating Ax41
is presented in Step 5 of Algorithm (2.1) below. To test whether the point (% + sk, Agt1) will
be taken as a next iterate, an actual reduction and predicted reduction in the merit function
must be defined.
The actual reduction in the merit function in moving from (Zg, Ai) to (Tg + Sk, Ag+1) is
defined as
Aredy, = (T, A\; pr) — P(Tr + Sky Aot 13 Pk)-

Note that Ared; can be written as
Aredy, = (T, M) — OFrr1s M) — AN Gropr + %k[G;;FDka — GT D1 Grya), (25

where A)\k = ()\k-',-l — )\k)'
The predicted reduction in the merit function is defined as

Predk = —ij(fk, )\k)TSk - %S%Hksk - A)\z(Gk + VG%S;C)

+ 221 DRG = IDu(Gr + VG50, (2.6)
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After evaluating s, and estimating Ap41, the step is tested to know whether it is accepted by
comparing Pred), against Aredy. It is presented in Step 6 of Algorithm (2.1) below.

After accepting the step, we update the parameter py by using a scheme suggested by [32].
Our way of updating py is presented in Step 7 of Algorithm (2.1) below.

Finally, the algorithm is terminated when either | V30| + || VGrDiGil| < €1, or ||sg]l < e2
for some £1,e9 > 0.

2.3. The main algorithm

Master steps of our method is presented in the following algorithm.

Algorithm 2.1. (The trust-region algorithm)
Step 0. (Initialization)

Given Tg € R"T1. Compute Dy. Evaluate \g. Set po = 1. Choose €1, €2, a1, az,
n, and N2 such that €1 > 0, €2 > 0,0 < a1 <1 < g, and 0 < m < 12 < 1.
Choose Omin, Omax, and 6y such that dmin < 09 < Omax. Set k=10,

Step 1. If |Vzlr| + ||VGrDpGi|| < €1, then stop.
Step 2. a)Compute the step sy by solving subproblem (2.1).

b) Set Thi1 = Tk + Sk-

Step 3. If ||s|| < e2, then stop.
Step 4. Compute Dy11 given by (1.8).
Step 5. Compute A\p41 by solving

min ||VFk+1 +VG]€+1A||2

subject to A >0, (2.7)

Step 6. If Aredy, < n1Predy.

Set 8, = a1||sk|| and go to step 2.

Else, if n1 Predy, < Aredy, < ngPredy.
Then accept the step: Ti4+1 = Tk + Sk
Set §x+1 = max(dk, Omin)-

Else, accept the step: Tx11 = Tk + Sk-
Set 0p4+1 = min{dmax, max{dmin, @2l }}.
End if.

Step 7. Set pr+1 = pk-
if
1 .
§(Qk(0) - qk(sk)) - A/\{(Gk + VGgSk) < U”VGkaGkH mln{HVGkaGkH,(Sk}, (2.8)

then set pr+1 = 2pk-
End if.

Step 8. Set k=k+1 and go to Step 1.
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In the following section, we present a global convergence theory for the proposed trust-region
algorithm.

3. Global Convergence Analysis

Let {(Zr, A\x)} be the sequence of points generated by Algorithm (2.1) and let £ be a convex
subset of 3" *! that contains all iterates Z; and 3+ s,. On the set €2, the following assumptions
under which our global convergence theory is proved are imposed.

Assumptions:
A;. The functions f;(x), i = 1,2,...,mm and h(z) are twice continuously differen-
tiable for all x € Q.

Ay All of fi(z), Vfi(x), V2fi(z), h(z), Vh(x) for i = 1,2,...,m, are uniformly
bounded in €.

As. The sequence {\;} is bounded.
Ay. The sequence of Hessian matrices { Hy} is bounded.
In the above assumptions, we do not presume VG;(Z), i = {1,...,m + p} has inverse for all

z € ). So, we may have other kinds of stationary points. They are presented in the following
three definitions.

Definition 3.1 (Fritz John Point). A point %, is called a Fritz John point if there exist .
and A, not all zeros, such that

YV VE(iy) + VG(#:) A = 0,

D.G(E.) =0,
(A*)lGl(j*) =0, 1=1,...,m+p,
Y, (Ax)i >0, 1=1,....,m+p.

