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Abstract

Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as

a general framework for linear mixed variational problems, their numerical approximation

by mixed methods, and their error analysis. The basic approach in FEEC, pioneered

by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these

problems in the setting of Hilbert complexes, leading to a more general and complete

understanding. Over the last five years, the FEEC framework has been extended to a

broader set of problems. One such extension, due to Holst and Stern in 2012, was to

problems with variational crimes, allowing for the analysis and numerical approximation

of linear and geometric elliptic partial differential equations on Riemannian manifolds of

arbitrary spatial dimension. Their results substantially generalize the existing surface

finite element approximation theory in several respects. In 2014, Gillette, Holst, and

Zhu extended FEEC in another direction, namely to parabolic and hyperbolic evolution

systems by combining the FEEC framework for elliptic operators with classical approaches

for parabolic and hyperbolic operators, by viewing solutions to the evolution problem as

lying in Bochner spaces (spaces of Banach-space valued parametrized curves). Related

work on developing an FEEC theory for parabolic evolution problems has also been done

independently by Arnold and Chen. In this article, we extend the work of Gillette-Holst-

Zhu and Arnold-Chen to evolution problems on Riemannian manifolds, through the use of

framework developed by Holst and Stern for analyzing variational crimes. We establish a

priori error estimates that reduce to the results from earlier work in the flat (non-criminal)

setting. Some numerical examples are also presented.
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1. Introduction

Arnold, Falk, and Winther [2, 3] introduced Finite Element Exterior Calculus (FEEC) as

a general framework for linear mixed variational problems, their numerical approximation by

mixed methods, and their error analysis. They recast these problems using the ideas and

tools of Hilbert complexes, leading to a more complete understanding. Subsequently, Holst

and Stern [24] extended the Arnold–Falk–Winther framework to include variational crimes,

allowing for the analysis and numerical approximation of linear and geometric elliptic partial

differential equations on Riemannian manifolds of arbitrary spatial dimension, generalizing the

* Received February 18, 2016 / Revised version received October 7, 2016 / Accepted May 8, 2017 /

Published online August 7, 2018 /



FEEC for Parabolic Evolution Problems on Riemannian Hypersurfaces 793

existing surface finite element approximation theory in several directions. Gillette, Holst, and

Zhu [22] extended FEEC in another direction, namely to parabolic and hyperbolic evolution

systems by combining recent work on FEEC for elliptic problems with a classical approach

of Thomée [35] to solving evolution problems using semi-discrete finite element methods, by

viewing solutions to the evolution problem as lying in Bochner spaces (spaces of Banach-space

valued parametrized curves). Arnold and Chen [1] independently developed related work, for

generalized Hodge Laplacian parabolic problems for differential forms of arbitrary degree, and

Holst, Mihalik, and Szypowski [23] consider similar work in adaptive finite element methods.

In this article, we aim to combine the approaches of the above articles, extending the work

of Gillette, Holst, and Zhu [22] and Arnold and Chen [1] to evolution problems in abstract

Hilbert complexes by using the framework of Holst and Stern [24]. We then apply the results to

parabolic problems on Riemannian hypersurfaces approximated by piecewise polynomial curved

triangulations in a tubular neighborhood, using piecewise polynomial finite element spaces. As

in earlier literature on finite elements on approximating surfaces by Dziuk [17], Dziuk and

Demlow [16], and Demlow [15], the error splits into a PDE approximation term and a surface

approximation term. An interesting result that follows is that the optimal rate of convergence

occurs when the polynomial degree of both the approximating surfaces and the finite element

spaces are the same (the isoparametric case). Similar observations have been made for the

surface finite element method [15] and in the isogeometric analysis literature [12, 26].

1.1. The Hodge heat equation and its mixed form

We now motivate our problem with a concrete example. We consider an evolution equation

for differential forms on a manifold, and then we rephrase it as a mixed problem as an inter-

mediate step toward semidiscretization using mixed finite element methods. We then see how

this allows us to leverage existing a priori error estimates for parabolic problems, and see how

it fits in the framework of Hilbert complexes.

Let M be a smooth compact oriented Riemannian n-manifold without boundary embedded

in R
n+1. The Hodge heat equation is to find time-dependent k-form

u :M × [0, T ] → Λk(M)

(where Λk(M) denotes the bundle of alternating k-tensors on M) such that

ut −∆u = ut + (δd+ dδ)u = f in M , for t > 0

u(·, 0) = g in M .
(1.1)

where g is an initial k-form, and f , a possibly time-dependent k-form, is a source term. Note

that no boundary conditions are needed since ∂M = ∅. This is the problem studied by Arnold

and Chen [1], and in the case k = n, one of the problems studied by Gillette, Holst, and Zhu [22],

building upon work in special cases for domains in R
2 and R

3 by Johnson and Thomée [27,35]

For the stability of the numerical approximations with the methods of [25] and [3], we recast

the problem in mixed form, converting the problem into a system of differential equations.

Motivating the problem by setting σ = δu (recall that for the Dirichlet problem and k = n,

δ here corresponds to the negative of the gradient in Euclidean space, and is the adjoint of d,

corresponding to the divergence), and taking the adjoint, we have

〈σ, ω〉 − 〈u, dω〉 = 0, ∀ ω ∈ HΩk−1(M), t > 0,

〈ut, ϕ〉 + 〈dσ, ϕ〉 + 〈du, dϕ〉 = 〈f, ϕ〉, ∀ ϕ ∈ HΩk(M) t > 0,

u(0) = g

(1.2)
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where HΩk(M) denotes the Sobolev space of k-forms for which weak exterior derivatives exist.

We do not have to explicitly account for harmonic forms in the formulation of the parabolic

equations, because they will evolve in time with the rest of the solution. This contrasts to

the case of elliptic equations, where the goal is to invert an operator; harmonic forms directly

obstruct this process. Harmonic forms will, however, definitely play a critical role in our analysis

and bring new results not apparent in the k = n case.

1.2. Semidiscretization of the equation

In order to analyze the numerical approximation, we semidiscretize our problem; that is, we

discretize in space and leave time continuous. We first note thatM can be regarded as the zero

level set of some signed distance function, and therefore has some tubular neighborhood U on

which the distance function is smooth up to some absolute distance δ0 > 0 (a standard result in

Riemannian geometry). To discretize, following Holst and Stern [24], we consider a collection of

approximating surfaces Mh to M , all contained in U , and a projection a : Mh → M along the

surface normal of M . They assume the approximating surfaces are constructed (in a manner

we shall describe shortly) from shape-regular and quasi-uniform triangulations Th (writing Th
for the corresponding piecewise linear manifold

⋃ Th), where h is the maximum diameter of

the elements. The piecewise linear case Mh = Th was studied initially by Dziuk [17] and

later by Demlow and Dziuk [16], and the piecewise polynomial case, obtained by Lagrange

interpolation of the projection a over Th, was later studied by Demlow [15]. We pull forms on

Mh to M back via the inverse of the normal projection, which furnishes injective morphisms

ikh : Λk
h →֒ HΩk(M) as required by the theory in [24], which we shall review in Section 2 below.

Finally, we need a family of linear projections Πk
h : HΩk(M) → Λk

h such that Πh ◦ ih = id

which allow us to interpolate given data into the chosen finite element spaces—this is necessary

because some of the more obvious, natural seeming choices of operators, such as the adjoint i∗h
to ih, can be difficult to compute (i∗h will still be useful in our analysis).

We now formulate the semidiscrete problem: we seek a solution (σh, uh) ∈ Hh × Sh ⊆
HΩk−1 ×HΩk such that

〈σh, ωh〉h − 〈uh, dωh〉h = 0, ∀ ωh ∈ Hh, t > 0

〈uh,t, ϕh〉h + 〈dσh, ϕh〉h + 〈duh, dϕh〉h = 〈Πhf, ϕh〉h, ∀ ϕh ∈ Sh t > 0

uh(0) = gh.

(1.3)

We shall describe how to define gh ∈ Sh shortly; it is to be some suitable interpolation of g. As

Sh and Hh are finite-dimensional spaces, we can reduce this to a system of ODEs in Euclidean

space by choosing bases (ψi) for Hh and (φk) for Sh; expanding the unknowns σh =
∑

iΣ
i(t)ψi

and uh =
∑

k U
k(t)φk; substituting these basis functions as test functions to form matrices

Akℓ = 〈φk, φℓ〉, Bik = 〈dψi, φk〉, Kkℓ = 〈dφk, dφℓ〉, and Dij = 〈ψi, ψj〉; forming the vectors

for the load data F defined by Fk = 〈F, φk〉; and finally forming the initial condition vector G

from gh =
∑

Gkφk. We thus arrive at the matrix equations for the unknown, time-dependent

coefficient vectors Σ and U :

DΣ− BTU = 0,

AUt +BΣ+KU = F, for t > 0

U(0) = G.
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The matrices A and D are positive-definite, hence invertible. Substituting Σ = D−1BTU ,

we have the system of ODEs

AUt + (BD−1BT +K)U = F, for t > 0, U(0) = G,

which has a unique solution by standard ODE theory. For purposes of actually numerically

integrating the ODE, namely, discretizing fully in space and time, it is better not to use the

above formulation, because it can lead to dense matrices. Computationally, this is due to

the explicit presence of an inverse, D−1, not directly multiplying the variable; conceptually,

this is actually a statement about the discrete adjoint to the codifferential d∗h generally having

global support even if the finite element functions are only locally supported [1]. Instead, we

differentiate the first equation with respect to time, getting DΣt − BTUt = 0, which leads to

the block system
d

dt

(

D −BT

0 A

)(

Σ

U

)

=

(

0 0

−B −K

)(

Σ

U

)

+

(

0

F

)

(1.4)

which is still well-defined ODE for Σ and U , as the invertible matrices A and D appear on

the diagonal. The continuous analogue of this differentiated equation also plays a role in the

showing that the continuous problem is well-posed.

These equations differ from those studied by Gillette, Holst, and Zhu [22], Arnold and

Chen [1], and Thomée [35] by the choice of finite element spaces—here we are assuming them

to be differential forms with piecewise polynomial coefficients defined on a triangulated mesh

in a tubular neighborhood of a manifold, rather than being defined on subsets of Euclidean

space. This suggests that we should try to gather these commonalities, examine what happens

in abstract Hilbert complexes, and see how general a form of error estimate we can get this

way.

1.3. Error analysis

The general idea of the method of Thomée [35] is to compare the semidiscrete solution to

an elliptic projection of the data, a method first explored by Wheeler [37]. If we assume

that we already have a solution u to the continuous problem, then for each fixed time t, u(t)

can be considered as trivially solving an elliptic equation with data −∆u(t). Thus, using the

methods developed in [3], we consider the discrete solution ũh for u in this elliptic problem

(namely, applying the discrete solution operator Th to −∆u(t)). This may be compared to the

true solution (at each fixed time) using the error estimates in [3]. What remains is to compare

the semidiscrete solution uh (as defined by the ODEs (1.3) above) to the elliptic projection, so

that we have the full error estimate by the triangle inequality. Thomée derives the following

estimates, for finite elements in the plane (n = 2) of top-degree forms (k = 2, there represented

by a scalar proxy), for gh the elliptic projection of the initial condition g and t ≥ 0:

‖uh(t)− u(t)‖L2 ≤ ch2
(

‖u(t)‖H2 +

∫ t

0

‖ut(s)‖H2ds

)

, (1.5)

‖σh(t)− σ(t)‖L2 ≤ ch2

(

‖u(t)‖H3 +

(
∫ t

0

‖ut(s)‖2H2ds

)1/2
)

. (1.6)

Gillette, Holst, and Zhu [22], and Arnold and Chen [1] generalize these estimates and represent

them in terms of Bochner norms. These estimates describe the accumulation of error up to
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fixed time value t, assuming, of course, that all the functions involved are sufficiently regular to

allow those estimates. The key equation that makes these estimates possible are Thomée’s error

evolution equations: defining ρ = ‖ũh(t)− u(t)‖, θ = ‖uh(t)− ũh(t)‖, and ε = ‖σh(t)− σ̃h(t)‖,
we have

〈θt, φh〉 − 〈div ε(t), φh〉 = −〈ρt, φh〉,
〈ε, ωh〉 + 〈θ, div ωh〉 = 0.

These are used to derive certain differential inequalities and make Grönwall-type estimates. In

this chapter, we examine the above error equations and place them in a more abstract frame-

work. We use Bochner spaces (also used by [22]) to describe time evolution in Hilbert complexes,

building on their successful use in elliptic problems. We investigate Thomée’s method in this

framework to gain further insight into how finite element error estimates evolve in time.

1.4. Summary of the paper

The remainder of this paper is structured as follows. In Section 2, we review the finite

element exterior calculus (FEEC) and the variational crimes framework of Holst and Stern [24].

We prove some extensions in order to account for problems with prescribed harmonic forms;

this is what allows the elliptic projection to work in the case where harmonic forms are present.

In Section 3, we formulate abstract parabolic problems in Bochner spaces and extend some

standard results on the existence and uniqueness of strong solutions, and describe how this

problem fits into that framework. In Section 4, we extend the a priori error estimates for

Galerkin mixed finite element methods to parabolic problems on Hilbert complexes. Then,

we relate the resuls to the problem on manifolds. The main abstract result is Theorem 4.1,

which uses the previous results from the FEEC framework with variational crimes, in order to

understand how those error terms evolve with time. We then specialize, in Section 5 to parabolic

equations on Riemannian manifolds, the motivating example, and see how this generalizes the

error estimates of Thomée [35], Gillette, Holst, and Zhu [22], and Holst and Stern [24]. In

Section 6, we give some remarks on how to implement the method.

2. Finite Element Exterior Calculus

We review here the relevant results from the finite element exterior calculus (FEEC) that

we will need for this paper. FEEC was introduced in Arnold, Falk and Winther [2, 3] as a

framework for deriving error estimates and formulating stable numerical methods for a large

class of elliptic pde. One of the central ideas which helped unify many of these distinct methods

into a structured framework has been the idea of Hilbert complexes [8], which abstracts the

essential features of the cochain complexes commonly found in exterior calculus and places

them in a context where modern methods of functional analysis may be applied. This assists in

formulating and solving boundary value problems, in direct analogy to how Sobolev spaces have

helped provide a framework for solving such problems for scalar functions. Arnold, Falk, and

Winther [3] place numerical methods into this framework by choosing certain finite-dimensional

subspaces satisfying certain compatibility and approximation properties. Holst and Stern [24]

extended this framework by considering the case in which there is an injective morphism from

a finite-dimensional complex to the complex of interest, without it necessarily being inclusion.

This allows the treatment of geometric variational crimes [6, 7], where an approximating
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manifold (on which it may be far easier to choose finite element spaces) no longer coincides

with the actual manifold on which we seek our solution. We review the theory as detailed in [24]

and refer the reader there for details.

2.1. Hilbert Complexes

As stated before, the essential details of differential complexes, such as the de Rham complex,

are nicely captured in the notion of Hilbert complexes. This enables us to see clearly where

many elements of boundary value problems come from, in particular, the Laplacian, Hodge

decomposition theorem, and Poincaré inequality. In addition, it allows us to see how to carry

these notions over to numerical approximations.

