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Abstract

In this paper, we construct a tetrahedral element named DST20 for the three dimen-

sional Darcy-Stokes problem, which reduces the degrees of velocity in [30]. The finite ele-

ment space V h for velocity is H(div)-conforming, i.e., the normal component of a function

in V h is continuous across the element boundaries, meanwhile the tangential component

of a function in V h is average continuous across the element boundaries, hence V h is

H1-average conforming. We prove that this element is uniformly convergent with respect

to the perturbation constant ε for the Darcy-Stokes problem. At the same time, we give a

discrete de Rham complex corresponding to DST20 element.

Mathematics subject classification: 65N15, 65N30.
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convergent.

1. Introduction

In this paper, we consider the mixed finite element methods for the following singular

perturbation problem of three dimension [12, 30]:





(I − ε2∆)u − gradp = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.

(1.1)

Here Ω ⊂ R
3 is a bounded, convex and connected polygonal domain with boundary ∂Ω, ε ∈ (0, 1]

is a parameter, ∆ is the standard Laplace operator. The vector field u and the scalar field p

are corresponding to velocity and pressure in flow problems, respectively.

The problem (1.1) admits a unique solution and p is determined only up to addition of a

constant [22]. When ε is not too small, this problem is simply a standard Stokes problem,

but with an additional non-harmful lower order term. If f = 0 and ε approaches zero, the

problem (1.1) tends to a mixed formulation of the Poisson equation with homogeneous Neumann

boundary conditions i.e. a Darcy flow. When ε = 0, the first equation of (1.1) has the form

of Darcy’s law for flow in a homogeneous porous medium. Generalizations of the system (1.1)

have been proposed in various physical models, see, e.g., [14, 15, 17, 21, 23, 24, 31, 33].
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In order to make the discrete problem using mixed finite element method for (1.1) well posed,

one has to be careful to choose the velocity/pressure finite element spaces. One of the usual

methods( [6] etc.) chooses nonconforming Crouzeix-Raviart elements [13] that are convergent

for Stokes problem, and we also know that Raviart-Thomas elements that are convergent for the

mixed two order problem [28], are not uniformly convergent with respect to the perturbation

constant ε. Several methods are presented to construct uniformly convergent elements for

(1.1). The first method uses H1-conforming elements for velocity but on the special meshes,

such as [3,27,29,32,34]. The second method is stabilized method based on different approaches,

such as [4,8,9,18–20,31]. The third method uses H(div,Ω)-conforming but H1-nonconforming

elements [10, 16, 22, 35].

In three dimension case, the bubble function method proposed in [11] for 3D fourth-order

elliptic problem can also be employed in the construction of uniformly convergent finite elements

for the Darcy-Stokes problem. Tai & Wither, 2006, [30] presented a H(div)-conforming and

uniformly convergent tetrahedron element with 24 degrees of freedom for velocity. In this paper,

we present a H(div)-conforming and uniformly convergent tetrahedron element with 20 degrees

of freedom for velocity. We name the element DSC20 element. Another object of this paper is

to construct the discrete de Rham complex corresponding to DSC20 element. Discrete de Rham

complex are fundamental tools in the construction of stable elements for some finite element

methods [1, 2]. Well-known examples of such finite element spaces are described in [25, 26]. In

three space dimensions the Sobolev space version of the de Rham complex can be written in

the form

R
⊂−→ H2 grad−→ H(curl)

curl−→ H(div)
div−→ L2 −→ 0.

A corresponding discrete de Rham complex is the form

R
⊂−→ Sh

grad−→ Wh
curl−→ Vh

div−→ Qh −→ 0,

where Sh,Wh,Vh and Qh are conforming or nonconforming finite element spaces of H2(Ω),

H(curl,Ω), H(div,Ω) and L2(Ω), respectively.

