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Abstract

This paper proves the saturation assumption for the nonconforming Morley finite ele-

ment discretization of the biharmonic equation. This asserts that the error of the Morley

approximation under uniform refinement is strictly reduced by a contraction factor smaller

than one up to explicit higher-order data approximation terms. The refinement has at

least to bisect any edge such as red refinement or 3-bisections on any triangle.

This justifies a hierarchical error estimator for the Morley finite element method, which

simply compares the discrete solutions of one mesh and its red-refinement. The related

adaptive mesh-refining strategy performs optimally in numerical experiments. A remark

for Crouzeix-Raviart nonconforming finite element error control is included.

Mathematics subject classification: 65M12, 65M60, 65N25.
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1. Introduction

The saturation assumption is made in many engineering finite element applications and is

often observed in the asymptotic regime for very fine meshes. The mathematical justification is

less obvious and often requires restrictions on the mesh-refinement and on extra data oscillations

or data approximation terms. Given the two finite element approximations uH and uh with

respect to a coarse mesh TH and its overall refinement Th to the exact solution u, the errors in

the broken energy norm ‖ • ‖NC (with respect to piecewise Sobolev norms) satisfies

‖u− uh‖NC ≤ ̺ ‖u− uH‖NC + C data apx(TH). (1.1)

with positive constants ̺ < 1 and C < ∞. The data approximation terms data apx(TH) read

‖Hα f‖ for the given right-hand side f ∈ L2(Ω) of the PDE in the L2 norm ‖•‖ over the domain

Ω weighted by the piecewise constant mesh-size H . They can be evaluated explicitly and reflect

the mesh-refinement to resolve the local mesh refinement through the variable mesh-size H and
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are of higher order with α = 2 for the Morley and with α = 1 of first-order for the Crouzeix-

Raviart finite element method. Those terms are efficient in the sense data apx(TH) is controlled

by the error ‖u−uh‖NC plus data oscillation terms like ‖Hα(f−Π0f)‖ with the piecewise integral

means Π0f of f . It is known that ‖Hα(f − Π0f)‖ can dominate the error and even uH = uh
is possible for highly oscillating data f ∈ L2(Ω) in a possibly very large computational regime

which makes (1.1) less useful, so this paper aims at applications for piecewise smooth data when

this term is negligible. Saturation results of the type (1.1) are justified for the conforming finite

element method [5, 12], where counterexamples are characterized for very coarse meshes when

(1.1) fails even for a constant right-hand side.

In contrast to [12] for conforming FEMs and second-order problems, this paper asserts

saturation for uniform mesh-refinement rather than for an increased polynomial degree. For

conforming finite elements for the Poisson equation, (1.1) was recently characterized in [5]. It

came as a surprise to the authors that there are no restrictions on the mesh for the noncon-

forming Morley or Crouzeix-Raviart finite element schemes as all. Moreover, for those schemes,

the main result (1.1) of this paper is not restricted to newest-vertex bisection or red-green-blue

refinement, but is also valid for more exotic refinement strategies as long as the family T of trian-

gulations under consideration is shape regular—so unstructured grids with local mesh-refining

are included.

An immediate consequence of saturation is hierarchical error control with a justification via

a triangle inequality. This and (1.1) imply

‖u− uH‖NC ≤ ‖u− uh‖NC + ‖uH − uh‖NC ≤ ̺ ‖u− uH‖NC + η + µ

for the hierarchical error estimator η := ‖uH − uh‖NC and the data approximation term µ :=

C data apx(TH). Since ̺ < 1, this is reliability in the form

‖u− uH‖NC ≤ Crel(η + µ) with reliability constant Crel := 1/(1− ̺). (1.2)

The point is that (1.2) is not an asymptotic result and holds for all coarse meshes TH with

the extra cost of calculating uh with respect to a uniform refinement Th thereof. Moreover,

the regularity of the exact solution does not enter at all and the higher-order term µ depends

explicitly on the data and can be computed. In conclusion, this paper justifies hierarchical error

control in the form

‖u− uH‖NC ≤ C1‖uh − uH‖NC + C2data apx(TH) (1.3)

with universal reliability constants C1 and C2. The estimate (1.3) serves as a basis of further

more local versions of hierarchical error control with less computational costs as outlined in [29]

for conforming finite elements in second-order problems.