Definition 2.1 (Hilbert complexes) We define a Hilbert complex (W,d) to be sequence

of Hilbert spaces W k with possibly unbounded linear maps dk : V k ⊆ W k → V k+1 ⊆ W k+1,

such that each dk has closed graph, is densely defined, and satisfies the cochain property

dk ◦ dk−1 = 0 (this is often abbreviated d2 = 0; we often omit the superscripts when the context

is clear). We call each V k the domain of dk. We will often refer to elements of such Hilbert

spaces as “forms,” being motivated by the canonical example of the de Rham complex. If (W,d)

is a Hilbert complex, and Sk ⊆W k is a sequence of subspaces such that (S, d) is also a Hilbert

complex, that is, each dk on W k restricts to Sk ∩ V k into Sk+1 ∩ V k+1, (S, d) is called a

subcomplex of (W,d). The Hilbert complex is called a closed complex if each image space

Bk = dk−1V k−1 (called the k-coboundaries) is closed in W k, and a bounded complex if

each dk is in fact a bounded linear map. The most common arrangement in which one finds a

bounded complex is by taking the sequence of domains V k, the same maps dk, but now with the

graph inner product

〈v, w〉V = 〈v, w〉 + 〈dkv, dkw〉.
for all v, w ∈ V k; this complex (V, d) is called the domain complex. Unsubscripted inner

products and norms will always be assumed to be the ones associated to W k, and for emphasis,

these relevant quantities will be prefixed with W - or V - (such as “W -orthogonal”, “V -inner

product”, etc.) as necessary.

Definition 2.2 (Cocycles, Coboundaries, and Cohomology). The kernel of the map dk

in V k will be called Zk, the k-cocycles and, as before, we have Bk = dk−1V k−1. Since dk ◦
dk−1 = 0, we have Bk ⊆ Zk, so we may form the quotient spaces Zk/Bk, called the kth

cohomology group.

Definition 2.3 (Dual complexes and adjoints). For a Hilbert complex (W,d), we can form

the dual complex (W ∗, d∗) which consists of spaces W ∗
k =W k, maps d∗k : V ∗

k ⊆W ∗
k → V ∗

k−1 ⊆
W ∗

k−1 such that d∗k+1 = (dk)∗, the adjoint operator satisfying

〈d∗k+1v, w〉 = 〈v, dkw〉.

The operators d∗ decrease degree, so this is a chain complex, rather than a cochain complex; the

analogous concepts to cocycles and coboundaries extend to this case and we write Z∗
k and B∗

k

for them.

Definition 2.4 (Morphisms of Hilbert complexes). Let (W,d) and (W ′, d′) be two Hilbert

complexes with domain complexes (V, d) and (V ′, d), respectively. f : W → W ′ is called a

morphism of Hilbert complexes if we have a sequence of bounded linear maps fk : W k →
W ′k such that f(V k) ⊆ V ′k and d′k ◦fk = fk+1◦dk (i.e., they commute with the differentials).
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We note that for a subcomplex (S, d) of (W,d), the inclusion maps ik : Sk →֒W k are morphisms

of Hilbert complexes.

With the above, we can show the following weak Hodge decomposition:

Theorem 2.1 (Hodge Decomposition Theorem). Let (W,d) be a Hilbert complex with

domain complex (V, d). The harmonic space Hk is the W -orthogonal complement of Bk in

Zk. This means, by the orthogonal decomposition theorem in Hilbert spaces, that Zk = Bk⊕Hk.

Then we have the W - and V -orthogonal decompositions

W k = Bk ⊕ Hk ⊕ Zk⊥W (2.1)

V k = Bk ⊕ Hk ⊕ Zk⊥V . (2.2)

where Zk⊥V = Zk⊥W ∩ V k.

Of course, if Bk is closed, then the extra closure is unnecessary, and we omit the term

“weak”. We shall simply write Zk⊥ for Zk⊥V , which will be the most useful orthogonal com-

plement for our purposes. The orthogonal projections PU for a subspace U will be in the

W -inner product unless otherwise stated. We note that by the abstract properties of adjoints

( [3, §3.1.2]), Zk⊥W = B∗
k, and Bk⊥W = Z∗

k. Also very useful is that the V - and W -inner

products (and therefore, norms and orthogonal projections) agree on Z and hence on B and H.

The following inequality is an important result crucial to the stability of our solutions to

the mixed abstract Hodge Laplacian problem (the next definition), as well as its numerical

approximation:

Theorem 2.2 (Abstract Poincaré Inequality). If (V, d) is a closed, bounded Hilbert com-

plex, then there exists a constant cP > 0 such that for all v ∈ Zk⊥,

‖v‖V ≤ cP ‖dkv‖V .

In the case that (V, d) is the domain complex associated to a closed Hilbert complex (W,d),

(V, d) is again closed, and the additional graph inner product term vanishes: ‖dkv‖V = ‖dkv‖.
We now introduce the abstract version of the Hodge Laplacian and the associated problem.

Definition 2.5 (Abstract Hodge Laplacian problems). Consider ∆ := −(dd∗ + d∗d) on

a Hilbert complex (W,d), called the abstract Hodge Laplacian.1) Its domain is DL = {u ∈
V k∩V ∗

k : du ∈ V ∗
k+1, d

∗u ∈ V k−1}, and the Hodge Laplacian problem is to seek u ∈ V k∩Vk,
given f ∈W k, such that

〈du, dv〉 + 〈d∗u, d∗v〉 = 〈f, v〉 (2.3)

for all v ∈ V k∩V ∗
k . This is simply the weak form of the Laplacian and any u ∈ V k∩V ∗

k satisfying

the above is called a weak solution. Owing to difficulties in the approximation theory for such

a problem (it is difficult to construct finite elements for the space V k ∩ V ∗
k ), Arnold, Falk, and

Winther [3] formulate the mixed abstract Hodge Laplacian problem by defining auxiliary

variables σ = d∗u and p = PHf , the orthogonal projection of f into the harmonic space, and

consider a system of equations, to seek (σ, u, p) ∈ V k−1 × V k × Hk such that

〈σ, τ〉 − 〈u, dτ〉 = 0 ∀τ ∈ V k−1

〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 = 〈f, v〉 ∀v ∈ V k

〈u, q〉 = 0 ∀q ∈ Hk.

(2.4)

1) We choose these sign conventions to relate to the more concrete situations later on, which in turn is done

to match [1, 3, 24]. This is, however, opposite the convention in Brüning and Lesch [8].
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The first equation is the weak form of σ = d∗u, the second is the main equation (2.3) modified

to account for a harmonic term so that a solution exists, and the third enforces uniqueness

by requiring perpendicularity to the harmonic space. With these modifications, the problem is

well-posed by considering the bilinear form (writing Xk := V k−1 × V k ×Hk) B : Xk ×Xk → R

defined by

B(σ, u, p; τ, v, q) := 〈σ, τ〉 − 〈dτ, u〉 + 〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 − 〈u, q〉. (2.5)

and linear functional F ∈ (Xk)∗ given by F (τ, v, q) = 〈f, v〉. The form B is not coercive, but

rather, for a closed Hilbert complex, satisfies an inf-sup condition [3, 4]: there exists γ > 0

(the stability constant) such that

inf
(σ,u,p) 6=0

sup
(τ,v,q) 6=0

B(σ, u, p; τ, v, q)

‖(σ, u, p)‖X‖(τ, v, q)‖X
=: γ > 0.

where we have defined a standard norm on products: ‖(σ, u, p)‖X := ‖σ‖V + ‖u‖V + ‖p‖. This
is sufficient to guarantee the well-posedness [4]. To summarize:

Theorem 2.3 ([3], Theorem 3.1). The mixed problem (2.4) on a closed Hilbert complex

(W,d) with domain (V, d) is well-posed: the bilinear form B satisfies the inf-sup condition

with constant γ, so for any F ∈ (Xk)∗, there exists a unique solution (σ, u, p) to (2.4), i.e.,

B(σ, u, p; τ, v, q) = F (τ, v, q) fo all (τ, v, q) ∈ Xk, and moreover,

‖(σ, u, p)‖X ≤ γ−1‖F‖X∗.

The stability constant γ−1 depends only on the Poincaré constant.

Note that the general theory (e.g., [4,19]) guarantees a unique solution exists for any bounded

linear functional F ∈ (Xk)∗, which in this case with product spaces, means that the problem

is still well-posed when there are other nonzero linear functionals on the right sides of (2.4)

besides 〈f, v〉. We shall need this result for parabolic problems, where we assume PHu 6= 0.

2.2. Approximation of Hilbert Complexes

We now approximate solutions to the abstract mixed Hodge Laplacian problem. To do so,

Arnold, Falk, and Winther [3] introduce finite-dimensional subspaces Vh ⊆ V of the domain

complex, such that the inclusion ih : Vh →֒ V is a morphism, i.e. dV k
h ⊆ V k+1

h . With the weak

form (2.4), we formulate the Galerkin method by restricting to the subspaces:

〈σh, τ〉 − 〈uh, dτ〉 = 0 ∀τ ∈ V k−1
h

〈dσh, v〉 + 〈duh, dv〉 + 〈ph, v〉 = 〈f, v〉 ∀v ∈ V k
h

〈uh, q〉 = 0 ∀q ∈ Hk
h.

(2.6)

We abbreviate by setting Xk
h := V k−1

h × V k
h × Hk

h. We must also assume the existence of

bounded, surjective, and idempotent (projection) morphisms πh : V → Vh. It is generally not

the orthogonal projection, as that fails to commute with the differentials. As a projection, it

gives the following quasi-optimality result:

‖u− πhu‖V = inf
v∈Vh

‖(I − πh)(u− v)‖V ≤ ‖I − πh‖ inf
v∈Vh

‖u− v‖V .
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The problem (2.6) is then well-posed, with a Poincaré constant given by cP ‖πk
h‖, where cP is

the Poincaré constant for the continuous problem. This guarantees all the previous abstract

results apply to this case. With this, we have the following error estimate:

Theorem 2.4 ([3], Theorem 3.9). Let (Vh, d) be a family of subcomplexes of the domain

complex (V, d) of a closed Hilbert complex, parametrized by h and admitting uniformly V -

bounded cochain projections πh, and let (σ, u, p) ∈ Xk be the solution of the continuous problem

and (σh, uh, ph) ∈ Xk
h the corresponding discrete solution. Then the following error estimate

holds:

‖(σ − σh, u− uh, p− ph)‖X = ‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖

≤C
(

inf
τ∈V k−1

h

‖σ − τ‖V + inf
v∈V k

h

‖u− v‖V + inf
q∈V k

h

‖p− q‖V + µ inf
v∈V k

h

‖PBu− v‖V
)

(2.7)

with µ = µk
h = sup r∈Hk

‖r‖=1

∥

∥

(

I − πk
h

)

r
∥

∥, the operator norm of I − πk
h restricted to Hk.

Corollary 2.1. If the Vh approximate V , that is, for all u ∈ V , infv∈Vh
‖u − v‖V → 0 as

h→ 0, we have convergence of the approximations.

In general, the harmonic spaces Hk and Hk
h do not coincide, but they are isomorphic under

many circumstances we shall consider (namely, the spaces are isomorphic if for all harmonic

forms q ∈ Hk, the error ‖q−πhq‖ is at most the norm ‖q‖ itself [3, Theorem 3.4], and it always

holds for the de Rham complex). For a quantitative estimate relating the two different kinds

of harmonic forms, we have the following

Theorem 2.5 ([3], Theorem 3.5). Let (V, d) be a bounded, closed Hilbert complex, (Vh, d) a

Hilbert subcomplex, and πh a bounded cochain projection. Then

‖(I − PHh
)q‖V ≤ ‖(I − πk

h)q‖V , ∀q ∈ Hk, (2.8)

‖(I − PH)q‖V ≤ ‖(I − πk
h)PHq‖V , ∀q ∈ Hk

h. (2.9)

2.3. Removing the Subcomplex Assumption: Variational Crimes

For geometric problems, it is essential to remove the requirement that the approximating

complex Vh actually be subspaces of V . This is motivated by the example of approximating

planar domains with curved boundaries by piecewise-linear approximations, resulting in finite

element spaces that lie in a different function space [6]. Holst and Stern [24] extend the Arnold,

Falk, Winther [3] framework by supposing that ih : Vh →֒ V is an injective morphism which is

not necessarily inclusion; they also require projection morphisms πh : V → Vh with the property

πh ◦ ih = id, which replaces the idempotency requirement of the preceding case. To summarize,

given (W,d) a Hilbert complex with domain complex (V, d), (Wh, dh) another complex (whose

inner product we denote 〈·, ·〉h) with domain complex (Vh, dh), injective morphisms ih :Wh →֒
W , and finally, projection morphisms πh : V → Vh. We then have the following generalized

Galerkin problem:

〈σh, τh〉h − 〈uh, dhτh〉h = 0, ∀τh ∈ V k−1
h ,

〈dhσh, vh〉h + 〈dhuh, dhvh〉h + 〈ph, vh〉h = 〈fh, vh〉h, ∀vh ∈ V k
h ,

〈uh, qh〉h = 0, ∀qh ∈ Hk
h,

(2.10)
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where fh is some interpolation of the given data f into the space Wh (we will discuss various

choices of this operator later). This gives us a bilinear form

Bh(σh, uh, ph; τh, vh, qh) (2.11)

:=〈σh, τh〉h − 〈uh, dhτh〉h + 〈dhσh, vh〉h + 〈dhuh, dhvh〉h + 〈ph, vh〉h − 〈uh, qh〉h.

This problem is well-posed, which again follows from the abstract theory as long as the complex

is closed, and there is a corresponding Poincaré inequality:

Theorem 2.6 ([24], Thm. 3.5 and Cor. 3.6). Let (V, d) and (Vh, dh) be bounded closed

Hilbert complexes, with morphisms ih : Vh →֒ V and πh : V → Vh such that πh ◦ ih = id. Then

for all vh ∈ Zk⊥
h , we have

‖vh‖Vh
≤ cP

∥

∥πk
h

∥

∥

∥

∥ik+1
h

∥

∥ ‖dhvh‖Vh
,

where cP is the Poincaré constant corresponding to the continuous problem. If (V, d) and

(Vh, dh) are the domain complexes of closed complexes (W,d) and (Wh, dh), then ‖dhvh‖Vh

is simply ‖dhvh‖h (since it is the graph norm and d2 = 0).

In other words, the norm of the injective morphisms ih also contributes to the stability constant

for this discrete problem. Analysis of this method results in two additional error terms (along

with now having to explicitly reference the injective morphisms ih which may no longer be

inclusions), due to the inner products in the space Vh no longer necessarily being the restriction

of that in V : the need to approximate the data f , and the failure of the morphisms ih to be

unitary.

Theorem 2.7 ([24], Corollary 3.11). Let (V, d) be the domain complex of a closed Hilbert

complex (W,d), and (Vh, dh) the domain complex of (Wh, dh) with morphisms ih : Wh → W

and πh : V → Vh as above. Then if we have solutions (σ, u, p) and (σh, uh, ph) to (2.4) and

(2.10) respectively, the following error estimate holds:

‖σ − ihσh‖V + ‖u− ihuh‖V + ‖p− ihph‖

≤C
(

inf
τ∈ihV

k−1

h

‖σ − τ‖V + inf
v∈ihV k

h

‖u− v‖V + inf
q∈ihV k

h

‖p− q‖V

+ µ inf
v∈ihV k

h

‖PBu− v‖V + ‖fh − i∗hf‖h + ‖I − Jh‖ ‖f‖
)

, (2.12)

where Jh = i∗hih, and µ = µk
h = sup

r∈Hk

‖r‖=1

∥

∥

(

I − ikhπ
k
h

)

r
∥

∥.

The extra terms (in the third line of the inequality) are analogous to the terms described in

the Strang lemmas [6, §III.1]. The main idea of the proof of Theorem 2.7 (which we will recall

in more detail below, because we will need to prove a generalization of it as part of our main

results) is to form an intermediate complex by pulling the inner products in the complex (W,d)

back to (Wh, dh) back by ih, construct a solution to the problem there, and compare that

solution with the solution we want. This modified inner product does not coincide with the

given one on Wh precisely when ih is not unitary:

〈v, w〉i∗
h
W = 〈ihv, ihw〉h = 〈i∗hihv, w〉h = 〈Jhv, w〉h.
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Unitarity is simply the condition Jh = I. The complex Wh with the modified inner product

now may be identified with a true subcomplex ofW , for which the theory of [3] directly applies,

yielding a solution (σ′
h, u

′
h, p

′
h) ∈ V k−1

h × V k
h × H′k

h , where H′k
h is the discrete harmonic space

associated to the space with the modified inner product. This generally does not coincide with

the discrete harmonic space Hk
h, since the discrete codifferential d

∗′
h in that case is defined to be

the adjoint with respect to the modified inner product, yielding a different Hodge decomposition.