In our discrete de Rham complex, Sh is H1-conforming and H2-average conforming, it

is convergent for the fourth order elliptic problem and uniformly convergent for the fourth

order singular perturbation problem; W h is H(curl)-conforming and H 1-average conforming,

Vh presented in this paper is H (div)-conforming and H1-average conforming, it is uniformly

convergent for Darcy-Stokes singular perturbation problem.

The rest of this paper is organized as follows. In section 2, we introduce the notation and

some well-known results of the Darcy-Stokes problem presented in [22]. The construction of

DSC20 element is given in section 3. In section 4, we discuss the uniform convergence and the

uniform error estimates of the discrete Darcy-Stokes problem. The last section, we construct a

discrete de Rham complex corresponding to DST20 elements.

2. Preliminaries

Let Ω ⊂ R
3 be a convex and bounded polygon, Hm(Ω) and Hm

0 (Ω) be the usual Sobolev

spaces with norm ‖ · ‖
m,Ω

and semi-norm | · |
m,Ω

respectively, H−m(Ω) be the dual space of

Hm
0 (Ω), L2

0(Ω) be the space of L2(Ω) functions with mean value zero. Bold-faces are used to

denote the vector functions.

The differential operators are defined as the following:
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If q is scalar function, then

gradq =

(
∂q

∂x1
,
∂q

∂x2
,
∂q

∂x3

)⊤
.

The gradient of a vector field v is denoted by Dv , it is a 3× 3 matrix with elements

(Dv )i,j =
∂vi
∂xj

, 1 ≤ i, j ≤ 3.

If u = (u1, u2, u3)
⊤ is a vector function, then divu =

∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

,

curlu = curl ∧ u =

∣∣∣∣∣∣∣∣

~i ~j ~k
∂

∂x1

∂

∂x2

∂

∂x3
u1 u2 u3

∣∣∣∣∣∣∣∣
.

The notation Pk(T ) means the space of polynomials of degree k defined on T , and Pn
k (T )

denotes the corresponding space of polynomial vector fields. These definitions lead to the

following Green’s formula:

−
∫

Ω

∆u · v dx =

∫

Ω

Du : Dv dx, ∀u ∈ H 2(Ω), ∀v ∈ H 1
0(Ω).

In addition to the above spaces, we will also use the following spaces:

H (div,Ω) =
{
v ∈ L2(Ω); divv ∈ L2(Ω)

}
, with ||v ||2div,Ω = ||v ||20,Ω + ||divv ||20,Ω,

H 0(div,Ω) =
{
v ∈ H (div,Ω); v · n = 0, on ∂Ω

}
.

A weak formulation of problem (1.1) is given: find (u , p) ∈ H 1
0(Ω)× L2

0(Ω) such that

{
aε(u , v) + (p, divv) = (f , v), ∀v ∈ H 1

0(Ω),

(divu , q) = 0, ∀q ∈ L2
0(Ω),

(2.1)

where aε(u , v) = (u , v) + ε2(Du ,Dv) and (α, β) =
∫
Ω
αβ dx.

The reduced system (ε = 0) corresponding to (1.1) is





u0 − gradp0 = f , in Ω,

divu0 = 0, in Ω,

u0 · n = 0, on ∂Ω.

(2.2)

This system has a weak formulation given by (2.1) with ε = 0, but the solution space H1
0(Ω)

replaced by H0(div,Ω). The energy norm ||| · |||ε is defined by

|||v|||2ε = ||v||20,Ω + ||divv||20,Ω + ε2||Dv||20,Ω. (2.3)

Considering

Z =
{
v ∈ H1

0(Ω); (q, divv) = 0, ∀q ∈ L2
0(Ω)

}
=
{
v ∈ H1

0(Ω); divv = 0
}
,
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for all v ∈ Z , we get

aε(v, v) = (v, v ) + ε2(Dv,Dv) = |||v|||2ε.