The remaining parts of this paper are organized as follows. Section 2 establishes the notation

and the main saturation result (1.1) for the biharmonic equation with homogeneous boundary

conditions and its numerical simulation with the Morley finite element method. The arguments

rely on a new discrete efficiency and a known quasi-orthogonality estimate. Section 3 states the

hierarchical error control (1.3) for the Morley finite element method, which is exemplified in

numerical experiments in Section 4. Some comments on the second-order Poisson model prob-

lem and its numerical simulation with the Crouzeix-Raviart finite element method in Section 5

conclude the paper.

The results are given in two space dimensions for the simplicity of the presentation but are

expected to carry over in higher space dimensions.
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Standard notation on Lebesgue and Sobolev spaces applies and (·, ·)L2(Ω) denotes the L2

inner product with norm ‖·‖ := ‖·‖L2(Ω) over the domain Ω.

The integral mean is denoted by
ffl

. The dot · denotes the product of two one-dimensional

lists of the same length while the colon denotes the Euclidean product of matrices, e.g., a · b =

a⊤b ∈ R for a, b ∈ R
2 and A : B =

∑2
j,k=1 AjkBjk for 2× 2 matrices A, B.

The notation a . b abbreviates a ≤ Cb for a positive generic constant C that does not

depend on the mesh-size. The notation a ≈ b stands for a . b . a.

The piecewise constant mesh-size function h ∈ P0(Th) is defined by h|T := |T |1/2 for any

triangle T of area |T | in Th. The L
2 projection onto piecewise constants with respect to a mesh

Th with mesh-size function h is denoted by Π0,h. The measure |·| is context-sensitive and refers

to the length of an edge or the area of some domain or the modulus of a real number or the

Euclidean length of a vector.

Fig 1.1. Mnemonic diagrams of the Morley FEM (left) and the Crouzeix-Raviart FEM (right).

2. The Saturation Property for the Morley FEM

Given f ∈ L2(Ω), the biharmonic problem seeks u ∈ H2(Ω) with

∆2u = f in Ω and u =
∂u

∂ν
= 0 on ∂Ω.

Its weak form incorporates the boundary conditions in the space V := H2
0 (Ω) and then seeks

u ∈ V with

(D2u,D2v)L2(Ω) = (f, v)L2(Ω) for all v ∈ V. (2.1)

Given a regular triangulation Th of the bounded Lipschitz domain Ω with polygonal boundary

∂Ω into triangles with the set of edges Fh and the set of vertices Nh, let Fh(Ω) and Nh(Ω) denote

the sets of interior edges and interior vertices. Throughout the paper, Pk(Th) denotes the space

of piecewise polynomials with respect to Th of degree ≤ k and ∇NC (resp. D2
NC

) denotes the

piecewise action of the gradient (resp. the Hessian). The Morley finite element space [23] reads

M(Th) :=







v ∈ P2(Th)

∣

∣

∣

∣

∣

∣

v is continuous at Nh(Ω) and vanishes at Nh(∂Ω);

∇NCv is continuous at the interior edges’ midpoints

and vanishes at the midpoints of the edges of ∂Ω







.

The Morley finite element discretisation of (2.1) seeks uh ∈M(Th) with

(D2
NC
uh, D

2
NC
vh)L2(Ω) = (f, vh)L2(Ω) for all vh ∈M(Th). (2.2)

A priori error estimates (such as (2.3) below) are proved in [16, 21, 27]. The Morley FEM

was also studied with regard to its superconvergence [9, 18], lower discretization error bounds

[22], eigenvalue problems [25], and lower eigenvalue bounds [4, 17, 30]. Furthermore, there are
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modified versions of the Morley FEM for singular perturbation problems [10,24] or anisotropic

meshes [26].

Let T denote a family of shape-regular triangulations of Ω. A triangulation Th ∈ T is called

a uniform refinement of TH ∈ T if Th is a refinement of TH by the (successive) application of

some refinement rule that bisects each edge in FH . The main result verifies (1.1) for the Morley

finite element method.

Theorem 2.1 (Saturation). There exist mesh-size independent constants 0 < ρ < 1 and

0 < C < ∞ which depend on T but neither on any mesh-size nor on any number of triangles

such that the following holds. Let Th ∈ T be a uniform refinement of the regular triangulation

TH ∈ T with mesh-size function H ∈ P0(TH). The discrete solutions uH ∈ M(TH) and

uh ∈M(Th) satisfy

‖D2
NC

(u− uh)‖
2 ≤ ρ ‖D2

NC
(u− uH)‖2 + C ‖H2f‖2.