The estimate of ‖ihσ′
h−σ‖V +‖ihu′h−u‖V +‖ihp′h−p‖ then proceeds directly from the preceding

theory for subcomplexes (2.7). The variational crimes, on the other hand, arise from comparing

the solution (σh, uh, ph) with (σ′
h, u

′
h, p

′
h). Finally, the error estimate (2.12) proceeds by the

triangle inequality (and the boundedness of the morphisms ih).

2.4. Elliptic Error Estimates for a Nonzero Harmonic Part

Our objective in the remainder of this section is to prove one of our main results, a general-

ization of Theorem 2.7 which allows the possibility of the solution u having a nonzero harmonic

part w. The first lemma extends the problem in the subcomplex case; then the following

theorem extends that result for the case with variational crimes.

Lemma 2.1. Theorem 2.4 continues to apply when, in the continuous problem, we replace the

third equation of (2.4) 〈u, q〉 = 0 with 〈u, q〉 = 〈w, q〉 where w ∈ Hk is prescribed.

In other words, if in the continuous problem, instead of enforcing orthogonality of the solution u

to the harmonic forms (PHu = 0), we instead enforce the condition PHu = w, both the discrete

and continuous versions of the problem are still well-posed, and the same error estimates hold.

Proof. We closely follow the proof, in [3], of Theorem 2.4 above, noting where the modifi-

cations must occur. Let B be the bounded bilinear form (2.5); then (σ, u, p) satisfies, for all

(τh, vh, qh) ∈ Xk
h,

B(σ, u, p; τh, vh, qh) = 〈f, vh〉 − 〈u, qh〉.
We V -orthogonally project (σ, u, p) in each factor to (τ, v, q) ∈ Xk

h. Then for any (τh, vh, qh) ∈
Xk

h,

B(σh − τ, uh − v, ph − q; τh, vh, qh)

=B(σ − τ, u− v, p− q; τh, vh, qh) + 〈u, qh〉 − 〈w, qh〉
=B(σ − τ, u− v, p− q; τh, vh, qh) + 〈PHh

(u− w), qh〉

≤C
(

‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ ‖PHh
(u − w)‖)(‖τh‖V + ‖vh‖V + ‖qh‖

)

. (2.13)

Noticing that the factor ph − q in the bilinear form above is in the original domain Hk
h, we can

now choose the appropriate (τh, vh, qh) that verifies the inf-sup condition of B:

B(σh − τ, uh − v, ph − q; τh, vh, qh)

≥γ
(

‖σh − τ‖V + ‖uh − v‖V + ‖ph − q‖)(‖τh‖V + ‖vh‖V + ‖qh‖
)

.

Comparing this to (2.13) above, we may cancel the common factor, and divide by γ to arrive

at

‖σh − τ‖V + ‖uh − v‖V + ‖ph − q‖

≤Cγ−1
(

‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ ‖PHh
(u− w)‖

)

. (2.14)
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This differs (aside from the notation) from [3] in that we now have, rather than PHh
u, instead

PHh
(u− w), with the harmonic part subtracted off. Removing the harmonic part allows us to

continue as in [3]: the Hodge decomposition u−w = u− PHu consists only of coboundary and

perpendicular terms uB + u⊥ ∈ Bk ⊕ Zk⊥. With Hk
h contained in Zk, it follows PHh

u⊥ = 0,

and PHh
πhuB = 0. Also, (I − πh)uB is perpendicular to Hk. Therefore, for all q ∈ Hk

h,

〈PHh
(u− PHu), q〉 = 〈PHh

uB, q〉 = 〈PHh
(uB − πhuB), q〉

=〈uB − πhuB, q〉 = 〈uB − πhuB, (I − PH)q〉.

Now, setting

q =
PHh

(u− PHu)

‖PHh
(u− PHu)‖

∈ Hk
h,

we have

‖PHh
(u− PHu)‖ = 〈PHh

(u− PHu), q〉 = 〈uB − πhuB, (I − PH)q〉
≤‖uB − πhuB‖ ‖(I − PH)q‖ ≤ C‖(I − PH)q‖ inf

v∈V k
h

‖uB − v‖V .

Finally, by the second estimate of Theorem 2.5 above, we can bound ‖(I − PH)q‖ by ‖(I −
πh)PHq‖, giving us

‖(I − PH)q‖ ≤ ‖(I − πh)PHq‖ ≤ sup
‖r‖=1r∈Hk

‖(I − πh)r‖ ‖PHq‖ ≤ µ.

From the triangle inequality, we derive the estimate

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖
≤‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ ‖τ − σh‖V + ‖uh − v‖V + ‖q − ph‖

≤(1 + Cγ−1)
(

‖σ − τ‖V + ‖u− v‖V + ‖p− q‖+ µ inf
v∈ihV h

k

‖PBu− v‖V
)

.

Using best approximation property of orthogonal projections, we can express the remaining

terms with the infima, and this gives the result. �

We are now ready to prove our main elliptic error estimate, an extension of Theorem 2.7.

To set things up, consider the problems (2.4) and (2.10) but instead with now with prescribed,

possibly nonzero harmonic part w. Given f ∈W k and w ∈ Hk, we seek (σ, u, p) ∈ Xk such that

〈σ, τ〉 − 〈u, dτ〉 = 0 ∀τ ∈ V k−1

〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 = 〈f, v〉 ∀v ∈ V k

〈u, q〉 = 〈w, q〉 ∀q ∈ Hk.

(2.15)

By Theorem 2.3, this problem is well-posed, and ‖(σ, u, p)‖X ≤ c(‖f‖+ ‖w‖), with c depending
only on the Poincaré constant. Now, consider the discrete problem, with fh, wh ∈ V k

h :

〈σh, τh〉h − 〈uh, dhτh〉h = 0 ∀τh ∈ V k−1
h

〈dhσh, vh〉h + 〈dhuh, dhvh〉h + 〈ph, vh〉h = 〈fh, vh〉h ∀vh ∈ V k
h

〈uh, qh〉h = 〈wh, qh〉h ∀qh ∈ Hk
h.

(2.16)

This problem is also well-posed, with the modified Poincaré constant in Theorem 2.6.
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Theorem 2.8 (Extension of elliptic error estimates, allowing for a harmonic part).

Let f , w, (σ, u, p), and (σh, uh, ph) be as above. Then we have the following generalization of

the error estimate (2.12) above:

‖σ − ihσh‖V + ‖u− ihuh‖V + ‖p− ihph‖

≤C
(

inf
τ∈ihV

k−1

h

‖σ − τ‖V + inf
v∈ihV k

h

‖u− v‖V + inf
q∈ihV k

h

‖p− q‖V + µ inf
v∈ihV k

h

‖PBu− v‖V

+ inf
ξ∈ihV k

h

‖w − ξ‖V + ‖fh − i∗hf‖h + ‖wh − i∗hw‖h + ‖I − Jh‖ (‖f‖+ ‖w‖)
)

, (2.17)

where, as before, Jh = i∗hih, and µ = µk
h = sup

r∈Hk‖r‖=1

∥

∥

(

I − ikhπ
k
h

)

r
∥

∥.

We see that three new error terms arise from the approximation of the harmonic part, one being

the data interpolation error (but measured in the Vh-norm, which partially captures how d fails

to commute with i∗h and how wh may not necessarily be a discrete harmonic form), another

best approximation term, and finally another term from the non-unitarity. As mentioned in the

introduction, and following [24], we often shall take fh = Πhf , where Πh is some family of linear

interpolation operators with Πh ◦ ih = id. Another seemingly obvious choice is i∗h itself (thus

making those corresponding error terms zero), but as mentioned in [24], this can be difficult

to compute, so we do not restrict ourselves to this case. Various choices of interpolation will

be crucial in deciding which estimates to make in the parabolic problem. We split the proof

of this theorem into two parts, the first of which derives the quantities on the second line of

(2.17), and the second part, we derive the quantities on the third line of (2.17). Generally, we

follow the pattern of proof in [3, Theorem 3.9] and [24, Theorem 3.10], noting the necessary

modifications, as well as a similar technique given for the improved error estimates by Arnold

and Chen [1].

Proof. [First part of the proof of Theorem 2.8] First, following Holst and Stern [24] as

above, we construct the complex Wh but with the modified inner product 〈Jh·, ·〉 (the asso-

ciated domain complex Vh remains the same). This gives us a discrete Hodge decomposition

with another type of orthogonality and corresponding discrete harmonic forms and orthogonal

complement (due to a different adjoint d∗′h ):

V k
h = Bk

h ⊕ H′k
h ⊕ Zk⊥′

h

(generally, primed objects will represent the corresponding objects defined with the modified

inner product; the discrete coboundaries are in fact the same as before, because d and dh
do not depend on the choice of inner product). The main complications arise in having to

keep careful track of the different harmonic forms involved; the additional error terms, in

some sense, measure this difference. We then define, as in [24], the intermediate solution

(σ′
h, u

′
h, p

′
h) ∈ V k−1

h × V k
h × H′k

h (which we abbreviate as X′k
h ):

〈Jhσ′
h, τh〉h − 〈Jhu′h, dhτh〉h = 0 ∀τh ∈ V k−1

h

〈Jhdhσ′
h, vh〉h + 〈Jhdhu′h, dhvh〉h + 〈Jhp′h, vh〉h = 〈i∗hf, vh〉h ∀vh ∈ V k

h

〈Jhu′h, q′h〉h = 〈i∗hw, q′h〉h ∀q′h ∈ H′k
h ,

(2.18)

and the corresponding bilinear form B′
h : X′

h × X′
h → R given by

B′
h(σ

′
h, u

′
h, p

′
h; τh, vh, q

′
h) := 〈Jhσ′

h, τh〉h − 〈Jhu′h, dhτh〉h
+ 〈Jhdhσ′

h, vh〉h + 〈Jhdhu′h, dhvh〉h + 〈Jhp′h, vh〉h − 〈Jhu′h, q′h〉h. (2.19)
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This satisfies the inf-sup condition with Poincaré constant cP ‖πh‖. Note that we will need to

extend all the bilinear forms Bh, and B′
h in the last factor to all of V k

h in order to compare

the two, since they are initially only defined on the respective, differing harmonic form spaces;

we must remember to invoke the inf-sup condition only when using the non-extended versions.

The idea is, again, to use the triangle inequality:

‖σ − ihσh‖V + ‖τ − ihτh‖V + ‖p− ihph‖ (2.20)

≤‖σ − ihσ
′
h‖V + ‖τ − ihτ

′
h‖V + ‖p− ihp

′
h‖ (2.21)

+ ‖ih(σ′
h − σh)‖V + ‖ih(τ ′h − τh)‖V + ‖ih(p′h − ph)‖. (2.22)

These quantities can be estimated using only geometric properties of the domain; we never

actually compute (σ′
h, u

′
h, p

′
h). To estimate the term (2.21) (which we shall refer to as the pde

approximation term, whereas (2.22) will be called variational crimes), we recall that ih is an

isometry of Wh with the modified inner product to its image, which is a subcomplex.

Thus, Lemma 2.1 above applies, with the approximation (ihσ
′
h, ihu

′
h, ihp

′
h) on the identified

subcomplex ihX
′k
h . This gives us the terms on the second line of (2.17).

To finish our main proof, we need to consider the variational crimes (2.22). Since the maps

ih are bounded, and we eventually absorb their norms into the constant C above, it suffices to

consider ‖σh − σ′
h‖Vh

+ ‖uh − u′h‖Vh
+ ‖ph − p′h‖h, which we shall state as a separate theorem.

Theorem 2.9. Let (σh, uh, ph) ∈ Xk
h be a solution to (2.16), (σ′

h, u
′
h, p

′
h) ∈ X′k

h a solution to

(2.18), and w = PHu, the prescribed harmonic part of the continuous problem. Then

‖σh − σ′
h‖Vh

+ ‖uh − u′h‖Vh
+ ‖ph − p′h‖h

≤C
(

‖fh − i∗hf‖h + ‖wh − i∗hw‖Vh
+ ‖I − Jh‖(‖f‖+ ‖w‖) + inf

ξ∈ihV k
h

‖w − ξ‖V
)

, (2.23)

i.e., they are bounded by the terms on the third line in (2.17).

Proof. [Proof of Theorem 2.9 and second part of the proof of Theorem 2.8] We follow

the proof of Holst and Stern [24, Theorem 3.10] and note the modifications. Let (τ, v, q) and

(τh, vh, qh) ∈ Xk
h. Consider the bilinear form Bh, (2.11) above, and write

Bh(σh − τ, uh − v, ph − q; τh, vh, wh)

=Bh(σh − σ′
h, uh − u′h, ph − p′h; τh, vh, qh) +Bh(σ

′
h − τ, u′h − v, p′h − q; τh, vh, qh).

We then have, recalling the modified bilinear form B′
h, (2.19) above, and extending it in the

last factors to all of V k
h ,

Bh(σ
′
h, u

′
h, p

′
h; τh, vh, qh)

=B′
h(σ

′
h, u

′
h, p

′
h; τh, vh, qh) + 〈(I − Jh)σ

′
h, τh〉h − 〈(I − Jh)u

′
h, dhτh〉h + 〈(I − Jh)dhσ

′
h, vh〉h

+ 〈(I − Jh)dhu
′
h, dhvh〉h + 〈(I − Jh)p

′
h, vh〉h − 〈(I − Jh)u

′
h, qh〉h.

Substituting the respective solutions (2.18) and (2.16) (and noting the slight discrepancy in the

use of different harmonic forms), we have

B′
h(σ

′
h, u

′
h, p

′
h; τh, vh, qh) = 〈i∗hf, vh〉h − 〈Jhu′h, qh〉h

Bh(σh, uh, ph; τh, vh, qh) = 〈fh, vh〉h − 〈wh, qh〉h.
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Consequently,

Bh(σh − σ′
h, uh − u′h, ph − p′h; τh, vh, qh)

=〈fh − i∗hf, vh〉h + 〈u′h, qh〉h − 〈wh, qh〉h − 〈(I − Jh)σ
′
h, τh〉h + 〈(I − Jh)u

′
h, dhτh〉h

− 〈(I − Jh)dhσ
′
h, vh〉h − 〈(I − Jh)dhu

′
h, dhvh〉h − 〈(I − Jh)p

′
h, vh〉h.

As before, we bound the form above and below. For the upper bound, using Cauchy-Schwarz

to estimate the extra inner product terms, we arrive at

Bh(σh − τ, uh − v, ph − q; τh, vh, qh)

≤C
(

‖fh − i∗hf‖h + ‖PHh
(u′h − wh)‖h + ‖I − Jh‖(‖σ′

h‖Vh
+ ‖u′h‖Vh

+ ‖p′h‖h)

+ ‖σ′
h − τ‖Vh

+ ‖u′h − v‖Vh
+ ‖p′h − q‖h)(‖τh‖Vh

+ ‖vh‖Vh
+ ‖qh‖h

)

.