Due to Lemma 11.2.3 of [1], ∀q ∈ L2
0(Ω), ∃v0 ∈ H1

0(Ω), divv0 = q, ||v0||1 ≤ c||q||0, and

|||v|||ε ≤ |||v|||1 ≤ ||v ||1, ∀v ∈ H 1
0(Ω),

sup
v∈H 1

0
(Ω)

(q, divv)

|||v|||ε
≥ (q, divv0)

|||v0|||ε
≥ (q, q)

c||q||0
=

1

c
||q||0,

so (2.1) has one and only one solution.

Lemma 2.1. ([30]) There exists constant c independent of ε and f, such that

||u0||1 + ||p0||2 ≤ c||f||1. (2.4)

Lemma 2.2. ([30]) Assume that Ω is convex and f ∈ H1(Ω). There exists a constant c ≥ 0,

independent of ε and f, such that

ε
1

2 ||u||1 + ε
3

2 ||u||2 ≤ ||f||1, (2.5)

||u− u0||0 + ||p− p0||1 ≤ cε
1

2 ||f||1. (2.6)

3. Construction of the Element DSC20

Let the reference element be T̂ = {x; xi ≥ 0, 1 ≤ i ≤ 3, 0 ≤ x1 + x2 + x3 ≤ 1}, whose
vertices are â1(1, 0, 0), â2(0, 1, 0), â3(0, 0, 1), â4(0, 0, 0), respectively; let the opposite face be

denoted f̂i, 1 ≤ i ≤ 4, n̂i is a unit normal vector on f̂i.
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Fig. 3.1. a reference element.

The shape function space of the velocity is defined by

V (T̂ ) = P 3
1 (T̂ )⊕ curl(b̂P̃ ∗3

1 ), (3.1)

P̃ ∗3
1 = {v ∈ P̃ 3

1 ; divv = 0}, (3.2)

where b̂ = λ1λ2λ3λ4, λi = x̂i, 1 ≤ i ≤ 3, λ4 = 1 − x̂1 − x̂2 − x̂3, P̃1 is homogeneous polynomial

of P1.
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Lemma 3.1. V(T̂ ) has the following properties:

dimV(T̂ ) = 20, (3.3)

divV(T̂ ) = P0, (3.4)

curl(b̂P̃ ∗3
1 ) · n̂

∣∣
f̂i

≡ 0, 1 ≤ i ≤ 4. (3.5)

Proof. (1) dimV(T̂ ) = dimP 3
1 +dimP̃ ∗3

1 = 4×3−3×3−1 = 20. (2) Because of divcurl = 0,

(3.4) is concluded.

(3) In fact, we obtain

curl(b̂v̂) · n̂i

∣∣
f̂i

≡ 0, 1 ≤ i ≤ 4, ∀v̂ ∈ C 1(T̂ ). (3.6)

Define v̂ = (v1, v2, v3). Then it holds that

curl(b̂v̂ ) =

(
∂(b̂v3)

∂x̂2
− ∂(b̂v2)

∂x̂3
,
∂(b̂v1)

∂x̂3
− ∂(b̂v3)

∂x̂1
,
∂(b̂v2)

∂x̂1
− ∂(b̂v1)

∂x̂2

)⊤
, (3.7)

on f̂1, x̂1 = 0, n̂1 = (1, 0, 0),

curl(b̂v̂ ) · n̂1

∣∣∣∣
x̂1=0

(3.7)
=

(
∂(b̂v3)

∂x̂2
− ∂(b̂v2)

∂x̂3

)∣∣∣∣
x̂1=0

= 0,

on f̂2, x̂2 = 0, n̂2 = (0, 1, 0),

curl(b̂v̂ ) · n̂2

∣∣∣∣
x̂2=0

(3.7)
=

(
∂(b̂v1)

∂x̂3
− ∂(b̂v3)

∂x̂1

)∣∣∣∣
x̂2=0

= 0,

on f̂3, x̂3 = 0, n̂3 = (0, 0, 1),

curl(b̂v̂ ) · n̂3

∣∣∣∣
x̂3=0

(3.7)
=

(
∂(b̂v2)