Classical a priori error estimates [21, 27] state linear convergence

‖D2
NC

(u− uh)‖ ≤ Ch (‖u‖H3(Ω) + h‖f‖) (2.3)

and one observes that the term C ‖H2f‖2 in Theorem 2.1 is of higher order under uniform mesh-

refinement compared with the piecewise constant approximation of the Hessian. The required

H3 regularity for the a priori estimate (2.3) is for example satisfied if Ω is convex [3, 14].

The remaining parts of this section are devoted to the proof of Theorem 2.1. The proof

analyzes the explicit residual-based error estimator from [1, 19]. The unit tangent vector of an

edge E is denoted by τE . For any interior edge E ∈ Fh(Ω), there exist two adjacent triangles

T+ and T− such that E = ∂T+ ∩ ∂T−. Given any (possibly vector-valued) function v, define

the jump of v across E by [v]E := v|T+
− v|T−

. Let for each edge E ∈ Fh, the edge-patch be

denoted by

ωE,h := int(
⋃

{T ∈ Th | E is an edge of T }).

The explicit residual-based error estimator reads

η2h :=
∑

T∈Th

(

|T |2‖f‖2L2(T ) +
∑

E∈F(T )

|E| ‖[D2
NC
uh]EτE‖

2
L2(E)

)

.

The global error estimator ηh is known [1, 19] to be reliable in the sense that there exists a

mesh-size independent constant Crel such that

‖D2
NC

(u− uh)‖
2 ≤ Crelη

2
h. (2.4)

The proof of Theorem 2.1 is based on the following two lemmas. The first lemma states

quasi-orthogonality which has been proven by [20] and [13].

Lemma 2.1 (Quasi-orthogonality, Lemma 3.4 of [20]). Let Th ∈ T be a uniform refine-

ment of TH ∈ T. The discrete solutions uH ∈ M(TH) and uh ∈ M(Th) satisfy for a constant

Cqo ≈ 1 that

|(D2
NC

(u − uh), D
2
NC

(uh − uH))L2(Ω)|≤ Cqo

∑

T∈TH\Th

|T | ‖f‖L2(T )‖D
2
NC

(u− uh)‖L2(T ).
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The second lemma states discrete efficiency of edge-residuals. This notion of discrete effi-

ciency was first introduced by [8] for second-order problems. The version stated here for the

Morley FEM appears to be new.

Lemma 2.2 (Discrete efficiency). Let Th ∈ T be a uniform refinement of TH ∈ T with

discrete solutions uh ∈M(Th) and uH ∈M(TH). Any edge E ∈ FH in the coarser triangulation

satisfies the discrete efficiency

|E| ‖[D2
NC
uH ]EτE‖

2
L2(E) . ‖D2

NC
(uh − uH)‖2L2(ωE,H).

Proof. Let ♭E ∈ P1(Th) denote the piecewise affine function with respect to the fine trian-

gulation Th with ♭E(mid(E)) = 2 and ♭E(z) = 0 for all vertices z ∈ Nh \ {mid(E)} in the fine

triangulation which are different from mid(E). This discrete bubble function satisfies

supp ♭E = ωE,H , ‖♭E‖L∞(Ω) = 2, and

 

E

♭E ds = 1.

Define ψE := (♭E [D
2
NC
uH ]EτE) ∈ H1

0 (ωE,H ;R2). Since [D2
NC
uH ]E is constant along E, a direct

calculation with the property ‖♭
1/2
E ‖2L2(E) =

´

E ♭E ds = |E| leads to

‖[D2
NC
uH ]EτE‖

2
L2(E) = |E| |[D2

NC
uH ]EτE |

2 = ‖♭
1/2
E [D2

NC
uH ]EτE‖

2
L2(E).

The Curl of a vector field β ∈ H1(Ω;R2) is defined as

Curlβ :=

(

−∂β1/∂x2 ∂β1/∂x1
−∂β2/∂x2 ∂β2/∂x1

)

.