For the lower bound, we again choose (τh, σh, qh) ∈ Xk
h to verify the inf-sup condition this

time for Bh:

Bh(σh − τ, uh − v, ph − q; τh, vh, qh)

≥γh
(

‖σh − τ‖Vh
+ ‖uh − v‖Vh

+ ‖ph − q‖h)(‖τh‖Vh
+ ‖vh‖Vh

+ ‖qh‖h
)

,

γh depending only on the Poincaré constant cP ‖ih‖ ‖πh‖. Comparing with the upper bound

and dividing out the common factor as before, this leads to:

‖σh − τ‖Vh
+ ‖uh − v‖Vh

+ ‖ph − q‖h
≤Cγ−1

h

(

‖fh − i∗hf‖h + ‖PHh
(u′h − wh)‖h + ‖I − Jh‖(‖σ′

h‖Vh
+ ‖u′h‖Vh

+ ‖p′h‖h)

+ ‖σ′
h − τ‖Vh

+ ‖u′h − v‖Vh
+ ‖p′h − q‖h

)

.

Choosing (τ, v, q) = (σ′
h, u

′
h, PHh

p′h), applying the triangle inequality with p′h to account for

the mismatch in the harmonic spaces, and using the well-posedness of the continuous problem

(2.18),

‖σh − σ′
h‖Vh

+ ‖uh − u′h‖Vh
+ ‖ph − p′h‖h

≤C
(

‖fh − i∗hf‖h + ‖PHh
(u′h − wh)‖h + ‖I − Jh‖(‖f‖+ ‖w‖) + ‖p′h − q‖h

)

.

This differs from [24] in that we have the bound in terms of ‖f‖ + ‖w‖, and that we must

estimate ‖PHh
(u′h − wh)‖h rather than ‖PHh

u′h‖h alone. First, we use the modified Hodge

decomposition to uniquely write u′h as u′B + PH′

h
u′h + u′⊥ with u′B ∈ Bk

h and u′⊥ ∈ Zk⊥′
h , and

‖PHh
(u′h − wh)‖h ≤ ‖PHh

(u′B + u′⊥)‖h + ‖PHh
(PH′

h
u′h − wh)‖h.

(The projection PH′

h
is with respect to the modified inner product). For the first term, we

proceed as in [24]: we have PHh
u′B = 0 since coboundaries are independent of inner products.

Now u′⊥ ∈ Zk⊥′
h so, using Jh to express it in terms of V -orthogonality, we have Jhu

′
⊥ ⊥ Zk

h, and

thus PHh
Jhu

′
⊥ = 0. Therefore, we have

‖PHh
(u′B + u′⊥)‖h = ‖PHh

u′⊥‖h = ‖PHh
(I − Jh)u

′
⊥‖h ≤ C‖I − Jh‖(‖f‖+ ‖w‖).
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For the p′h term, this also proceeds as in [24] (except for, of course, the extra ‖w‖ term): using

the (unmodified) discrete Hodge decomposition, we have p′h = PBh
p′h + PHh

p′h = PBh
p′h + q.

Since p′h ∈ H′k
h , a similar argument gives Jhp

′
h ⊥ Bk

h, so PBh
Jhp

′
h = 0 and

‖p′h − q‖h = ‖PBh
p′h‖h = ‖PBh

(I − Jh)p
′
h‖h ≤ C‖I − Jh‖(‖f‖+ ‖w‖).

Finally, we must consider the term ‖PHh
(PH′

h
u′h − wh)‖h. We wish to express u′h in terms of

i∗hw, as we did with fh and i∗hf , but this is more difficult, since i∗hw and wh operate as linear

functionals on different harmonic spaces. We recall the third equation of (2.18):

〈Jhu′h, q′〉h = 〈i∗hw, q′〉h = 〈Jh(J−1
h i∗hw), q

′〉h
which, writing i+h = J−1

h i∗h (the Moore-Penrose pseudoinverse of ih), therefore says PH′

h
u′h =

PH′

h
i+hw. This enables us to properly work with the modified orthogonal projection PH′

h
. Note

that i+h is an isometry of the subspace ihWh to Wh with the modified inner product, so we have

PH′

h
i+hw = i+h PihH′

h
w.

where now PihH′

h
is the orthogonal projection onto the identified image harmonic space. Then,

using the triangle inequality with both i+hw and i∗hw,

‖PHh
(PH′

h
u′h − wh)‖h

≤
∥

∥

∥
PHh

(

PH′

h
i+hw − i+hw

)
∥

∥

∥

h
+ ‖PHh

(J−1
h i∗hw − i∗hw)‖h + ‖PHh

(i∗hw − wh)‖h

≤‖PHh
‖
(

‖i+h ‖
∥

∥

∥

(

I − PihH′

h

)

w
∥

∥

∥
+ ‖J−1

h ‖ ‖I − Jh‖ ‖i∗hw‖h + ‖i∗hw − wh‖h
)

≤C
(∥

∥

∥

(

I − PihH′

h

)

w
∥

∥

∥
+ ‖I − Jh‖ ‖w‖+ ‖i∗hw − wh‖h

)

.

The last term is the data approximation error for w, and the second term combines with the

previous errors that reflect the non-unitarity of the operator. So, all that remains is to estimate

the first term. Since it is in the subcomplex ihWh, the first estimate of Theorem 2.5 applies:
∥

∥

∥

(

I − PihH′

h

)

w
∥

∥

∥
≤ ‖(I − π′

h)w‖ ≤ C inf
ξ∈ihV k

h

‖w − ξ‖V , (2.24)

by quasi-optimality.

To summarize, we proved our main theorem, Theorem 2.8, by defining an intermediate

solution on a modified complex that we identify with a subcomplex, and analyzing the result

via the Arnold, Falk, and Winther [3] framework. That theorem holds, with the estimate

unchanged, though now u and uh no longer are perpendicular to their respective harmonic

spaces. The place where the extra terms all show up is in the variational crimes. In the process

of arriving at a term that looks like i∗hw − wh, working with the different harmonic forms

produces two more non-unitarity terms ‖I − Jh‖(‖f‖ + ‖w‖), and finally, using Theorem 2.5

yields a direct estimate of how w fails to be a modified discrete harmonic form, giving the last

best approximation term infξ∈ihV k
h
‖w − ξ‖V . �

We also note for future reference that in spaces where we have improved error estimates

(which means πh are W -bounded maps) that we can replace that last V -norm in (2.24) to be

the W -inner product. Finally, we remark that, for a certain types of data interpolation (i.e.

fh = Πhf and wh = Πhw where Πh is the family of interpolation operators mentioned in the

introduction and in the remarks following Theorem 2.8), the errors ‖fh − i∗hf‖ and ‖wh − i∗hw‖
can be rewritten in terms of the other errors and another best approximation term:
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Theorem 2.10 ([24], Theorem 3.12). If Πh : W k → W k
h is a family of linear projections

uniformly bounded with respect to h, then for all f ∈W k,

‖Πhf − i∗hf‖ ≤ C
(

‖I − Jh‖ ‖f‖+ inf
φ∈ihWk

h

‖f − φ‖
)

. (2.25)

This will be useful for us in our examples.

3. Abstract Evolution Problems

In order to solve and approximate linear evolution problems, we introduce the framework

of Bochner spaces (also following Gillette, Holst, and Zhu [22]), which realizes time-dependent

functions as curves in Banach spaces (which will correspond to spaces of spatially-dependent

functions in our problem). We follow mostly [33] and [19] for this material.

3.1. Overview of Bochner Spaces and Abstract Evolution Problems

Let X be a Banach space and I := [0, T ] an interval in R with T > 0. We define

C(I,X) := {u : I → X | u bounded and continuous}.

In analogy to spaces of continuous, real-valued functions, we define a supremum norm on

C(I,X), making C(I,X) into a Banach space:

‖u‖C(I,X) := sup
t∈I

‖u(t)‖X .

We will of course need to deal with norms other than the supremum norm, which motivates

us to define Bochner spaces: to define Lp(I,X), we complete C(I,X) with the norm

‖u‖Lp(I,X) :=

(
∫

I

‖u(t)‖pXdt
)1/p

.

Similarly, we have the space H1(I,X), the completion of C1(I,X) with the norm

‖u‖H1(I,X) :=

(

∫

I

‖u(t)‖2X +

∥

∥

∥

∥

d

dt
u(t)

∥

∥

∥

∥

2

X

dt

)1/2

.

There are methods of formulating this in a more measure-theoretic way ([19, Appendix E]),

considering Lebesgue-measurable subsets of I.

As mentioned before, for our purposes, X will be some space of spatially-dependent func-

tions, and the time-dependence is captured as being a curve in this function space. Usually, X

will be a space in some Hilbert complex, such as L2Ωk(M) or HsΩk(M) where the forms are

defined over a Riemannian manifold M .

We introduce this framework in order to be able to formulate parabolic problems more

generally. It turns out to be useful to consider the concept of rigged Hilbert space or Gelfand

triple, which consists of a triple of separable Banach spaces

V ⊆ H ⊆ V ∗

such that V is continuously and densely embedded in H . For example, if (V, d) is the domain

complex of some Hilbert complex (W,d), setting V = V k and H = W k works, as well as



FEEC for Parabolic Evolution Problems on Riemannian Hypersurfaces 809

various combinations of their products (so that we can use mixed formulations). H is also

continuously embedded in V ∗. We note carefully that the standard isomorphism (given by

the Riesz representation theorem) between V and V ∗ is generally not the composition of the

inclusions.

Given A ∈ C(I,L(V, V ∗)), a time-dependent linear operator, we would like to consider the

abstract version of linear, parabolic problems:

ut = A(t)u + f(t) (3.1)

u(0) = u0. (3.2)

Toward this end, given A as above, we define the bilinear form

a(t, u, v) := 〈−A(t)u, v〉, (3.3)

for (t, u, v) ∈ R × V × V . As in elliptic problems, we need a to satisfy a kind of coercivity

condition, G̊arding’s Inequality:

a(t, u, u) ≥ c1‖u‖2V − c2‖u‖2H , (3.4)

with c1, c2 constants independent of t ∈ I. This is not as strong a condition as ellipticity. With

this, the abstract parabolic problem is well-posed:

Theorem 3.1 (Existence and Uniqueness, [33], Theorem 11.3). Let f ∈ L2(I, V ∗) and

u0 ∈ H, and a the time-dependent quadratic form in (3.3). Suppose (3.4) holds. Then the

abstract parabolic problem (3.1) has a unique solution

u ∈ L2(I, V ) ∩H1(I, V ∗).

Moreover, the Sobolev embedding theorem implies u ∈ C(I,H), which allows us to unambigu-

ously evaluate the solution at time zero, so the initial condition makes sense, and the solution

indeed satisfies it: u(0) = u0.

This theorem is standard (see, e.g., [33, p. 382], [19, §7.2]). With this framework, we can

show that a wide class of PDE problems, particularly ones that are suited to finite element

approximations, are well-posed.

3.2. The Hodge Heat Equation as an Abstract Evolution Equation

Let us now see how these results apply in the case of the Hodge heat equation (1.1) on

manifolds. We take a different approach from what is done in [22] and [1], solving an equivalent

problem. This sets things up for our modified numerical method detailed in later sections.

Let (W,d) be a closed Hilbert complex, with domain complex (V, d), the standard setup

in the above—in particular, we have the Poincaré inequality and the well-posedness of the

continuous Hodge Laplacian problem. We consider the space Yk := V k−1 × V k and its dual

(Yk)′ = (V k−1)′ × (V k)′ with the obvious product norms (we use primes to denote dual spaces

so as not to conflict with the dual complex with respect to the Hodge star defined earlier,

though these uses are related). This, along with H = W k−1 ×W k, gives rigged Hilbert space

structure

Y ⊆ H ⊆ Y′.
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The embeddings are dense and continuous by definition of the graph inner product and the op-

erators d having dense domain. We consider the Bochner mixed weak parabolic problem:

to seek a weak solution (u, σ) ∈ L2(I,Y) ∩H1(I,Y′) to the mixed problem

〈σ, ω〉 − 〈u, dω〉 = 0, ∀ ω ∈ V k−1, t ∈ I,

〈ut, ϕ〉 + 〈du, dϕ〉 + 〈dσ, ϕ〉 = 〈f, ϕ〉, ∀ ϕ ∈ V k, t ∈ I,

u(0) = g.

(3.5)

We see that (3.5) is the mixed form of (1.1), as in the elliptic case, introducing the variable σ

defined by σ = d∗u, where d∗ is the adjoint of the operator d. We write the equation weakly

(moving d∗ back to the other side), which makes no difference at the continuous level, but will

make a significant difference when discretizing.

In order to use the abstract results above, we need a term with σt. Formally differentiating

the first equation of (1.2), and substituting ϕ = dω in the second equation, we obtain

0 = 〈σt, ω〉 − 〈ut, dω〉 = 〈σt, ω〉 − 〈f, dω〉 + 〈dσ, dω〉 + 〈du, ddω〉.

Since d2 = 0, that last term vanishes, and so we have the following system:

〈σt, ω〉 + 〈dσ, dω〉 = 〈f, dω〉, ∀ ω ∈ V k−1, t ∈ I,

〈ut, ϕ〉 + 〈dσ, ϕ〉 + 〈du, dϕ〉 = 〈f, ϕ〉, ∀ ϕ ∈ V k, t ∈ I,

u(0) = g.

(3.6)

Theorem 3.2. Suppose the initial condition g is in the domain of the adjoint V ∗ and f ∈
L2(I, (V k)′). Then the problem (3.6) is well-posed: there exists a unique solution (σ, u) ∈
L2(I,Y) ∩H1(I,Y′) ∩ C(I,H) with (σ(0), u(0)) = (d∗g, g).

Proof. We see that given f ∈ L2(I, (V k)′), we have that the functional F : (τ, v) 7→
〈f, dτ〉 + 〈f, v〉 is in L2(I,Y′), since d maps V k−1 to V k. For an initial condition on σ, we can

demand that σ(0) be the unique σ0 statisfying 〈σ0, τ〉 − 〈g, dτ〉 = 0. For this to reasonably

hold, we must actually have at least u0 ∈ V ∗
k , the domain of the adjoint operator d∗, that is,

σ0 = d∗g. We equip the spaces with the standard inner products for product spaces:

〈(σ, u), (τ, v)〉H := 〈σ, τ〉 + 〈u, v〉 (3.7)

〈(σ, u), (τ, v)〉Y := 〈σ, τ〉V + 〈u, v〉V . (3.8)

Consider the operator A : Y → Y′ defined by

a(σ, u;ω, ϕ) = 〈−A(σ, u), (ω, ϕ)〉 = 〈dσ, dω〉 + 〈dσ, ϕ〉 + 〈du, dϕ〉.

With the functional F defined as above, we have F ∈ L2(I,Y′), and so (3.6) is equivalent to

the problem

(σ, u)t = A(σ, u) + F. (3.9)
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We now verify that the bilinear form a satisfies G̊arding’s Inequality:

a(σ, u;σ, u) = ‖dσ‖2 + 〈dσ, u〉 + ‖du‖2

= ‖σ‖2V − ‖σ‖2 + 〈dσ, u〉 + ‖u‖2V − ‖u‖2

≥ ‖σ‖2V − ‖σ‖2 − ‖dσ‖ ‖u‖+ ‖u‖2V − ‖u‖2

≥ ‖σ‖2V − ‖σ‖2 − 1

2
‖σ‖2V − 1

2
‖u‖2V + ‖u‖2V − ‖u‖2

=
1

2
‖(σ, u)‖2Y − ‖(σ, u)‖2H .

Thus, the abstract theory applies, and noting that the initial conditions (d∗g, g) ∈ H , we have

that

(σ, u) ∈ L2(I,Y) ∩H1(I,Y′) ∩ C(I,H)

is the unique solution to problem (3.6) with initial conditions given by u(0) = g ∈ V ∗
k and

σ(0) = d∗g. �

Given this, however, we must still establish that we also have a solution to the original mixed

problem (which will be crucial in our error estimates):

Theorem 3.3. Let (σ, u) ∈ L2(I,Y) ∩ H1(I,Y′) ∩ C(I,H) solve (3.6) above with the initial

conditions. Then, in fact, (σ, u) also solves (3.5).