The above conditions are called Fritz John conditions, see [33].
If v, # 0, then the Fritz John conditions correspond with the KKT conditions (1.4)-(1.7)
and the point (Z., %) is called a KKT point.
Definition 3.2 (Infeasible Fritz John Point). A point & is called an infeasible Fritz John
point if there exist v, and A, not all zeros, such that
Y VF(Zs) + VG(Z:) A =0,
VG(Z+)D(Z+)G(Z:) =0 but ||D(Z.)G(Z)] > 0,
Yas (As)i >0, i=1,....,m+p.
The above conditions are called the infeasible Fritz John conditions, see [33].

If ~. # 0, then the point (Z., i—*) is called an infeasible KKT point and the infeasible Fritz
John conditions are called the infeasible KKT conditions.

Definition 3.3 (Infeasible Mayer-Bliss Point). A point . is called an infeasible Mayer-
Bliss if

VG(2.)D(Z.)G(Z+) =0,

1D (z.)G(Z+)] > 0.
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The above conditions are called the infeasible Mayer-Bliss conditions, see [34].
The conditions stated in Definitions (3.1)-(3.3) are called stationary conditions of problem
(1.1) and the point that satisfies any of these stationary conditions is called a stationary point.
The following three lemmas provide conditions equivalent to the conditions given in Defini-
tions (3.1)-(3.3).

Lemma 3.1. Suppose that assumptions A;-Ag hold. A subsequence {Zx,} of the iteration se-
quence asymptotically satisfies the infeasible Fritz John conditions if it satisfies:

1) lim || Dy, G, )| > 0;
ki—o0

k}i—)OO
Proof. See Lemma 4.1 of [20]. O

Lemma 3.2. Suppose that assumptions A1-Ag hold. A subsequence {Zy,} of the iteration se-
quence asymptotically satisfies the feasible Fritz John’s conditions if it satisfies:

1) For all k;, || Dy, Gk,

>0and lim Dy, G, =0
ki—>oo

. - ||Dk (G, + VGE 8|2
2) For ki — 00, k}gllm {Sg?l”r}rl ”Dkinin -

Proof. See Lemma 4.2 of [20]. O

Lemma 3.3. Suppose that assumptions A;-Ag hold. A subsequence {Zy,} of the iteration se-
quence asymptotically satisfies the infeasible Mayer-Bliss conditions if it satisfies:

1) lim ”Dlele > 0
ki—>oo

2) lim { min ) | Dk, (Gr, + VG%;S)||2} = klim ”Dkinin'
i—> 00

ki—oo | seRnt
Proof. See Lemma 4.3 of [20]. O
Lemma 3.4. Assume Ay and Az. Then D(Z)G(Z) is Lipschitz continuous in 2.
Proof. See Lemma 4.1 of [18]. O

From the above lemma, we conclude that G(Z)? D(Z)G(%) is differentiable and VG (Z)D (%)
G(Z) is Lipschitz continuous in €.

Lemma 3.5. At any iteration k, let V(xy) € R™MTPX™TP be g diagonal matriz whose diagonal
entries are
1 if (Gk)i <0 and (Ggy1)i > 0,
(’U;g)i = -1 if (Gg)i >0 and (Gg41): <0, (3.1)
0 otherwise,
wheret=1,....m+p. Then
Dyt+1 =Dy + V. (3.2)

Proof. See Lemma 5.1 of [19]. O

Lemma 3.6. Assume A1 and As. At any iteration k, there exists a positive constant K,
independent of k, such that
[VeGrll < Kullskll, (3.3)

where Vi, € RMIPXMAP s the diagonal matriz whose diagonal entries are defined in (3.1).
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Proof. See Lemma 5.2 of [19]. O

The following lemma gives upper bound on the difference between the actual reduction and
the predicted reduction.