An inverse inequality on the edge-patch ωE,H proves

‖CurlψE‖L2(ωE,H) = |[D2
NC
uH ]EτE | ‖Curl ♭E‖L2(ωE,H) . |[D2

NC
uH ]EτE |. (2.5)

An integration by parts reveals

‖♭
1/2
E [D2

NC
uH ]EτE‖

2
L2(E) =

ˆ

E

(

ψE · [D2
NC
uH ]EτE

)

ds

=

ˆ

ωE,H

D2
NC

(uh − uH) : CurlψE dx.

(The last identity follows with the L2-orthogonality of CurlψE to D2
NC
uh.) The Cauchy in-

equality and the inverse estimate (2.5) prove that this is bounded by

‖D2
NC

(uh − uH)‖L2(ωE,H)‖CurlψE‖L2(ωE,H)

. ‖D2
NC

(uh − uH)‖L2(ωE,H)|[D
2
NC
uH ]EτE |

= ‖D2
NC

(uh − uH)‖L2(ωE,H)|E|−1/2‖[D2
NC
uH ]EτE‖L2(E).

The combination of the preceding estimates concludes the proof. �

Proof. [Proof of Theorem 2.1] The reliability (2.4) and the discrete efficiency of Lemma 2.2

together with the finite overlap of edge-patches lead to

‖D2
NC

(u − uH)‖2 . ‖H2f‖2 +
∑

E∈F(T )

|E| ‖[D2
NC
uh]EτE‖

2
L2(E)

. ‖H2f‖2 + ‖D2
NC

(uh − uH)‖2.
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Thus, there exists some constant c < 1 such that

c‖D2
NC

(u− uH)‖2 ≤ ‖H2f‖2 + ‖D2
NC

(uh − uH)‖2.

The quasi-orthogonality of Lemma 2.1 and the Young inequality for any 0 < α < c/Cqo yield

‖D2
NC

(uh − uH)‖2

= ‖D2
NC
(u − uH)‖2 − ‖D2

NC
(u− uh)‖

2 − 2(D2
NC

(u− uh), D
2
NC

(uh − uH))L2(Ω)

≤ ‖D2
NC
(u − uH)‖2 − (1− αCqo)‖D

2
NC

(u− uh)‖
2 + Cqo/α‖H

2f‖2.

The combination of the foregoing two displayed inequalities shows

c ‖D2
NC

(u− uH)‖2 ≤ ‖D2
NC

(u− uH)‖2 − (1− αCqo)‖D
2
NC

(u− uh)‖
2 + (1 + Cqo/α)‖H

2f‖2.

This is equivalent to

‖D2
NC

(u− uh)‖
2 ≤

1− c

1− αCqo
‖D2

NC
(u− uH)‖2 +

α+ Cqo

α(1 − αCqo)
‖H2f‖2.

Any choice of α < c/Cqo leads to ρ := (1− c)
/

(1− αCqo) < 1 and

‖D2
NC

(u− uh)‖
2 ≤ ρ ‖D2

NC
(u− uH)‖2 +

α+ Cqo

α(1 − αCqo)
‖H2f‖2.

3. Hierarchical a Posteriori Error Control

The hierarchical error control through (1.3) is established in this section for the Morley

finite element scheme for the biharmonic equation in the notation of the previous section. Let

η := ‖D2
NC

(uh − uH)‖ and µ := ‖H2f‖ (3.1)

with the right-hand side f ∈ L2(Ω) and its oscillations with respect to the mesh TH , namely

osc(f,TH) := ‖H(f −Π0,Hf)‖.

The saturation property implies the reliability of the hierarchical error estimator η + µ and

efficiency up to data oscillations.

Theorem A (Hierarchical error control). Let Th ∈ T be a uniform refinement of the

regular triangulation TH ∈ T. Then the error estimator η + µ defined in (3.1) is reliable and

efficient in the sense that

‖D2
NC

(u− uH)‖ . η + µ . ‖(1−Π0,H)D2
NC
u‖+ osc(f,TH).

Proof. The combination of the saturation property from Theorem 2.1 with the Young and

triangle inequalities proves for any δ > 0 that

‖D2
NC

(u− uH)‖2 ≤ (1 + δ/2)‖D2
NC

(u− uh)‖
2 + (1 + 1/(2δ))‖D2

NC
(uh − uH)‖2

≤ (1 + δ/2)
(

ρ‖D2
NC
(u − uH)‖2 + C‖H2f‖2

)

+ (1 + 1/(2δ))‖D2
NC
(uh − uH)‖2.
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The choice of sufficiently small δ such that (1 + δ/2)ρ < 1 implies

‖D2
NC

(u− uH)‖ . ‖D2
NC

(uh − uH)‖ + ‖H2f‖.