Proof. The second equation already holds, as it is incorporated unchanged into the equations

(3.6). To show the first equation, we show

〈σt, ω〉 − 〈ut, dω〉 = 0

for all time t. Then, since the original mixed equation holds at the initial time, standard

uniqueness ensures it holds for all t ∈ I. We simply realize it is setting ϕ = −dω:

〈σt, ω〉 − 〈ut, dω〉
=〈(σ, u)t, (ω,−dω)〉H = a(σt, ut;ω,−dω) + 〈f, dω〉 + 〈f,−dω〉
=〈dσ, dω〉 + 〈dσ,−dω〉 + 〈du, ddω〉 = 0.

This completes the proof. �

4. Error Estimates for the Abstract Parabolic Problem

We now combine all the preceding abstract theory (the Holst-Stern [24] framework recalled

in §2.2, and the abstract evolution problems framework recalled in §3) to extend the error es-

timates of Gillette, Holst, and Zhu [22]. In particular, we recover the case of approximating

parabolic equations on compact, oriented1) Riemannian hypersurfaces in R
n+1 with triangu-

lations in a tubular neighborhood. The key equation in the derivation of the estimates are the

generalizations of Thomée’s evolution equations for the error terms. We shall see that these

equations lead most naturally to the use of certain Bochner norms for the error estimates that

are different for each component in the equation.

1) Using differential pseudoforms ([20, §2.8], [36]), we can eliminate this restriction. However, more theory

needs to be developed for that case; the normal projection, in particular. We consider this in future work.
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Let (W,d) be a closed Hilbert complex with domain (V, d), and the Gelfand triple Y ⊆ H ⊆
Y′ on this complex as above. Now consider our previous standard setup of finite-dimensional

approximating complexes (Wh, d) with domain (Vh, d), with corresponding spacesYk
h = V k−1

h ×
V k
h (it is Xk

h missing the harmonic factor), ih : Vh →֒ V injective morphisms (that are W -

bounded), πh : Vh → V projection morphisms (which may be merely V -bounded), and πh◦ih =

id. Finally, we consider data interpolation operators Πh :W →Wh, such that Πh ◦ ih = id that

realize which projections for the inhomogeneous and prescribed harmonic terms (fh and wh in

the abstract theory above) that we use.

4.1. Discretization of the weak form

Suppose we have f ∈ L2(I, (V k)′) and g ∈ V ∗
k . Let (σ, u) ∈ L2(I,Y) ∩H1(I,Y′) ∩ C(I,H)

be the unique (continuous) solution to (3.5), as covered in §3. As in [22], we can consider ap-

proximations to this solution as functionals on finite-dimensional spaces Yh, e.g. finite element

spaces. With the above considerations, we formulate the semi-discrete Bochner parabolic

problem: Find (σh, uh) : I → Yh such that

〈σh, ωh〉h − 〈uh, dωh〉h = 0, ∀ ωh ∈ V k−1
h , t ∈ I

〈uh,t, ϕh〉h + 〈dσh, ϕh〉h + 〈duh, dϕh〉h = 〈Πhf, ϕh〉h, ∀ ϕh ∈ V k
h , t ∈ I

uh(0) = gh.

(4.1)

(We use the notation of Thomée for the test forms.) We define gh, the projected initial data,

shortly. A similar argument as in §3 above, differentiating the first equation with respect to

time, considering the Gelfand triple Yk
h ⊆W k−1

h ×W k
h ⊆ (Yk

h)
′ gives that this problem is well-

posed (or more simply, we choose bases and reduce to standard ODE theory as in (1.3) above).

Following Gillette, Holst, and Zhu [22], we define the time-ignorant discrete problem, using

the idea of elliptic projection [37] which we use to define a discrete solution via elliptic projection

of the continuous solution at each time t0 ∈ I: We seek (σ̃h, ũh, p̃h) ∈ Xk
h such that

〈σ̃h, ωh〉h − 〈ũh, dωh〉h = 0, ∀ ωh ∈ V k−1
h

〈dσ̃h, ϕh〉h + 〈dũh, dϕh〉h + 〈p̃h, ϕh〉h = 〈Πh(−∆u(t0)), ϕh〉h, ∀ ϕh ∈ V k
h

〈ũh, qh〉h = 〈Πh(PHu(t0)), qh〉h ∀ qh ∈ Hk
h.

(4.2)

Note that we have included a prescribed harmonic form given by the harmonic part of u

(following [1]). We then take the initial data gh to be ũh(0); it is just the solution to the elliptic

problem with load data Πh(−∆g), since u(0) = g. Note we do not directly interpolate g itself

via Πh for the data; the reason for this will be seen shortly. This discrete problem is well-posed,

i.e., a unique solution uh(t0) always exists for every time t0 ∈ I, by the first part of Theorem 2.8

above. The presence of an additional term p̃h and equation involving harmonic forms departs

from Gillette, Holst, and Zhu [22], because the theory there is facilitated by the fact that there

are no harmonic n-forms on open domains in R
n (the natural boundary conditions for such

spaces are Dirichlet boundary conditions, in contrast to the more classical example of 0-forms,

i.e. functions). Here, however, we must consider harmonic forms, since we may not be working

at the end of an abstract Hilbert complex. For our model problem, namely differential forms

on compact orientable manifolds (without boundary), even in the case of n-forms, the theory
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is completely symmetric (by Poincaré duality [5, 28, 31]).1) In addition, the linear projections

Πh may not preserve the harmonic space, which gives the possibility of a nonzero p̃h, despite

−∆u having zero harmonic part (so it is its own error term).

4.2. Determining the error terms and their evolution

Continuing the method of Thomée [35], we use the time-ignorant discrete solution as an

intermediate reference, and estimate the total errors by comparing to this reference and using

the triangle inequality. Roughly speaking, we try to estimate as follows:

‖ihσh(t)− σ(t)‖V ≤ ‖ihσh(t)− ihσ̃h(t)‖V + ‖ihσ̃h(t)− σ(t)‖V , (4.3)

‖ihuh(t)− u(t)‖V ≤ ‖ihuh(t)− ihũh(t)‖V + ‖ihũh(t)− u(t)‖V . (4.4)

It turns out that this grouping of the terms is not the most natural for our purposes. We shall

see it is the structure of the error evolution equations that groups the terms more naturally as:

‖ihuh(t)− u(t)‖, (4.5)

‖ihσh(t)− σ(t)‖ + ‖d(ihuh(t)− u(t))‖, (4.6)

‖d(ihσh(t)− σ(t))‖. (4.7)

The sum of these three terms is the sum of the two V -norms above. In addition, we shall

see in our application to hypersurfaces (approximated by curved triangulations of mesh size h)

that this particular grouping of the error terms also corresponds more precisely to the order

of approximations in the improved estimates for the elliptic projection (namely, they are of

orders hr+1, hr, and hr−1, respectively, for finite element spaces consisting degree-r polynomial

differential forms).

The plan is to use the theory of Holst and Stern [24] reviewed in §2.2 above to estimate the

sum of the two second terms in (4.3) and (4.4); the elliptic projection simply is an approxima-

tion, at each fixed time, of the trivial case of u being the solution of the continuous problem

with data given by its own Laplacian, −∆u. The harmonic form portion will come up naturally

as part of the calculuation. Using the notation of Thomée [35], we define the error functions

ρ(t) := ũh(t)− i∗hu(t), (4.8)

θ(t) := uh(t)− ũh(t), (4.9)

ψ(t) = σ̃h(t)− i∗hσ(t), (4.10)

ε(t) := σh(t)− σ̃h(t). (4.11)

(Thomée does not define the third term ψ; we have added it for convenience.) In the case

that there are no variational crimes (i.e., Jh is unitary), the error terms ρ and ψ are bounded

above by the elliptic projection errors (because there, i∗h is the orthogonal projection, and

‖i∗h‖ = ‖ih‖ = 1), so that we have, for example, that ‖ihuh − u‖ ≤ ‖θ‖ + ‖ρ‖, corresponding
to the use of ρ in [22, 35]. For our purposes, however, the choice of ρ here does not correspond

as neatly, now being an intermediate quantity that helps us estimate θ in terms the elliptic

projection error (the second term in (4.4)). We find that it contributes more terms with

1) Despite this, there are a number of reasons why one should still prefer to continue to phrase problems in

terms of n-forms if the problem calls for it ( [20] describes how it affects the interpretation of certain quantities);

and we shall see that it does in fact still make a difference at the discrete level.
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‖I − Jh‖. Similar remarks apply for σ and ψ. We use the method of Thomée to estimate the

terms θ and ε in terms of (the time derivatives of) ρ and ψ, and the elliptic projection error;

In order to do this, we need an analogue of Thomée’s error equations.

Lemma 4.1 (Generalized Thomée error equations). Let θ, ρ, and ε be defined as above.

Then for all t ∈ I,

〈ε, ωh〉h − 〈θ, dωh〉h = 0, ∀ωh ∈ V k−1
h ,

〈θt, ϕh〉h + 〈dε, ϕh〉h + 〈dθ, dϕh〉h = 〈−ρt + p̃h + (Πh − i∗h)ut, ϕh〉h, ∀ϕh ∈ V k
h .

(4.12)

This differs from Thomée [35] and Gillette, Holst, and Zhu [22] with the harmonic term p̃h,

which accounts for the projections Πh possibly not sending the harmonic forms to the discrete

harmonic forms, an extra dθ term which accounts for possibly working away from the end of

the complex (for differential forms on an n-manifold, forms of degree k < n), and another data

interpolation error term for ut (which also distinguishes it from Arnold and Chen [1]).

Proof. The first equation is simply weakly expressing ε as d∗hθ. This follows immediately

from the corresponding equations in the semidiscrete problem and the time-ignorant discrete

problem. For the second term, consider the expression

B := 〈θt, ϕh〉h + 〈dε, ϕh〉h + 〈dθ, dϕh〉h + 〈ρt, ϕh〉h, (4.13)

and expand it using the definitions to obtain

B = 〈uh,t, ϕh〉h − 〈ũh,t, ϕh〉h + 〈dσh − dσ̃h, ϕh〉h
+ 〈duh − dũh, dϕ〉h + 〈ũh,t, ϕh〉h − 〈i∗hut, ϕh〉h.

We cancel the ũh,t terms, and apply the semidiscrete equation (4.1) to cancel the dσh and duh
terms, which gives us

B = 〈Πhf, ϕh〉h − 〈dσ̃h, ϕh〉h − 〈dũh, dϕh〉h − 〈i∗hut, ϕh〉h,

and finally, using the second equation of (4.2) to account for the middle terms, we have

B =〈Πhf, ϕh〉h + 〈Πh(∆u), ϕ〉h + 〈p̃h, ϕh〉h − 〈i∗hut, ϕh〉h
= 〈Πh (∆u+ f − ut) , ϕh〉h + 〈p̃h, ϕh〉h + 〈(Πh − i∗h)ut, ϕh〉h.

But since ut = ∆u + f is the strong form of the equation, which we know is satisfied by the

uniqueness, it follows that B = 〈p̃h + (Πh − i∗h)ut, ϕh〉h. Subtracting the ρt from both sides

gives the result. �

Now we present our main theorem.

Theorem 4.1 (Main parabolic error estimates). Let (σ, u) be the solution to the contin-

uous problem (3.5), (σh, uh) be the semidiscrete solution (4.1), (σ̃h, ũh) the elliptic projection

(4.2), and the error quantities (4.8)-(4.11) be defined as above. Then we have the following

error estimates:

‖θ(t)‖h ≤ ‖ρt‖L1(I,Wh) + ‖p̃h‖L1(I,Wh) + ‖(Πh − i∗h)ut‖L1(I,Wh), (4.14)

‖dθ(t)‖h + ‖ε(t)‖h ≤ C
(

‖ρt‖L2(I,Wh) + ‖p̃h‖L2(I,Wh) + ‖(Πh − i∗h)ut‖L2(I,Wh)

)

, (4.15)

‖dε(t)‖h ≤ C
(

‖ψt‖L2(I,Wh) + ‖d∗h(Πh − i∗h)ut‖L2(I,Wh)

)

, (4.16)
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with

‖ρt‖L2(I,Wh) ≤ C
(

‖ihũh,t − ut‖L2(I,W ) + ‖I − Jh‖L(Wh) ‖ut‖L2(I,W )

)

(4.17)

‖ψt‖L2(I,Wh) ≤ C
(

‖ihσ̃h,t − σt‖L2(I,W ) + ‖I − Jh‖L(Wh) ‖σt‖L2(I,W )

)

. (4.18)

We may further combine these terms, which we shall do in a separate corollary, but it is useful

to keep things separate; this allows terms to be analyzed individually when considering specific

choices of V and Vh. The error terms ihσ̃h − σ and ihũh − u and their time derivatives are

furthermore estimated in terms of best approximation norms and variational crimes via the

theory of Holst and Stern [24]. The different Bochner norms involved arise from the structure

of the error evolution equations.

Proof. We adapt the proof technique in [22, 35] to our situation, and for ease of notation,

unsubscripted norms will denote the W -norms and norms subscripted with just h will denote

norms on the approximating complex. We now assemble the estimates above separately by

computing the W -norms of the errors and their differentials. We begin by estimating ‖θ(t)‖h.
We use the standard technique of using the solutions as their own test functions: Set ϕh = θ

and ωh = ε in (4.12). Adding the two equations together yields

1

2

d

dt
‖θ‖2h + ‖ε‖2h + ‖dθ‖2h = 〈−ρt + p̃h + (Πh − i∗h)ut, θ〉h, t ∈ I (4.19)

Following Thomée [35], we introduce δ > 0 to account for non-differentiability at θ = 0, drop

the positive terms ‖ε‖2h + ‖dθ‖2h, and observe that

(‖θ‖2h + δ2)1/2
d

dt
(‖θ‖2h + δ2)1/2 =

1

2

d

dt
(‖θ‖2h + δ2)

=
1

2

d

dt
‖θ‖2h ≤ (‖ρt‖h + ‖p̃h‖h + ‖(Πh − i∗h)ut‖h)‖θ‖h,

using (4.19), the Cauchy-Schwarz inequality, and the definition of operator norms (our goal is

to get all of those quantities on the right side of the equation close to zero, so we do not need

to care too much about their sign). Thus, since ‖θ‖h ≤ (‖θ‖2h+ δ2)1/2, we have, canceling ‖θ‖h,

d

dt
(‖θ‖2h + δ2)1/2 ≤ ‖ρt‖h + ‖p̃h‖h + ‖(Πh − i∗h)ut‖h.

Now, using the Fundamental Theorem of Calculus, we integrate from 0 to t to get

‖θ(t)‖h =‖θ(0)‖h + lim
δ→0

∫ t

0

d

dt
(‖θ‖2h + δ2)1/2

≤
∫ t

0

(‖ρt‖h + ‖p̃h‖h + ‖(Πh − i∗h)ut‖h). (4.20)

θ(0) vanishes by our choice of initial condition as the elliptic projection.

Next, continuing to follow [22], we consider ‖ε(t)‖h. We differentiate the first error equation

and substitute ϕh = 2θt and ωh = 2ε, so that

〈εt, 2ε〉h − 〈θt, 2dε〉h = 0, (4.21)

〈θt, 2θt〉h + 〈dε, 2θt〉h + 〈dθ, 2dθt〉h = 〈−ρt + p̃h + (Πh − i∗h)ut, 2θt〉h. (4.22)
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Adding the two equations as before, we have, by Cauchy-Schwarz and the AM-GM inequality

(here in the form 2ab ≤ 3
2a

2 + 2
3b

2),

d

dt
‖ε‖2h + 2‖θt‖2h +

d

dt
‖dθ‖2h

≤2‖ρt‖h‖θt‖h + 2‖p̃h‖h‖θt‖h + 2‖(Πh − i∗h)ut‖h‖θt‖h
≤3

2

(

‖ρt‖2h + ‖p̃h‖2h + ‖(Πh − i∗h)ut‖2h
)

+ 2‖θt‖2h.