Lemma 3.7. Suppose that assumptions A1-Ay hold, then there exists a constant Ko > 0 that
does not depend on k, such that

| Aredy, — Predy |< Kopr||sel*- (3.4)
Proof. From (2.5) and (3.2), we have
Aredy, = (T4, M) — U(@p1, M) — AN Grogr + p—;[Ggkak — GT. (Dg + Vi)Grpal.
From the above equation, (2.6), and using Cauchy-Schwarz inequality, we have
| Aredy, — Predy, |
< | (s M) + VG M) T + %s;‘ngsk e, W) |+ | ANT(G + VGT ) — Gl |
+ %’“ (Gr + VGT51) " Dy(Gr + VG ) — GT,  (Di + Vi) s | -
Hence,
|Aredy, — Predy|
<| %sf(Hk — V2U(&Ek + &isk, Ak))sk | + | ANL (VG — VG(Fx + Easi)) s, |
+ i | (VG = VG(@k + &250)) DrGil st | +5° | s VG (@ + E255) DeVG (@ + Gasi) s |
+ B | VPG + €50 ViG (@ + asi)si | +pi | (VO(@r+ E2s)ViGi) s | +55 | GIVAGr |,

for some & and & € (0,1). Using the assumptions A; — A4, and Inequality (3.3), the proof
follows. g

Lemma 3.8. Suppose that assumptions A,-Ay hold. Then for all k > k, there exists a positive
constant K3 independent of the iterates such that,

qx(0) — qr(sk)

VO(E, A VG, DLG
>Ks || Val(in, M) + prVGrDuGr || min{ék, | ek, M) + o VG D ’“'}.

B (3:5)

Proof. Using (2.2) and (2.3), the proof is similar to the proof of Lemma (6.2) of [19] for
another algorithm. O

From the way of updating the positive parameter pj, we have

1 .
§(Qk(0) - qk(sk)) - A)\g(Gk + VG{S[C) < U”VGkaGkH mln{||VGkaGkH,5k}, (3.6)

only when there exists an infinite subsequence of indices {k;} indexing iterates of acceptable
steps that satisfy, for all k € {k;} the sequence {px} is unbounded.

The following two lemmas show that if pr — oo, as kK — oo, then a subsequence of the
iteration sequence generated by Algorithm (2.1) satisfies Fritz John conditions or infeasible
Mayer-Bliss conditions in the limit.
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Lemma 3.9. Suppose that assumptions A1-A4 hold. If prp — oo, as k — oo and there exists
a subsequence {k;} of indices indexing iterates that satisfy ||DxGrll > €1 > 0 for all k € {k;},
then a subsequence of the iteration sequence indexed {k;} satisfies the infeasible Mayer-Bliss
conditions in the limit.

Proof. The proof is by contradiction. Suppose there exists no subsequence of the sequence
of iterates that satisfies the infeasible Mayer-Bliss conditions in the limit. Using Lemma (3.3),
then for all k we have, | | DiGy||* — | Di(Gr + VGFEs)||? |> €1 and from Definition (3.3), we
have ||VGy DGyl > e for some g5 > 0. Since py — 00, then there exists infinite number of
acceptable iterates at which Inequality (3.6) holds. We consider two cases:

i) If | DeGi||* — || Dr(Gr + VGE si)||? > €1, we have
pi{|| DkGil|*> — | Di(Gi + VGi sk)|1?} > pre1 — . (3.7)
Since

20:(0) — (1) — AN (G + VG s1)

1 1 1
= _Evikg(jk; M) si — ZSngSk - §A/\£(Gk + VGEs1)

+E{IDLGHIP — ID(Gr + VG 5111}

Using assumptions Ay -Ay, and Inequality (3.7), we have [3(qx(0) — qi(sk)) — AN (G, +
VGTsi)] — oo. Hence, the left hand side of Inequality (3.6) tends to infinity as k — oo,
while the right hand side goes to zero. This gives a contradiction in this case.

i) If || D Gil|? — | Dk(Gr + VGEsy)||? < —e1. Because p, — oo as k — oo, we have
pe{IDRGr|? = | Di(Gr + VGsk) P} < —prer — —cc. (3.8)

Similar to the case (i), we have

[5(@(0) — a(s1)) = AN (Gi + TG 1)) > —oe.

Since Predy, = (qx(0) — qr(sx)) — AN (G + VGFsy), we have Pred,, — —oo. This gives a
contradiction with Predy > 0. These two contradictions prove the lemma. O

The following lemma studies the case when lim in f o0 || Dr Gk || = 0 and py, — 0o as k — oo.

Lemma 3.10. Suppose that assumptions A1-Ay hold. If pr — 00, as k — 0o, and there exists a
subsequence {k;} of iterates that satisfies || DrGy|| > 0 for all k € {k;} andlimy, o0 || Dr; Gy, || =
0, then a subsequence of the sequence of iterates indexed {k;} satisfies Fritz John’s conditions
in the limit.