∂x̂1
− ∂(b̂v1)

∂x̂2

)∣∣∣∣
x̂3=0

= 0,

on f̂4, 1− x̂1 − x̂2 − x̂3 = 0, n̂4 =
1√
3
(1, 1, 1),

√
3curl(b̂v̂ ) · n̂4

∣∣
f̂4

(3.7)
=

[(
∂(b̂v3)

∂x̂2
− ∂(b̂v3)

∂x̂1

)
+

(
∂(b̂v2)

∂x̂1
− ∂(b̂v2)

∂x̂3

)
+

(
∂(b̂v1)

∂x̂3
− ∂(b̂v1)

∂x̂2

)]∣∣∣∣
f̂4

,

(
∂(b̂v3)

∂x̂2
− ∂(b̂v3)

∂x̂1

)∣∣∣∣
f̂4

=

[(
∂v3
∂x2

− ∂v3
∂x1

)
b̂+ (x̂1x̂3 − x̂2x̂3)λ4v3

]∣∣∣∣
f̂4

= p1λ4
∣∣
λ4=0

= 0.

Using a similar method, we have

(
∂(b̂v2)

∂x̂1
− ∂(b̂v2)

∂x̂3

)∣∣∣∣
f̂4

= p2λ4
∣∣
λ4=0

= 0,

(
∂(b̂v1)

∂x̂3
− ∂(b̂v1)

∂x̂2

)∣∣∣∣
f̂4

= p3λ4
∣∣
λ4=0

= 0,

where p1, p2, p3 are polynomial. So (3.6) is complete. �
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The degrees of freedom are taken as

∫

f̂i

v̂ · n̂p dŝ, ∀p ∈ P1(f̂i), 1 ≤ i ≤ 4, (3.8a)

∫

f̂i

v̂ ∧ n̂ dŝ, 1 ≤ i ≤ 4. (3.8b)

Lemma 3.2. An element v̂ ∈ V(T̂ ) is uniquely determined by the degrees of freedom (3.8).

Proof. Because of (3.8) and (3.3), it is enough to show that if v̂ ∈ V (T̂ ) and all the degrees

of freedom of v̂ are zero, the v̂ = 0. To this end, assume that

∫

f̂i

v̂ · n̂p dŝ = 0, ∀p ∈ P1(f̂i), 1 ≤ i ≤ 4, (3.9a)

∫

f̂i

v̂ ∧ n̂ dŝ = 0, 1 ≤ i ≤ 4. (3.9b)

The definition of V(T̂ ) and (3.5) imply v̂ · n̂
∣∣
f̂i

∈ P1(f̂i) and (3.9a). There holds

v̂ · n̂
∣∣
f̂i

≡ 0, 1 ≤ i ≤ 4. (3.10)

It follows from (3.4) that

divv̂ =
1

|T̂ |

∫

T̂

divv̂ dx̂ =
1

T̂

∫

∂T̂

v̂ · n̂ dx̂ (3.10)
= 0. (3.11)

Consequently,

v̂ ∈ H
△
=
{
v̂ ∈ H(div, T̂ ); divv = 0, v · n

∣∣
∂T̂

= 0
}
. (3.12)

Because of (3.12) and Theorem 3.6 of [7], there exists ϕ ∈ H(curl, T̂ ), such that

v̂ = curlϕ, (3.13)

ϕ ∧ n̂
∣∣
∂T̂

= 0, divϕ = 0,

∫

∂T̂

ϕ · n̂ dŝ = 0. (3.14)

From the definition of V(T̂ ), there exists ϕ ∈ P 3
2 (T̂ ) ⊕ b̂P̃ ∗3

1 . Assume ϕ = ω + b̂ψ, ω ∈
P 3
2 (T̂ ),ψ ∈ P̃ ∗3

1 , ϕ ∧ n
∣∣
f̂i

= ω ∧ n
∣∣
f̂i
, 1 ≤ i ≤ 4. Assume ω = (w1, w2, w3), and for 1 ≤ i ≤ 3.

wi = αi0 + αi1 x̂1 + αi2 x̂2 + αi3 x̂3 + αi4 x̂
2
1 + αi5 x̂

2
2 + αi6 x̂

2
3 + αi7 x̂1x̂2 + αi8 x̂1x̂3 + αi9 x̂2x̂3.