Canceling 2‖θt‖2h from both sides, using the Fundamental Theorem of Calculus, and noting the

initial conditions vanish by the choice of elliptic projection, we have

‖ε‖2h + ‖dθ‖2h ≤ 3
2

∫ t

0

(

‖ρt‖2h + ‖p̃h‖2h + ‖(Πh − i∗h)ut‖2h
)

. (4.23)

Finally, we estimate ‖dε‖h. As in the estimate above, we differentiate the first equation with

respect to time, and substitute ω = 2εt, ϕ = 2dεt,

〈εt, 2εt〉h − 〈θt, 2dεt〉h = 0 (4.24)

〈θt, 2dεt〉h + 〈dε, 2dεt〉h + 〈dθ, 2ddεt〉h = 〈−ρt + p̃h + (Πh − i∗h)ut, 2dεt〉h. (4.25)

Noting that d2 = 0, p̃h is perpendicular to the coboundaries, and ψ = d∗hρ, we add the equations

to get

2‖εt‖2h +
d

dt
‖dε‖2h = 2〈−ρt + (Πh − i∗h)ut, dεt〉h

=2〈−ψt + d∗h(Πh − i∗h)ut, εt〉h ≤ ‖ψt‖2h + ‖d∗h(Πh − i∗h)ut‖2h + 2‖εt‖2h.

By the Fundamental Theorem of Calculus, and noting vanishing initial conditions (and an exact

cancellation of positive terms), we have

‖dε‖2h ≤
∫ t

0

(

‖ψt‖2h + ‖d∗h(Πh − i∗h)ut‖2h
)

. (4.26)

We now estimate ρ and ψ. We note that the time derivatives of the solutions are also

solutions to the mixed formulation, at least provided that ut and other associated quantities

are sufficiently regular (in the domain of the Laplace operator) for the norms and derivatives

to make sense. Then (recalling i+h = J−1
h i∗h), we have

‖ρt(t)‖h = ‖ũh,t − i∗hut‖ ≤ ‖ũh,t − i+h ut‖+ ‖i+h ut − i∗hut‖
≤ ‖i+h ‖

(

‖ihũh,t − ut‖+ ‖I − Jh‖‖ut‖
)

, (4.27)

‖ψt(t)‖h = ‖σ̃h,t − i∗hσt‖ ≤ ‖σ̃h,t − i+h σt‖+ ‖i+h σt − i∗hσt‖
≤ ‖i+h ‖

(

‖ihσ̃h,t − σt‖+ ‖I − Jh‖ ‖σt‖
)

. (4.28)

We note that the two first terms in the last estimates above actually can be further expressed

in terms of best approximation errors, but involving time derivatives of the solution, using the

theory of §2.2. The abstract theory actually uses V -norms, which trivially can be used to

overestimate the W -norms here. We cannot improve this in the abstract theory; instead, we

use theory for specific choices of V ,W , and Vh, such as appropriately chosen de Rham complexes
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and approximations to improve the estimates ([3, §3.5], [1, Theorem 3.1]). For these cases, it is

helpful to keep the individual estimates on ‖ε‖2, ‖θ‖2, etc. separated. We have combined terms

because the abstract theory gives us all the variational crimes together, as it makes heavy use

of the bilinear forms above. Additional improvement of estimates based on regularity as done

in [3] cannot made for the variational crimes, as discussed in [24, §3.4]. We give the relevant

example and result in the next section.

Corollary 4.1 (Combined L1 estimate). Let θ, ρ, ψ, and ε be as above. Then we have

‖ihσh − σ‖L1(I,V ) + ‖ihuh − u‖L1(I,V )

≤C
(

‖ρt‖L2(I,Wh) + ‖(Πh − i∗h)ut‖L2(I,Wh) + ‖ψt‖L2(I,Wh) + ‖d∗h(Πh − i∗h)ut‖L2(I,Wh)

‖ρt‖L2(I,Wh) + ‖p̃h‖L2(I,Wh) + ‖ihσ̃h − σ‖L2(I,V ) + ‖ihũh − u‖L2(I,V )

)

. (4.29)

Further expanding the time derivative terms, we have

‖ihσh − σ‖L1(I,V ) + ‖ihuh − u‖L1(I,V )

≤C
(

‖ihũh,t − ut‖L2(I,W ) + ‖ihσ̃h,t − σt‖L2(I,W ) + ‖I − Jh‖ ‖ut‖L2(I,W )

+ ‖I − Jh‖ ‖σt‖L2(I,W ) + ‖(Πh − i∗h)ut‖L2(I,Wh) + ‖d∗h(Πh − i∗h)ut‖L2(I,Wh)

+ ‖ihp̃h‖L2(I,W ) + ‖ihσ̃h − σ‖L2(I,V ) + ‖ihũh − u‖L2(I,V )

)

.

These terms are organized as follows: theW -error in the approximations of the time derivatives,

the variational crimes with ‖I−Jh‖, the data approximation error for the time derivatives, and

finally the V -approximation errors for the elliptic projection. These can be further expanded

in terms of best approximation errors, but we will not have use for that outside of specific

examples where the computation is easier done with the previous theorems. This corollary

is simply stated for conceptual clarity and a qualitative sense of all the different individual

contributions to the error.

Proof. First, expanding out ‖ihσh − σ‖V + ‖ihuh − u‖V in terms of W -norms, using the

triangle inequality with ihũh and ihσ̃h, and taking out a factor of the norm ‖ih‖, we have

‖ihσh − σ‖V + ‖ihuh − u‖V
≤‖ih‖

(

‖θ‖h + ‖dθ‖h + ‖ε‖h + ‖dε‖h + ‖ihũh − u‖V + ‖ihσ̃h − σ‖V
)

,

and we recognize the sum of all three left sides of (4.14)–(4.16). We note that by the Cauchy-

Schwarz inequality, the estimate for ‖dθ(t)‖ + ‖ε(t)‖ in (4.15) and ‖dε(t)‖ in (4.16) can be

rewritten as using L2(I,W ) norms to match the squared terms (4.23) and (4.26), respectively.

Using the right sides of (4.14)–(4.16), and combining and absorbing constants, we arrive at

‖ihσh − σ‖V + ‖ihuh − u‖V
≤C
(

‖ρt‖L2(I,Wh) + ‖(Πh − i∗h)ut‖L2(I,Wh) + ‖ψt‖L2(I,Wh) + ‖d∗h(Πh − i∗h)ut‖L2(I,Wh)

+ ‖p̃h‖L2(I,Wh)

)

+ ‖ihσ̃h − σ‖V + ‖ihũh − u‖V .

Integrating from 0 to T , the latter two V -norm terms become L1(I, V ) norms (and the additional

factor of T from integrating the rest of the terms can be absorbed into the constant). Finally,

using Cauchy-Schwarz to change the L1(I, V ) norm into an L2(I, V ) norm, and substituting

for ρt and ψt gives the result. �
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5. Parabolic Equations on Compact Manifolds

As an application of the preceding results, we return to our original motivating example

of de Rham complex to explore an example with the Hodge heat equation on hypersurfaces

of Euclidean space, generalizing the discussion in [22, 24]. Let M be compact hypersurface

embedded in R
n+1. M inherits a Riemannian metric from the Euclidean metric of Rn+1.

5.1. The de Rham Complex on a Manifold

We define the L2 differential k-forms on M given by

L2Ωk(M) :=







∑

1≤i1<···<ik≤n

ai1...ikdx
i1 ∧ · · · ∧ dxik ∈ Ωk(M) : ai1...ik ∈ L2(M)







,

the standard indexing of differential form basis elements, namely strictly increasing sequences

from {1, . . . , n}. The inner product is given by 〈ω, η〉 =
∫

ω∧⋆η, where ⋆ is the Hodge operator
corresponding to the metric.

The weak exterior derivative dk is defined on the domains HΩk(M), and we have a Hilbert

complex (L2Ω, d) with domain complex (HΩ(M), d), with dk+1 ◦ dk = 0:

0 // HΩ0 d0

// HΩ1 d1

// · · · dn−1

// HΩn
// 0.

As required in the abstract Hilbert complex theory, each domain space carries the graph inner

product:

〈u, v〉HΩk(M) := 〈u, v〉L2Ωk(M) + 〈dku, dkv〉L2Ωk+1(M).

For open subsets U ⊆ R
3, this reduces to familiar Sobolev spaces of vector fields with the

traditional gradient, curl, and divergence operators of vector analysis:

0 // H1(U)
grad

// H(curl)
curl

// H(div)
div

// L2(U) // 0.

Similarly, the dual complex is H∗Ω(M) defined by H∗Ωk(M) := ⋆HΩn−k(M), consisting of

Hodge duals of (n−k)-forms. We have that the embedding HΩk(M)∩H∗Ωk(M) →֒ L2Ωk(M)

is compact, which enables a Poincaré Inequality to hold and the resulting Hilbert complex

(L2Ωk(M), d) to be a closed complex [3, 32]. To summarize, we have the following:

Theorem 5.1. Let M be a compact smooth Riemannian hypersurface in R
n+1. Then taking

W k = L2Ωk(M), with maps dk the exterior derivative defined on the domains V k = HΩk(M),

(W,d) is a closed Hilbert complex with domain (V, d).

We thus are able to define Hodge Laplacians, and see all the abstract theory for the continuous

problems (2.15) and (3.6) applies with these choices of spaces.

5.2. Approximation of a hypersurface in a tubular neighborhood

In order to approximate the problems (2.15) and (3.6), we consider, following [24], a family

of approximating hypersurfaces Mh to an oriented hypersurface M , without boundary, all

contained in a tubular neighborhood U of M . The surfaces Mh generally will be piecewise

polynomial (say, of degree s); they may have corners, but no breaks (C0 regularity). The case



FEEC for Parabolic Evolution Problems on Riemannian Hypersurfaces 819

s = 1 (piecewise linear functions) corresponds to triangulations, studied in [16, 17]. The case

s > 1 was later explored in [15, §2.3]. However, the piecewise linear case still is instrumental

in the analysis and indeed, the definition of the spaces (via Lagrange interpolation), and so we

shall denote it by Th (the triangulation, i.e., set of simplices, will be correspondingly denoted

by Th, and their images under the interpolation will be denoted T̂h). It is convenient, also,

to assume that the vertices of the both the triangulation and the higher-degree interpolated

surfaces actually lie on the true hypersurface.

The normal vector ν to M allows us to define a signed distance function dist : U → R given

by

dist(x) = ± dist(x,M) = ± inf
y∈M

|x− y|

where the sign is chosen in accordance to which side of the normal x lies on. By standard

analytic results [21, Ch.14], dist is smooth, provided U is small enough; the maximum distance

for which it exists is controlled by the sectional curvature ofM . The normal ν can be extended

to the whole neighborhood; in fact it is the gradient ∇δ. It is also convenient to define the

normals νh to the approximating surfaces Mh. We often compare νh to the extended ν. See

Figure 5.1. In most of the examples we consider, we assume the vertices of Mh (and Th) lie

on M , but this is not a strict requirement. Instead, we need a condition to ensure that the

hypersurfaces Mh are homeomorphic to M , eliminating the possibility of a double covering

(e.g., as pictured in [18, Fig. 1, p. 12]). In particular, we want Mh to have the same topology

asM . This is again restriction on the size of the tubular neighborhood. In such a neighborhood

U , every x ∈ U decomposes uniquely as

M

Mh

U

ν

x

a(x)
δ(x)

Fig. 5.1. A curve M with a triangulation (blue polygonal curve Mh) within a tubular neighborhood U

of M . Some normal vectors ν are drawn, in red; the distance function δ is measured along this normal.

The intersection x of the normal with Mh defines a mapping a from x to its base point a(x) ∈ M .

x = a(x) + dist(x)ν(x), (5.1)

where a(x) ∈M , and a : U →M is in fact a smooth function, called the normal projection.

a can then be used to define the degree-s Lagrange interpolated hypersurfaces by considering

the image of Th under the degree-s Lagrange interpolation of a over each simplex in Th (we

write ak : Th →Mh for this) [15, §2.3].
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Example 5.1 (Normal Projections and the Unit Circle). We consider a crude linear

mesh interpolation of the unit circle, namely an inscribed square. The mesh Th is the union

of four diagonal line segments. We would like to get a feeling for what the normal projection

is and how we would interpolate to find higher-degree approximations. We first consider the

upper right quadrant (which is pictured in black in Figure 5.2). We choose x as a coordinate

for the segment (pictured in blue in Figure 5.2), and in R
2 it is (x, 1 − x) for x ∈ [0, 1]. Then

the normal projection to the circle is given by the radial line projection

a(x, y) =

(

x
√

x2 + y2
,

y
√

x2 + y2

)

.

Expressed solely in terms of the coordinate x, we have

a(x) =

(

x
√

x2 + (1− x)2
,

1− x
√

x2 + (1− x)2

)

.

It is this function that we seek to interpolate (the mapping x 7→ (x, 1− x) is affine, so concepts

like being a polynomial interpolation are still meaningful). Let us now consider a quadratic

interpolation over the mesh of a. Considering the nodes 0, 1
2 , and 1, the standard quadratic

basis is given by (φ1, φ2, φ3) = (2x2 − 3x + 1, 4x − 4x2, 2x2 − x), and evaluation of a at each

node gives us

a2(x) =

(

1√
2
φ2(x) + φ3(x), φ1(x) +

1√
2
φ2(x)

)

=
(

(2 − 2
√
2)x2 + (2

√
2− 1)x, (2 − 2

√
2)x2 + (2

√
2− 3)x+ 1

)

.

Note that though a circle is the level set of a quadratic function in x and y, in terms

of this specific normal projection, it is definitely not a quadratic function of x alone, so the

0 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

Fig. 5.2. Approximation of a portion of the unit circle (black) with a segment (blue) and much better

quadratic Lagrange interpolation for the normal projection (red), though the underlying triangulation

is the same (and thus also the mesh size).
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quadratic curve will not actually coincide with the circle (although it is close). See Figure

5.2 for a portion of this; the remaining portions of the triangulation and interpolation are all

symmetrically reflected across the axes (the quadratic approximation, in red, is so good that

the difference would be difficult to see were all parts included).

Restricting a to the surfaces Mh gives diffeomorphisms

a|Mh
:Mh →M.

a : Mh → M is therefore a diffeomorphism when restricted to each polyhedron (and is at

least globally Lipschitz continuous, the maximum degree of regularity in the piecewise linear

case. This is not a problem for Hodge theory, because the form spaces are at most H1 where

regularity is concerned; see [38, Ch.4]).

5.3. Finite element spaces

We choose finite-dimensional subspaces Λk
h of HΩk(Mh) for each k, satisfying the subcom-

plex property dhΛ
k
h ⊆ Λk+1

h . We can then pull forms on Mh back to forms on M via the

inverse of the normal projection, which furnishes the injective morphisms ikh : Λk
h →֒ HΩk(M)

(since pullbacks commute with d) required by the theory above in Section 2. The main finite

element spaces relevant for our purposes are two families of piecewise polynomials, discussed in

detail in [2,3]. We must choose these spaces for our equations in a specific relationship in order

for the numerical methods and theory detailed above to apply, and for the approximations to

work. This is why we prefer a piecewise polynomial approximation ofM as opposed to a curved

triangulation of M itself; these are shown to have these necessary properties.