Proof. Let the subsequence {k;} be renamed to {k} to simplify the notations avoiding double
indexes. The proof is by contradiction. Assume there exists no subsequence that satisfies Fritz
John’s conditions in the limit. Hence, using Lemma (3.2), there exists a constant e3 such that
for all k sufficiently large,

| |DxG|l* = | Dk(Gr + VG )|
| DxG||?

2]
Z 3. (39)
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We consider three cases:
i) If lim infkﬂoom = 0, Inequality (3.9) gives contradiction.
ii)If lim supkﬁOOHDi—’“Gk” = o0o. From the way of computing the trial steps, we have

V@ké(fk, /\k) + pr VG DGy = —(Bk + ukI)sk, (3.10)

where ur > 0 is the Lagrange multiplier of the trust region constraint. Since By = Hjy +
prVGEDVGE and using (3.10), then Inequality (3.5) can be written as follows

qx(0) — qr(sk)

1 T 223
— Hy + (VG D VG; + E:T)]sp
ZKg H ijék —I—kaGkaGk H min{5k, ” [pk ( k P )] ”} (311)

H pika + VGkaVGg H

Because pp, — o0, as k — oo, there exists an infinite number of acceptable steps such that
Inequality (3.6) holds. But Inequality (3.6) can be written as

1
5@k (0) = a(sk)) — AN (G + VG si) < o|[VGiIIP | DeGrll>- (3.12)

From Inequalities (3.11) and (3.12), we have

1 T
Rs | Vi, lr + p VG DGy || min {5k | [p_ka  (VEDVE, + %I)]Sk | }
2 Tk )

|| pika + VGkaVGg H
—AA%(G/C + VG%S;C) < 0()?||D1€Gk||2 (3.13)

where b1 = sup,ecql||[VGi]||. Since

AN (G 4+ VGTsp) = AN G + ANV GT sy,
= (Ma1Drr1 — MeDp)TGr + ANV GE sy,
= (Mey1(Di 4+ Vi) = MeDp) TGl + ANV GT s,
< NANNNDkGrll + X1 Ve Grll + AN VGE sl
< I ANNDRG|l + KX el sell + ANV GE |l sie |
< NANNDRGrll + K[ Mg | + |ANE VG ] sl
< NAN DGl + (K[ A [l + [ANE VG [[]6%-

Then, from Inequality (3.13) and the above inequality we have

1 T | Mk
K — H,+(VGLDLVGi +EET)]sy
23 | Vi, bk + pVGr DGy || min {5k, i ( Dl |

H kaHk + VGkaVGg ||
—[ AN DRGR N = K Akt | + JANE VG 16k < b3 || DeGiel|.

Hence, if we divided the above inequality by || DyGr||, we obtain

K . 5p I - Hit(VGEDLVGT 5L )]sy ||
— || Vg b + pr. VG DGy || min , k Pk
g | Vet A VGRDAGs | {|Dkak| [ L, + VG Dy GE | | DyGrl
1)
ANl = K1 [t | + [ANEVGE e < 0B} DGl (3.14)

| DeGr||
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The right hand side of the above inequality goes to zero as k — oo and ||AXg|| is bounded.
This implies that along the subsequence {k;} where limy, oo Hms%ku = 00,

|2 0, + (V61 DL VG, + 2 D),

H%iﬁki + p, VG, Dy, G,

H inﬁ + VG/CZD;%VG{I || ”Dkini

is bounded. Therefore, asymptotically, either HD:% lies in the null space of VG;%D;%VGQ +
i i e

Pk;

— 0 as

%I or || Vi, le, + pr, VG, Dy, G, ||— 0. The first possibility occurs only when
ki " 00 and sk, /|| Dk, Gk, || lies in the null space of the matrix VG, Dy, VG, which contradicts
assumption (3.9) and implies that a subsequence of the iteration sequence satisfies the Fritz
John conditions in the limit. The second possibility implies as k; — oo

Hence as ki — oo, p, ||VGr, Dk, Gy, || must be bounded. Hence, we have Vg, ¢y, = 0. This
implies that a subsequence of the iteration sequence satisfies the Fritz John conditions in the
limit.