On f̂1, x̂1 = 0, n̂1 = (1, 0, 0),

ω ∧ n̂
∣∣
f̂1

=

∣∣∣∣∣∣∣

~i ~j ~k

w1 w2 w3

1 0 0

∣∣∣∣∣∣∣
f̂1

= (0, w3,−w2)
∣∣
x̂1=0

= 0,

which leads to

αi0 = αi2 = αi3 = αi5 = αi6 = αi9 = 0, i = 2, 3. (3.15)
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On f̂2, x̂2 = 0, n̂2 = (0, 1, 0),

ω ∧ n̂
∣∣
f̂1

=

∣∣∣∣∣∣∣

~i ~j ~k

w1 w2 w3

0 1 0

∣∣∣∣∣∣∣
f̂2

= (w3, 0,−w1)
∣∣
x̂2=0

= 0,

which gives

αi0 = αi1 = αi3 = αi4 = αi6 = αi8 = 0, i = 1, 3. (3.16)

On f̂3, x̂3 = 0, n̂3 = (0, 0, 1),

ω ∧ n̂
∣∣
f̂3

=

∣∣∣∣∣∣∣

~i ~j ~k

w1 w2 w3

0 0 1

∣∣∣∣∣∣∣
f̂3

= (w2,−w1, 0)
∣∣
x̂3=0

= 0,

which leads to

αi0 = αi1 = αi2 = αi4 = αi5 = αi7 = 0, i = 1, 2. (3.17)

From (3.15)-(3.17), we obtain

w1 = αx̂2x̂3, w2 = βx̂1x̂3, w3 = γx̂1x̂2, (3.18)

where α, β, γ are constants. On f̂4, 1− x̂1 − x̂2 − x̂3 = 0, n̂4 = 1√
3
(1, 1, 1),

√
3ω ∧ n̂

∣∣
f̂4

=

∣∣∣∣∣∣∣

~i ~j ~k

w1 w2 w3

0 0 1

∣∣∣∣∣∣∣
f̂4

= (w2 − w3, w3 − w1, w1 − w2)
∣∣
f̂4

= 0,

w2 − w3 = βx̂1x̂3 − γx̂1x̂2 = βx̂1(1− x̂1 − x̂2)− γx̂1x̂2 ≡ 0.

Then β = γ = 0,

w3 − w1 = γx̂1x̂2 − αx̂2x̂3 = γx̂1x̂2 − αx̂2(1− x̂1 − x̂2) ≡ 0,

so α = γ = 0. Consequently ω = 0. Then ϕ = b̂ψ,ψ ∈ P̃ 3∗
1 . Define ψ = (ψ1, ψ2, ψ3),

ψi = βi1 x̂1 + βi2 x̂2 + βi3 x̂3, 1 ≤ i ≤ 3. (3.19)

curlϕ
∣∣
f̂i

= curl(b̂ψ)
∣∣
f̂i

=

(
∂(b̂ψ3)

∂x̂2
− ∂(b̂ψ2)

∂x̂3
,
∂(b̂ψ1)

∂x̂3
− ∂(b̂ψ3)

∂x̂1
,
∂(b̂ψ2)

∂x̂1
− ∂(b̂ψ1)