These spaces take some work to build; an overview of the process is as follows: first we

define the polynomial spaces in R
n, then restrict them to simplices, and then define spaces over

the piecewise linear manifold Th given by a triangulation Th of M (with continuity conditions

on the boundary simplices). Finally, for higher-level interpolations Mh over Th, we pull forms

on Th back to Mh via the interpolated normal projections.

Definition 5.1 (Polynomial differential forms). Let Pr be polynomials of degree at most

r, in n variables (i.e., on R
n), and Hr be the subspace of homogeneous polynomials of degree

r in R
n. We define the first family, denoted PrΛ

k, to consist of all k-forms with coefficients

belonging to Pr. The second family, denoted P−
r Λk, lie between the spaces of the first class:

Pr−1Λ
k ⊆ P−

r Λk ⊆ PrΛ
k.

These are defined as follows: first, consider the radial vector field X = xi ∂
∂xi , that is, at each

x, it is a radially pointing vector of length |x|, and then define the Koszul operator κω := Xyω,

the interior product with X. Then

P−
r Λk := Pr−1Λ

k ⊕ κHr−1Λ
k+1.

Since κ always raises polynomial degree and decreases form degree, it sends Hr−1Λ
k+1 to HrΛ

k,

showing that the sum of spaces above is in fact direct. By properties of interior products, κ2 = 0.

Definition 5.2 (Polynomial Differential Forms on Simplices). Let f be a simplex in R
n

of dimension ℓ ≤ n. Then we define PrΛ
k(f) to be the pullback i∗PrΛ

k where i : f →֒ R
n is
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the inclusion. Two special cases warrant mention. First, if ℓ = n, then this is just pointwise

restriction of polynomial forms in R
n to the subset f . Second, if ℓ < k, that is, the simplex

dimension is less than the form degree, PrΛ
k(f) = 0. Similarly, P−

r Λk(f) is defined to be

i∗P−
r Λk. Finally, the space of all forms ω ∈ PrΛ

k(f) such that Trf,∂f (ω) = 0 (forms that

vanish in the trace sense on the boundary ∂f) is denoted P̊rΛ
k(f). A similar definition holds

for the P−
r spaces.

It is useful to note that the polynomial spaces P−
r Λk are affine-invariant, that is, given an

affine map φ : Rn → R
n, φ∗P−

r Λk = P−
r Λk. This ensures that whatever affine parametrizations

we choose for simplices f (of any dimension) in R
n, the polynomial space P−

r Λk(f) is the

same [3, §5.1.3] (the space PrΛ
k is also obviously affine-invariant, but it is not so obvious for

P−
r spaces, because the space HrΛ

k is not affine-invariant).

There are a number of interesting theorems about polynomial form spaces on simplices as

described in [3, §5.2], [2, §4.6-4.7], in particular, about the structure of the spaces corresponding

to the degrees of freedom, the most interesting of which we paraphrase here:

Theorem 5.2 (Geometric Decomposition Theorem, [3], Theorem 5.5). Let r, n, and

k satisfy 0 ≤ k ≤ n and r > 0, and suppose f is an n-simplex. For any face g of dimension ℓ

in f , P−
r+k−ℓΛ

ℓ−k(g) acts on PrΛ
k(f) as follows: we associate to each η ∈ P−

r+k−ℓΛ
ℓ−k(g) the

linear mapping

ω 7→
∫

g

Trf,g ω ∧ η.

Then

PrΛ
k(f)∗ ∼=

⊕

g a face

P−
r+k−dim gΛ

dim g−k(g)

with this correspondence. Similarly,

P−
r Λk(f)∗ ∼=

⊕

g a face

Pr+k−dim g−1Λ
dim g−k(g).

We refer these mappings as the degrees of freedom for the space PrΛ
k(f) or P−

r Λk(f).

This simply says that as g varies over all faces g ⊆ f , the actions above (and linear combinations

thereof) exhaust the entire dual space. It is in this sense that the P and P− spaces are dual

to one another. The duality is even more apparent when we consider P̊ and P̊−, because ∂f

consists precisely of the simplices of f that are of strictly lower dimension, so the action of any

lower dimensional face vanishes, and we have

Corollary 5.1 ( [3], Lemma 5.6).

P̊rΛ
k(f)∗ ∼= P−

r+k−nΛ
n−k(f)

and

P̊−
r Λk(f)∗ ∼= Pr+k−n−1Λ

n−k(f).

This kind of duality is reminiscent of forms versus forms of compact support in, e.g., Poincaré

duality. We can now define these spaces over whole triangulations:
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Definition 5.3 (Polynomial Finite Element Spaces). Let T be a triangulation and T be

the piecewise linear manifold
⋃ T . We define the polynomial finite element space PrΛ

k(T ) to

be the set of all ω ∈ L2Ωk(T ) such that for any simplex f ∈ T , ω|f ∈ PrΛ
k(f), and for any

two simplices f1, f2 sharing a common face g, the degrees of freedom yield the same values on

Trf1,g(ω|f1) and Trf2,g(ω|f2). Equivalently, noting Theorem 5.2 above, they satisfy

∫

g

Trf1,g(ω|f1) ∧ η =

∫

g

Trf2,g(ω|f2) ∧ η

for all common faces g and η ∈ Pr+k−dim gΛ
dim g−k(g).

These polynomial spaces generalize existing finite element spaces, such as Whitney forms,

Nédélec elements, and Raviart-Thomas elements (see [3,22] for these examples and more). We

also have the following important characterization of these spaces:

Theorem 5.3 ([3], Theorem 5.7). PrΛ
k(T ) and P−

r Λk(T ) are HΩk(T ) forms that when

restricted to any f ∈ T are in PrΛ
k(f) or, respectively, P−

r Λk(f).

This means, in particular, that the continuity conditions in the definitions above are strong

enough that the forms always regular enough to be in the domain complex (HΩ, d). This

theorem holds for triangulations of manifolds (non-flat triangulations) because the corners in

the piecewise linear manifold T only occur at the boundaries of simplices, which are compatible

with the regularity requirements of our finite element spaces: the regularity of the manifold is

C0, while the finite element spaces are at most H1.

When formulating the whole discrete cochain complex consisting of spaces Λk
h, we recall we

must satisfy, at each step, dΛk−1
h ⊆ Λk

h. Other than this restriction, there is considerable choice

in choosing a whole chain complex: each target space can possibly be made larger, to become

the domain of the next operator. For polynomial spaces, since d decreases polynomial degree

and increases form degree, it follows that if Λk
h = PrΛ

k, one can choose Λk+1
h ⊇ Pr−1Λ

k+1.

Following [3, §5.1.4], we will choose either

Λk+1
h = Pr−1Λ

k+1

or, for a larger space, the other kind of polynomial space we have studied,

Λk+1
h = P−

r Λk+1.

Of course, to continue the chain, we must also specify what happens if Λk
h = P−

r Λk; for this,

we make the same choice Pr−1Λ
k or P−

r Λk. The general rule is if the next one is a P− space,

it keeps the same polynomial degree (even though the image of the space will surely have lower

degree), and if it is just a P space, one reduces the polynomial degree, and this holds regardless

of whether the current space is a P or P− space. With this choices made for every space in the

complex, we have 2n−1 possibilities (from 0 to n, there are 2n+1 choices, but it is always the case

that P−
r Λ0 = PrΛ

0, while P−
r Λn = Pr−1Λ

n, eliminating two places to choose from). Similar

considerations hold for choosing complexes on simplices and triangulations (where one choice

of P− or P is made to hold over every simplex). Of course, for one single Hodge Laplacian

problem, we only need to work with three spaces in the chain, since the equations only involve

(k − 1)- and k-forms and their differentials.

The important property of these spaces is that they admit the cochain projections whose role

we have seen is so important in the theory. First, we describe the case as in [3] whereM = U is
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a bounded polyhedral domain in R
n, and a triangulation T conforming to the boundary. Then

we consider the cochain projections defined in [3, §5.5]:

πk
h : L2Ωk → Λk

h where Λk
h ∈ {PrΛ

k(T ), P−
r Λk(T )}. (5.2)

These operators are by construction uniformly bounded (in L2Ωk, not just HΩk) with respect

to h. Finally, the following theorem explicitly expresses the projection error (and hence, best

approximation error) in terms of powers of the mesh size h and the norms of the solution.

Theorem 5.4 ([3], Theorem 5.9). (i) Let Λk
h be one of the spaces P−

r+1Λ
k(T ) or, if r ≥ 1,

PrΛ
k(T ). Then πk

h is a cochain projection onto Λk
h and satisfies

‖ω − πk
hω‖L2Ωk(U) ≤ chs‖ω‖HsΩk(U), ω ∈ HsΩk(U),

for 0 ≤ s ≤ r + 1. Moreover, for all ω ∈ L2Ωk(U), πk
hω → ω in L2 as h→ 0.

(ii) Let Λk
h be one of the spaces PrΛ

k(T ) or P−
r Λk(T ) with r ≥ 1. Then

‖d(ω − πk
hω)‖L2Ωk(U) ≤ chs‖dω‖HsΩk(U), ω ∈ HsΩk(U),

for 0 ≤ s ≤ r.

These bounded cochain operators are explicitly constructed in [2, 3]. They are constructed by

first taking the natural interpolation operators Ih defined for continuous differential forms [3, p.

335], but combined with smoothings to allow extension to Hs differential forms which may not

necessarily be continuous [3, §5.5].
We now define the polynomial finite element spaces for degree-s Lagrange interpolated

surfaces over the triangulation Th, where s > 1. These spaces generalize the function spaces

considered by Demlow [15, §2.5].

Definition 5.4. Given a triangulation Th of M , Th =
⋃ Th, a tubular neighborhood U contain-

ing both M and Th, we have the normal projection a : U → M , and mappings as : Th → Mh

obtained by degree-s Lagrange interpolations of the component functions of a over each simplex.

Let T̂h be the set of curved simplices that are the images under as of each simplex in Th. We

define

PrΛ
k(T̂h) := (a−1

s )∗PrΛ
k(Th).

We say that if s = r, the finite element space is isoparametric; if s < r, subparametric,

and if s > r, superparametric. Similar definitions hold for the P− spaces.

Note that we do not enforce any more than C0 continuity at the boundaries of the curved sim-

plices (i.e. the surfaces Mh have no breaks, but may not have well-defined tangent hyperplanes

on boundary faces of simplices). As noted before, however, continuity conditions enforced by

the finite element spaces are compatible with this, just as they were for the piecewise linear case.

Now, from PrΛ
k(T̂h), we can further pull these forms back to the surface M via the normal

projections (a|Mh
)−1; this gives the injective morphisms ikh : Λk

h → HΩk(M); it commutes with

the differentials, since the pullbacks do.

The final piece in the theory we need to make this work is the bounded cochain operators.

Motivated by the constructions in [2, 3], we shall assume the following:

Conjecture 5.5. For Mh =
⋃ T̂h, there exist bounded cochain projections

πk′
h : L2Ωk(Mh) → Λk

h



FEEC for Parabolic Evolution Problems on Riemannian Hypersurfaces 825

where (Λh, d) is any of the 2n−1 discrete cochain complexes we have considered. Moreover, using

the normal projection a|Mh
, we can pull forms back from Mh to M . Then πk

h = πk′
h ◦ (a|∗Mh

) :

L2Ωk(M) → Λk
h are also bounded cochain operators [24, Theorem 3.7], as required.

This result does not yet appear in the literature, although it seems likely that a construction

similar to that of Christiansen and Winther [11] is possible. Together with Conjecture 5.5, we

shall assume that the analogue of Theorem 5.4 above holds for T a curved triangulation of a

hypersurface. We note that these assumptions were also needed in [24, 25] for application to

the surface finite element method.

5.4. Estimates for the Mixed Hodge Laplacian problem on manifolds

With this, we can then integrate the terms from [24, Example 4.6] to get the results for

the parabolic equations (or, equivalently, add the variational crimes to [1,22]). Let us consider

now the mixed Hodge Laplacian problem on Riemannian hypersurfaces, considering the setup

in the previous example. Namely, we consider W k = L2Ωk(M), V k = HΩk(M) as above, the

approximating spaces V k−1
h = Pr+1Λ

k−1(T̂h) and V k
h = PrΛ

k(T̂h), and finally the inclusion

and projection morphisms as above (possibly with additional pullbacks for interpolation degree

s > 1). Of course, as mentioned before, these are not the only ways of choosing the spaces, but

we stay with, and make estimates based on, this choice for the remainder of this example (the

same choice made in [24, Example 4.6]). For a function f̃ ∈ L2Ωk(M), we have an approximate

solution (σ′
h, u

′
h, p

′
h) ∈ ihX

′
h to the elliptic problem, on the true subcomplex ihWh (with modified

inner product, as in the theory of §2.4). For f̃ sufficiently regular, and (σ, u, p) satisfying the

regularity estimate [3, 22]

‖u‖Hs+2 + ‖p‖Hs+2 + ‖σ‖Hs+1 ≤ C‖f̃‖Hs , (5.3)

for 0 ≤ s ≤ smax, then, since we are in the de Rham complex, where the cochain projections

are W -bounded, we have the improved error estimates of Arnold, Falk, and Winther [3, §3.5
and p. 342] for the elliptic problem:

‖u− ihu
′
h‖+ ‖p− ihp

′
h‖ ≤ Chr+1‖f̃‖Hr−1 , (5.4)

‖d(u− ihu
′
h)‖+ ‖σ − ihσ

′
h‖ ≤ Chr‖f̃‖Hr−1 , (5.5)

‖d(σ − ihσ
′
h)‖ ≤ Chr−1‖f̃‖Hr−1 . (5.6)

We should also note that Arnold and Chen [1] prove that this also works for a nonzero harmonic

part [1, Theorem 3.1]. Holst and Stern [24] augment these estimates to include the variational

crimes; first they show, for hypersurfaces, the following result for the variational crime ‖I−Jh‖:

Theorem 5.6 ([24], Theorem 4.4). Let M be an oriented, compact m-dimensional hyper-

surface in R
m+1, and Mh be a family of hypersurfaces lying in a tubular neighborhood U of M

transverse to its fibers, such that ‖δ‖L∞(Mh) → 0 and ‖ν − νh‖L∞(Mh) → 0 as h→ 0. Then for

sufficiently small h,

‖I − Jh‖ ≤ C
(

‖δ‖L∞(Mh) + ‖ν − νh‖2L∞(Mh)

)

(5.7)

(recall that ν, the normal to M , is extended to the whole tubular neighborhood, including Mh,

by ∇δ).
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A result of Demlow [15, Proposition 2.3] states that, in the case thatMh is obtained by degree-s

Lagrange interpolation, that ‖δ‖L∞(Mh) < Chs+1 and ‖ν − νh‖L∞(Mh) < Chs. Thus, putting

these results together, we have that

‖I − Jh‖ ≤ Chs+1. (5.8)

For (σ̃h, ũh, p̃h) ∈ Xh, the discrete solution to the elliptic problem now on the approximating

complexes we have chosen, we have the estimates

‖u− ihũh‖+ ‖p− ihp̃h‖+ h (‖d(u− ihũh)‖+ ‖σ − ihσ̃h‖) + h2‖d(σ − ihσ̃h)‖
≤C(hr+1‖f̃‖Hr−1 + hs+1‖f̃‖). (5.9)

We note the terms associated to the different powers of h above correspond exactly to the

breakdown (4.14)-(4.16) above. For the elliptic projection in our problem, we also need to

account for the nonzero harmonic part of the solution. Setting w̃ = PHũ and w̃h = Πhw̃,

we have that our three additional terms (given by Theorem 2.8 above) are the corresponding

best approximation error infv∈V k
h
‖w̃ − v‖V , the ‖I − Jh‖ term, and the data approximation

‖w̃h− i∗hw̃‖h. For the best approximation, we make use of our observation about the inequality

(2.24), in which we may instead use the W -norm instead of the V -norm in the case that the

projections are W -bounded, as they are here in the de Rham complex. Because w̃ is harmonic,

it is smooth (and in particular, in Hr+1), so we may apply Theorem 5.4 to find that it is of order

Chr+1‖w̃‖Hr+1 . The ‖I − Jh‖ term is of order Chs+1 by Theorem 5.6. Finally, by Theorem

2.10 above, we have that data approximation splits into the other two terms. Therefore, to

summarize, we have

Theorem 5.7 (Estimates for the elliptic projection). Consider (σ(t), u(t)), the solution

to the parabolic problem (3.6) and (σh(t), uh(t)) the semidiscrete solution in (4.1) above. Then

we have the following estimates for the elliptic projection (σ̃h, ũh, p̃h):

‖u− ihũh‖+ ‖ihp̃h‖+ h (‖d(u− ihũh)‖ + ‖σ − ihσ̃h‖) + h2‖d(σ − ihσ̃h)‖

≤C
(

hr+1 (‖∆u‖Hr−1 + ‖w̃‖Hr+1) + hs+1 (‖∆u‖+ ‖w̃‖)
)

. (5.10)

(We note p = PH(−∆u) = 0.) We now would like use the our main parabolic estimates to

analyze the analogous quantity

‖u(t)− ihuh(t)‖ + h (‖d(u(t)− ihuh(t))‖ + ‖σ(t)− ihσh(t)‖) + h2‖d(σ(t) − ihσh(t))‖, (5.11)

and its integral, i.e. Bochner L1 norm.