i) If lim supkaoo”Di—ka” < oo and lim mfk*OOnD:—kan > 0. Therefore ||sg|| — 0. Hence, as in
the second case, the right hand side of (3.14) goes to zero as k — oco. This implies that

| (VGrDy VG + EED)sy, ||

Vil + oV G DG 0.
IVarbi oV G DG | g6 B S aT T DGl

But this implies that asymptotically, either

| (VGrDy VG +EED)sy |
| VGiDp VG, || | DrGi|

| Vi li+px VG DGy || = 0 or

As the second case, the two possibilities imply that a subsequence of the iteration sequence
satisfies the Fritz John conditions in the limit. This completes the proof. O

In the rest of this paper, we continue our analysis assuming that the positive parameter py is
bounded. That is, we assume the existence of an integer k such that for all k > k, pp = p < 00

and
1

§(qk (0) - qk(sk)) - A)\z(Gk + VG%S}C) Z O’HVGkaGkH Hlin{”VGkaGkH, 5k} (3.15)

Lemma 3.11. Suppose that assumptions A1-Ay hold. At any given iteration indexed k at which
IVz. 0k + pVGrDiGi|| + [|VGr DGl > €1, there exists a positive constant Ky that depends
on €1 but not depend on k, such that

Pred;, > K40;. (3.16)

Proof. From (2.6), (3.15) and using Lemma (3.8), we have
1

Predy = 5 (qx(0) — qr(sk)) + [%(qk(()) — qi(sk)) — AN (Gr + VG sp)]

[\)

v

K Vilk + pVGL DG
=2 | Vali + pVGLDLG |min{5k, | Vb + pVGi Dy k|}

| Bkl
+U||VG;€D;€G1€||min{”VGkaGkH,(Sk}. (3.17)
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We consider two cases:

i) If |Vzly, + pVGr Dy G|l > 5 and using Inequality (3.17), then

K
Pred;, > 73 H Vily + pVG DGy, H min {5k7 HB H
k

Kser . €1
1, —— 36
4 i { ’ 2b25max } o

where || Bg|| < by under assumptions A; — Ay.

| Valy + pVGr DGy || }

Y

i) If ||VGrDrGy|| > 9 and using Inequality (3.17), then we have

oer . €
Pred;, > 71 min {T:wx, 1}5k.

From the above two cases, the result follows by takeing K4 = min{ Kjél min{1, a0 3

1 g€l

Lemma 3.12. Suppose that assumptions A1-A4 hold. If
IVl + pV G DGl + |VGr DG || > €1,

then the condition Aredy; > 11 Predy, will be satisfied for some finite j i.e., an acceptable step
is found after finitely many trials.

Proof. Since |Vl + pVGr DGl + ||VGrDiGi|| > €1. From Inequalities (3.4) and (3.16),

we have

| Aredy, = | Aredy, — Predy, | < K»pé: _ Kopdy,

Pred,, Pred;, - Kby K,
Now as the trial step sy; gets rejected, dx, becomes small and eventually after finite number of
trials, (i.e., for j finite), the acceptance rule will be met. This completes the proof. O

Lemma 3.13. Suppose that assumptions A1-Ay hold. If ||Vilp+pV G DrGr||+||VGr Dy G || >
€1, at a given iteration k, the j" trial step satisfies

(1—m)K,y

il <
ol < ==,

(3.18)

then it must be accepted.

Proof. We prove this lemma by contradiction. Assume that the step sj; is rejected and
Inequality (3.18) holds. Then, from Inequalities (3.4) and (3.16) we have

o . T _
| Aredy; — Predy; | < Kop||sii|| < (1—m)

1-— <
(L =m) Predy, Kilswl = 2
This gives a contradiction and proves the lemma. O

Theorem 3.1. Suppose that assumptions A1-A4 hold. Then the sequence of iterates generated
by the algorithm satisfies

likminf [ IV#le|l + |VGLDyGi| ] = 0. (3.19)
—00
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Proof. First, we prove that
lim inf[|| V), + pV G DrGil| + | VG DiGr[[] = 0. (3.20)

We prove this equation by contradiction. Suppose that, for all k, ||Vzly + pVGrDrG|| +
|[VGrDrGy| > €. Consider a trial step indexed j of the iteration indexed k, k& > k, and such
that k7 > k. Using Lemma 3.11, we have for any acceptable step indexed k7,