This proves the reliability. The efficiency of the term ‖H2f‖ is proved in [1, 19, 29]. The

efficiency of the hierarchical error estimator therefore follows from the triangle inequality and

the best-approximation property from [16]

‖D2
NC

(u− uH)‖ . ‖(1−Π0,H)D2
NC
u‖+ osc(f,TH), and

‖D2
NC

(u− uh)‖ . ‖(1−Π0,h)D
2
NC
u‖+ osc(f,Th).

Remark 3.1 (Other mesh-refinement strategies). The notion of uniform refinement in

the main theorems is quite general in that it only requires bisection of edges in the triangu-

lations which preserves the shape-regularity. Corresponding results for conforming FEMs [7]

require newest-vertex bisection or red-green-blue refinement and have to avoid special mesh

configurations. The result in this paper can dispense with any restriction on the mesh.

4. Numerical Experiments

The aim of this section is to gain empirical insight in the efficiency index of the hierar-

chical error estimator and the performance of adaptive mesh refinement driven by the local

contributions of the hierarchical error estimator.

Fig. 4.1. Red-refinement of a triangle.

Fig. 4.2. Left: initial mesh. Right: adaptive mesh generated by AFEM Variant 2 in level 10

of the adaptive loop; the number of triangles is 2730.



840 C. CARSTENSEN, D. GALLISTL AND Y.Q. HUANG

4.1. Numerical Realization

Consider the domain Ω = (−1, 1)2 \ (conv{(0, 0), (1,−1), (1, 0)}). Define ω := 7π/4 and

α := 0.50500969. The exact singular solution [15] is given in polar coordinates by

u(r, θ) = (r2 cos2 θ − 1)2 (r2 sin2 θ − 1)2 r1+α g(θ)

for

g(θ) =

[

sin((α− 1)ω)

α− 1
−

sin((α + 1)ω)

α+ 1

]

(

cos((α− 1)θ)− cos((α + 1)θ)
)

−

[

sin((α − 1)θ)

α− 1
−

sin((α + 1)θ)

α+ 1

]

(

cos((α− 1)ω)− cos((α+ 1)ω)
)

.

The initial mesh is displayed in Fig. 4.2. The hierarchical error estimator is computed with

respect to one red-refinement, where each triangle is subdivided into four congruent children as

depicted in Fig. 4.1. The utilized Matlab programs for the Morley finite element method are

described in [6].

4.2. Uniform Mesh Refinement

On a sequence of quasi-uniform meshes, the error estimator contribution µ is higher order

compared to the error u − uH measured in the discrete energy norm. Fig. 4.3 displays the

convergence of the error and the error estimator contributions with respect to the number of

degrees of freedom. The convergence rate is observed to be suboptimal. Fig. 4.4 displays the

efficiency indices. The ratio of (η + µ) and the true energy error lies between 0.8 and 0.9. The

quotient of η and the true error is between 0.7 and 0.9. The efficiency index for µ converges to

zero, which reflects the fact that µ is of higher order for uniform meshes.

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

ndof

‖D2
NC

(u − uH )‖

η + µ

η

slope−1/2

Fig. 4.3. Convergence history for uniform mesh-refinement.

4.3. Adaptive Mesh Refinement

The numerical experiments in this subsection are devoted to the empirical study of the per-

formance of self-adapted mesh-refinement based on the following refinement indicators, defined
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102 103 104 105 106

0

1

2

3

ndof

(η + µ)/eH (uniform)

η/eH (uniform)

µ/eH (uniform)

(η + µ)/eH (AFEM Var 1)

η/eH (AFEM Var 1)

µ/eH (AFEM Var 1)

(η + µ)/eH (AFEM Var 2)

η/eH (AFEM Var 2)

µ/eH (AFEM Var 2)

Fig. 4.4. Efficiency indices for uniform mesh-refinement, adaptive mesh-refinement

(Variant 1) and adaptive mesh-refinement (Variant 2) with eH := ‖D2
NC

(u− uH)‖.

Input. T0 ∈ T and 0 < θ ≤ 1

for ℓ = 0, 1, 2, . . .

Solve. Set TH := Tℓ and compute Morley FEM solution uH ∈M(TH).