Theorem 5.8 (Main combined estimates for hypersurfaces). Consider all terms involv-

ing the elliptic projection, (σ(t), u(t)), (σh(t), uh(t)) defined as above, and suppose the regularity

estimate (5.3) is satisfied. Then

‖u− ihuh‖L1(W ) + h
(

‖d(u− ihuh)‖L1(W ) + ‖σ − ihσh‖L1(W )

)

+ h2‖d(σ − ihσh)‖L1(W )

≤C
[

hr+1
(

(T + 1)
(

‖∆u‖L1(Hr−1) + ‖w̃‖L1(Hr+1)

)

+ T
(

‖∆ut‖L1(Hr−1) + ‖w̃t‖L1(Hr+1)

))

+ hs+1
(

(T + 1)
(

‖∆u‖L1(W ) + ‖w̃‖L1(W )

)

+ T
(

‖∆ut‖L1(W ) + ‖w̃t‖L1(W )

))

]

.
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(We abbreviate Lp(I,X) as Lp(X).) The constants T , of course, can be further rolled into the

constant C. We remark that in previous results, factors of T show up on the ‖∆ut‖ terms, and,

heuristically speaking, this is due to the ut being a physically different quantity, namely, a rate

of change. However, the appearance of the factor of T on the ‖∆u‖ comes from the harmonic

approximation error p̃h, which is, physically speaking, a harmonic source term. The details

depend on the nature of the approximation operators Πh.

Proof. By the triangle inequality, we have that (5.11) breaks up into something of the form

(5.9) (taking (σ̃h, ũh, p̃h) to be elliptic projection with f̃ = −∆u(t) and p̃ = 0; here f̃ is not to

be confused with the parabolic source term f(t)) and

‖ih‖
(

‖θ(t)‖h + h(‖ε(t)‖h + ‖du(t)‖h) + h2‖dε(t)‖h
)

, (5.12)

recalling the error quantities defined in (4.8)-(4.11). Now, substituting our estimates (4.14)-

(4.16), we then have

‖θ(t)‖h ≤ ‖ρt‖L1(Wh) + ‖p̃h‖L1(Wh) + ‖(Πh − i∗h)ut‖L1(Wh)

≤C
(

‖ihũh,t − ut‖L1(W ) + ‖p̃h‖L1(Wh) + ‖I − Jh‖ ‖ut‖L1(W ) + ‖(Πh − i∗h)ut‖L1(Wh)

)

≤C1h
r+1
(

‖∆u‖L1(Hr−1) + ‖∆ut‖L1(Hr−1) + ‖w̃‖L1(Hr+1) + ‖w̃t‖L1(Hr+1)

)

+ C2h
s+1
(

‖∆u‖L1(W ) + ‖∆ut‖L1(W ) + ‖w̃‖L1(W ) + ‖w̃t‖L1(W )

)

. (5.13)

For ‖dθ‖h + ‖ε‖h, the computation is almost exactly the same, except with possibly different

constants, to account for using L2 Bochner norms, and that :

‖dθ(t)‖h + ‖ε(t)‖h
≤C
(

‖ihũh,t − ut‖L2(W ) + ‖p̃h‖L2(Wh) + ‖I − Jh‖ ‖ut‖L2(W ) + ‖(Πh − i∗h)ut‖L2(Wh)

)

≤C3h
r+1
(

‖∆u‖L2(Hr−1) + ‖∆ut‖L2(Hr−1) + ‖w̃‖L2(Hr+1) + ‖w̃t‖L2(Hr+1)

)

+ C4h
s+1
(

‖∆u‖L2(W ) + ‖∆ut‖L2(W ) + ‖w̃‖L2(W ) + ‖w̃t‖L2(W )

)

.

These terms are actually absorbed into the lower order terms by the extra factor of h, due

to consisting entirely of the same order terms except using a different norm. However, the

situation is slightly different for ‖dε‖h; namely we use (5.5) to get a term of order hr, and the

d∗h on the variational crime part also removing a factor of h:

‖dε(t)‖h ≤C
(

‖ψt‖L2(Wh) + ‖d∗h(Πh − i∗h)ut‖L2(Wh)

)

≤C
(

‖ihσ̃h,t − σt‖L2(W ) + ‖I − Jh‖ ‖σt‖L2(W ) + ‖d∗h(Πh − i∗h)ut‖L2(Wh)

)

≤C5h
r
(

‖∆ut‖L2(Hr−1) + ‖w̃‖L2(Hr+1)

)

+ C6h
s
(

‖∆u‖L2(W )

+ ‖∆ut‖L2(W ) + ‖w̃‖L2(W ) + ‖w̃t‖L2(W )

)

.

However, we see that multiplying by h2, this term also gets absorbed; thus we only need to

consider the error from ‖dθ‖h in further calculation of the combined estimate. We have, thus
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far:

‖u(t)− ihuh(t)‖ + h (‖d(u(t)− ihuh(t))‖ + ‖σ(t)− ihσh(t)‖) + h2‖d(σ(t)− ihσh(t))‖

≤C1h
r+1
(

‖∆u‖L1(Hr−1) + ‖∆ut‖L1(Hr−1) + ‖w̃‖L1(Hr+1) + ‖w̃t‖L1(Hr+1)

)

+ C2h
s+1
(

‖∆u‖L1(W ) + ‖∆ut‖L1(W ) + ‖w̃‖L1(W ) + ‖w̃t‖L1(W )

)

+ C
(

hr+1(‖∆u(t)‖Hr−1 + ‖w̃(t)‖Hr+1) + hs+1(‖∆u(t)‖+ ‖w̃(t)‖)
)

. (5.14)

Integrating with respect to t from 0 to T , we find that the already-present Bochner norms are

constant and thus introduce an extra factor of T . Absorbing the constants except T gives the

result. �

With the above, we also have an interesting result regarding the optimal rate of convergence,

which warrants stating as a separate theorem.

Theorem 5.9. The optimal rate of convergence occurs when the polynomial degree of the finite

element functions matches the degree of polynomials used to approximate the hypersurface (i.e.,

when r = s, above).

This tells us, for example, that it is not beneficial to use finite elements of higher than linear

order on, say, a (piecewise linear) triangulation. Similar observations have been made in [15]

for the surface finite element method (SFEM). This is also consistent with observations in iso-

geometric analysis (IGA), which is a theoretical and computational framework for integrating

finite element methods into CAD modeling software [12, 26] by using NURBS (Non-Uniform

Rational B-Splines) as bases for finite element-type methods. SFEM and IGA can be viewed as

distinct alternatives to the methods described in the present article. SFEM has been primarily

used for two-dimensional problems, whereas IGA is particularly well-suited to structural me-

chanics problems. However, both are more broadly applicable, and can potentially be applied

to problems on domains such as those considered in this article.

Finally, to put these estimates into some perspective and help develop some intuition for

their meaning, we present the generalization of the estimates of Thomée.

Corollary 5.2 (Generalization of [1, 22, 35]). Focusing on just the components u and σ

separately, we have the following estimates (assuming the regularity estimates (5.3) are satis-

fied), and supposing r = s, i.e., the finite element spaces considered consist of polynomials of

the same degree as the interpolation on the surface:

‖u(t)− ihuh(t)‖ ≤ Chr+1

(

‖u(t)‖Hr+1 +

∫ t

0

(‖u(s)‖Hr+1 + ‖ut(s)‖Hr+1 ) ds

)

,

‖σ(t)− ihσh(t)‖ ≤ Chr+1

(

‖u(t)‖Hr+2 +

(
∫ t

0

(

‖u(s)‖2Hr+1 + ‖ut(s)‖2Hr+1

)

ds

)1/2
)

.

This easily leads to an estimate in a Bochner L∞ norm (simply take the sup in the non-Bochner

norm terms and t = T in the integrals); this shows that the error in time is small at every t ∈ I.

Similar estimates hold for L2(I,W ) norms.
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Proof. We consider the improved error estimate and variational crimes in u and σ separately.

We first have, by expanding the terms in (4.20) as in the derivation of (5.13),

‖u(t)− ihuh(t)‖ ≤ C
(

‖u(t)− ihũh(t)‖+ ‖θ(t)‖
)

≤ Chr+1

(

‖∆u(t)‖Hr−1 + ‖w̃(t)‖Hr+1

+

∫ t

0

(‖∆u(s)‖Hr−1 + ‖∆ut(s)‖Hr−1 + ‖w̃(s)‖Hr−1 + ‖w̃t(s)‖Hr−1 ) ds

)

.

The result follows by noting that ‖u‖Hr+1 includes estimates on all the second derivative terms

in u, and w̃ = PHu, so those two norms can all be combined (with possibly different constants).

Next, we consider σ. The improved error estimates [3, p. 342] imply that if we do not combine

estimates involving du with those of σ for the modified solution, and f̃ is regular enough to use

the Hr- rather than Hr−1-norm, then we can gain back one factor of h, so that it is of order

hr+1 (rather than hr as in (5.5)). On the other hand, the elliptic projection error ‖ε(t)‖ still

can be taken along with ‖dσ(t)‖ and was of order hr+1 to begin with. Thus, applying (4.23),

we have

‖σ(t)− ihσh(t)‖ ≤ C
(

‖σ(t)− ihσ̃h(t)‖ + ‖ε(t)‖+ ‖du(t)‖
)

≤Chr+1

(

‖∆u(t)‖Hr + ‖w̃(t)‖Hr+1 +

[
∫ t

0

(

‖∆u(s)‖2Hr−1

+ ‖∆ut(s)‖2Hr−1 + ‖w̃(s)‖2Hr−1 + ‖w̃t(s)‖2Hr−1

)

ds

]1/2)

≤Chr+1

(

‖u(t)‖Hr+2 +

(
∫ t

0

(

‖u(s)‖2Hr+1 + ‖ut(s)‖2Hr+1

)

ds

)1/2)

,

where we have used the same consolidation techniques for the norms on ∆u and w̃ into norms

on u as before. �

We see the variational crimes (arising from the extra p̃h) account for the sole additional term

in the integrals. This cannot be improved without further information on the projections Πh.

Otherwise, for r = 1, which correspond to piecewise linear discontinuous elements for 2-forms

(u), and piecewise quadratic elements for 1-forms (σ) with normal continuity (Raviart-Thomas

elements), as studied by Thomée, we obtain the estimates he derived (and since the p̃h is not

there in his case, we have that the extra terms with u do not appear under the integral sign).

6. Notes on Discretizing the Equation

We end with some remarks on how to actually prepare the equations for actual numerical

computation. We do not give an error analysis for a fully discretized problem, saving that for

future work. We return to the evolution equation for both σ and u, (3.6) above, which we recall

here:
〈σt, ω〉 + 〈dσ, dω〉 = 〈f, dω〉, ∀ ω ∈ V k−1, t ∈ I,

〈ut, ϕ〉 + 〈dσ, ϕ〉 + 〈du, dϕ〉 = 〈f, ϕ〉, ∀ ϕ ∈ V k, t ∈ I,

u(0) = g.

(6.1)

Given Sh ⊆ V k = HΩ2(M) and Hh ⊆ V k−1 = HΩ1(M), we choose bases, and use the

semidiscrete equations (1.4), which we recall here (setting U to be the coefficients of uh in the
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basis for Sh, and Σ to be the coefficients of σh in the basis for Hh)

d

dt

(

D −BT

0 A

)(

Σ

U

)

=

(

0 0

−B −K

)(

Σ

U

)

+

(

0

F

)

. (6.2)

This may be discretized via standard methods for ODEs. For example, if we use the backward

Euler method, we consider sequences (Σn, Un) in time, and then rewrite the derivative instead

as a finite difference, evaluating the vector field portion on the right side at timestep n + 1,

taking M =

(

D −BT

0 A

)

:

1

∆t
M

((

Σn+1

Un+1

)

−
(

Σn

Un

))

=

(

0 0

−B −K

)(

Σn+1

Un+1

)

+

(

0

Fn+1

)

,

or
(

M +∆t

(

0 0

B K

))(

Σn+1

Un+1

)

=M

(

Σn

Un

)

+∆t

(

0

Fn+1

)

.

We now have written the system as a sparse matrix times the unknown (Σn+1, Un+1). This

allows us to solve the system directly using sparse matrix algorithms without explicitly inverting

any matrices, making the iterations efficient.

7. Conclusion and Future Directions

We have seen that the abstract theory of Hilbert complexes, as detailed by Arnold, Falk,

and Winther [3], and Bochner spaces, as detailed in Gillette, Holst, and Zhu [22] and Arnold

and Chen [1], has been very useful in clarifying the important aspects of elliptic and parabolic

equations. The mixed formulation gives great insight into questions of existence, uniqueness,

and stability of the numerical methods (linked by the cochain projections πh). The method of

Thomée [35] allows us to leverage the existing theory for elliptic problems to apply to parabolic

problems, taking care of the remaining error terms by the use of differential inequalities and

Grönwall estimates (in the important error evolution equations (4.12) above). Incorporating

the analysis of variational crimes allow us to carry this theory over to the case of surfaces and

their approximations.

We remark on some possible future directions for this work. Some existing surface finite

elements for parabolic equations have been studied by Dziuk and Elliott [18], and much other

work by Dziuk, Elliott, Deckelnick [13,14], which actually treat the case of an evolving surface,

and treat a nonlinear equation, the mean curvature flow. Generally speaking, this translates

to an additional time dependence for evolving metric coefficients, and a logical place to start

is in the Thomée error evolution equations (4.12). Nonlinear evolution equations for evolving

metrics also suggests the Ricci flow [9,10,30], instrumental in showing the Poincaré conjecture.

The challenge there, besides nonlinearity, is that tensor equations do not necessarily fit in the

framework for FEEC. On the other hand, the Yamabe flow [34], which solves for a conformal

factor for the metric (and is equivalent to the Ricci flow in dimension 2) suggests an interesting

nonlinear scalar evolution equation for which this analysis may be useful.

Gillette, Holst, and Zhu [22] also analyzed hyperbolic equations in this framework, and it

would be interesting and useful to analyze methods on surfaces (including the evolving case),

as well as taking a more integrated approach in spacetime. This is usually taken care of
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using the discrete exterior calculus (DEC), the finite-difference counterpart to FEEC to analyze

hyperbolic equations [29].
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