Dpi — Dy = Aredy; > mPredy; > mKady. (3.21)
As k goes to infinity the above inequality implies that

lim 45 =0. (3.22)
k—o0
That is, the radius of the trust region is not bounded below.
If we consider an iteration indexed k/ > k and if the previous step was accepted; i.e. if
j =1, then 01 > dpmin. Hence d;; is bounded in this case.
Now assume that j > 1. That is, there exists at least one rejected trial step. From Lemma
(3.13), we have for the rejected trial step,

(1—m)Ky
20Ks

for all i = 1,2,...5 — 1. Since s;: is a rejected trial step, then from the way of updating the
radius of trust region (see Step 6 Algorithm 2.1) and using the above inequality, we have

(1 —m)Ky

Opi = aal[spi—1 || > a1 27K>

Hence 0y; is bounded. But this contradicts (3.22). Therefore, the supposition is wrong. Hence,
likrginf[Hvifk + pVGL DG | + IVGL DGk ||] = 0.

But this also implies (3.19). This completes the proof of the theorem. O

From the above theorem, we conclude that, given any €;, the algorithm terminates because
HViEkH + ||VG;§D]€G1€|| < €.

4. Numerical Experiments

In this section, we present the numerical results of the trust-region Algorithm (2.1) which
have been performed on a laptop with Intel Core (TM)i7-2670QM CPU 2.2 GHz and 8 GB
RAM. Algorithm (2.1) was implemented as a MATLAB code and run under MATLAB version
7.10.0.499 (R2010a)

Given a starting point Zo € R"*1. We chose dmin = 1073, & = max(||sq|, dmin), and
Smax = 1035g. Also we chose 1 = 0.25, 3 = 0.75, a1 = 0.5, ap = 2, &, = 1076, g9 = 1078,
The computation terminates when |Vz/li | + [[VGr DGyl < €1 or ||sg]| < ea.

The results are reported in Table 1 where the mini-max test problems are numbered in the
same way as in [35]. For comparison, we have included the corresponding results of the number
of iteration (iter) and the number of function evaluation (nfunc) obtained by Method in [35]
(Table 1). For all mini-max problems, these algorithms achieved the same optimal solution.
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5. Concluding Remarks

In this paper, we propose a trust region Algorithm 2.1 for solving mini-max Problem (1.1).
To study the global convergence of the proposed algorithm four Assumptions A; — Ay are
imposed. Under these Assumptions a number of important lemmas are stated and proved. To
validate the theoretical analysis of the algorithm, a number of mini-max problems are reported
and compared with the method in [35].

Table 5.1: Comparison of Method in [35] with Algorithm 2.1.

Problem Starting Method in [35] | Algorithm 2.1
Name point
iter nfunc | iter nfunc

Problem 1 [35] (1,-0.1) 5 5 3 4
0, 0) 6 6 4 5

2, 2) 6 6 405

(4, -4) 16 16 16 17

Problem 2 [35] (3,1) 17 17 10 12
(1, 3) 7 7 4 5

Problem 3 [35] (3.1) 13 13 8 9
(50, 0.05) 9 9 5 6

Problem 4 [35] (2.1,1.9) 78 10 11
(1.9, 2.1) 7 10 79

(2, 4) 8 9 5 6

(4, 2) 10 11 11 12

Problem 5 [35] (0,0,0,0) 0 11 8 9
(0,1,1,0) 10 13 8 9

(2,2,5,0) 10 10 8 10

(1,3,3,1) 10 10 7 8

(-2,1,1,-2) 10 10 9 10

Problem 6 [35] 0, 1) 4 4 5 6
(3, 1) 77 5 6

Problem 7 [35] (1,2,0,4,0,1,1) 15 33 15 20

(3, 3,0,5,1,3,0) 18 42 16 21

Problem 8 [35] (-1.2,1) 14 46 10 20
Problem 9 [35] (50,0.05) 8 8 9 11
(1,1.1) 11 20 9 11

Problem 10 [35] (1.41831,-4.79462) 8 8 10 12
Problem 11 [35] | (2,3,5.,5,1,2,7,3,6,10) 8 8 7 8

sum 254 347 213 262

For future work, related important questions that have to be looked at are how to use a
secant approximation of the Hessian of the Lagrangian function in order to produce a more
efficient algorithm and how to update the Lagrange multiplier which will reduce the cost of the
computation of the steps.

Acknowledgement. The authors would like to thank the anonymous referees for their valuable
comments and suggestions which have helped to greatly improve this paper.
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