Estimate. Compute Morley FEM solution uh ∈ M(Th) on a uniform re-

finement Th of TH and local error estimator contributions η2ℓ (T ), µ
2
ℓ(T ) for

all T ∈ TH .

Mark. Compute a subset M ⊆ Tℓ of (almost) minimal cardinality such that

θ
∑

T∈Tℓ

(η2ℓ (T ) + µ2
ℓ(T )) ≤

∑

T∈M

(η2ℓ (T ) + µ2
ℓ(T )); (Variant 1)

θ
∑

T∈Tℓ

η2ℓ (T ) ≤
∑

T∈M

η2ℓ (T ). (Variant 2)

Refine. Compute a refinement Tℓ+1 of Tℓ of minimal cardinality such that

M ∩ Tℓ+1 = ∅ using newest-vertex bisection [2, 28].

end for

Output. Sequences of finite element solutions and meshes.

Fig. 4.5. The adaptive algorithm in its two variants.

for any T ∈ TH by

η2ℓ (T ) := ‖D2
NC
(uh − uH)‖2L2(T ) and µ2

ℓ(T ) := ‖H2f‖2L2(T ).

For a given marking parameter 0 < θ ≤ 1, the adaptive finite element method (AFEM) starts

from a coarse initial triangulation T0 and runs the loop from Fig. 4.5. In the experiments, the

bulk parameter is θ = 0.3. In Variant 1, the local contributions of η2ℓ (T ) + µ2
ℓ(T ) are used as

refinement indicators for the Dörfler marking [11]. In Variant 2, only the local contributions

of η2ℓ (T ) are used as refinement indicators. Fig. 4.2 displays an adaptive mesh generated by

Variant 2. Fig. 4.6 displays the convergence of the error and the error estimator contributions
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102 103 104 105 106

10−3

10−2

10−1

100

101

ndof

‖D2

NC(u− uH)‖ (Variant 1)

η + µ (Variant 1)

η (Variant 1)

µ (Variant 1)

‖D2

NC(u− uH)‖ (Variant 2)

η + µ (Variant 2)

η (Variant 2)

µ (Variant 2)

slope−1/2

Fig. 4.6. Convergence history plot for adaptive mesh-refinement.

with respect to the number of degrees of freedom. The convergence rate is observed to be

optimal for both Variant 1 and Variant 2. The efficiency indices are displayed in Fig. 4.4. The

efficiency indices of µ are larger than in the case of uniform-mesh refinement, but seem converge

to zero also in this case.

5. Saturation for the Crouzeix-Raviart FEM

This section briefly discusses the saturation (1.1) for the nonconforming Crouzeix-Raviart

discretisation of the second-order Laplace equation. Given f ∈ L2(Ω), the Poisson model

problem seeks u ∈ H1
0 (Ω) with

(∇u,∇v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω).

Given a regular triangulation Th of Ω, the Crouzeix-Raviart finite element space reads

CR1
0(Th) :=

{

v ∈ P1(Th)

∣

∣

∣

∣

v is continuous at the interior edges’ midpoints

and vanishes at the midpoints of the edges of ∂Ω

}

.

The nonconforming FEM seeks uh ∈ CR1
0(Th) such that

(∇NCuh,∇NCvh)L2(Ω) = (f, vh)L2(Ω) for all vh ∈ CR1
0(Th).

A direct extension of the results of this paper to the nonconforming P1 FEM for the Poisson

problem leads to the following result–the proof is omitted for brevity.

Theorem 5.1. There exist mesh-size independent constants 0 < ρ < 1 and 0 < C < ∞ such

that the following holds. Let Th ∈ T be a uniform refinement of the regular triangulation TH ∈ T

with mesh-size function H ∈ P0(TH). The discrete solutions uH ∈ CR1
0(TH) and uh ∈ CR1

0(Th)

satisfy

‖∇NC(u − uh)‖
2 ≤ ρ ‖∇NC(u− uH)‖2 + C ‖Hf‖2.
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In contrast to Theorem 2.1, the data term in this estimate is not of higher order in general.

However, in case that the solution is singular in the sense that u ∈ H1
0 (Ω) \H

2(Ω), the asymp-

totic convergence rate O(hα) for some α < 1 shows that the data term is indeed of higher order

on uniform meshes and the saturation assumption is valid up to a higher-order term.
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