∂x̂2

)∣∣∣∣
f̂i

=

(
∂b̂

∂x̂2
ψ3 −

∂b̂

∂x̂3
ψ2,

∂b̂

∂x̂3
ψ1 −

∂b̂

∂x̂1
ψ3,

∂b̂

∂x̂1
ψ2 −

∂b̂

∂x̂2
ψ1

)∣∣∣∣
f̂i

,

△
= (q1, q2, q3)

△
= Q, 1 ≤ i ≤ 4. (3.20)

Since b̂ = x̂1x̂2x̂3(1− x̂1 − x̂2 − x̂3), we have

∂b̂

∂x̂1
= x̂2x̂3(1− x̂1 − x̂2 − x̂3)− x̂1x̂2x̂3, (3.21a)

∂b̂

∂x̂2
= x̂1x̂3(1− x̂1 − x̂2 − x̂3)− x̂1x̂2x̂3, (3.21b)

∂b̂

∂x̂1
= x̂1x̂2(1− x̂1 − x̂2 − x̂3)− x̂1x̂2x̂3. (3.21c)
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For (3.9b), we first note
∫

f̂i

Q ∧ n̂ dŝ
(3.20)
=

∫

f̂i

curlϕ ∧ n̂ dŝ =

∫

f̂i

v̂ ∧ n̂ dŝ = 0, 1 ≤ i ≤ 4. (3.22)

Its is known that ∫

f̂

λ̂iλ̂j
2
λ̂k =

1!2!1!2!

6!
|f̂ | = 1

180
|f̂ |. (3.23)

On f̂1, x̂1 = 0, n̂1 = (1, 0, 0),

∫

f̂1

Q ∧ n̂ dŝ =

∫

f̂1

∣∣∣∣∣∣∣

~i ~j ~k

q1 q2 q3
1 0 0

∣∣∣∣∣∣∣
f̂1

dŝ =

∫

f̂1

(0, q3,−q2)
∣∣
x̂1=0

dŝ

(3.20)
=

∫

f̂1

(0, ψ2
∂b̂

∂x̂1
, ψ3

∂b̂

∂x̂1
)
∣∣
x̂1=0

dŝ

=

∫

f̂1

(0, λ̂2λ̂3λ̂4(β22 λ̂2 + β23 λ̂3), λ̂2λ̂3λ̂4(β32 λ̂2 + β33 λ̂3)) dŝ

(3.23)
= −|f̂1|

180
(0, β22 + β23 , β32 + β33) = 0,

which gives

β22 + β23 = 0, β32 + β33 = 0. (3.24)

On f̂2, x̂2 = 0, n̂2 = (0, 1, 0),

∫

f̂2

Q ∧ n̂ dŝ =

∫

f̂2

∣∣∣∣∣∣∣

~i ~j ~k

q1 q2 q3
0 1 0

∣∣∣∣∣∣∣
f̂2

dŝ =

∫

f̂2

(−q3, 0, q1)
∣∣
x̂2=0

dŝ

(3.21)
=

∫

f̂2

(ψ1
∂b̂

∂x̂2
, 0, ψ3

∂b̂

∂x̂2
)
∣∣
x̂2=0

dŝ

=

∫

f̂2

(λ̂1λ̂3λ̂4(β11 λ̂1 + β13 λ̂3), 0, λ̂1λ̂3λ̂4(β31 λ̂1 + β33 λ̂4)) dŝ

=
|f̂2|
180

(β12 + β13 , 0, β31 + β33) = 0,

which yields

β12 + β13 = 0, β31 + β33 = 0. (3.25)

On f̂3, x̂3 = 0, n̂1 = (0, 0, 1),

∫

f̂3

Q ∧ n̂ dŝ =

∫

f̂3

∣∣∣∣∣∣∣

~i ~j ~k

q1 q2 q3
0 1 0

∣∣∣∣∣∣∣
f̂3

dŝ =

∫

f̂3

(q2,−q1, 0)
∣∣
x̂3=0

dŝ

(3.21)
=

∫

f̂3

(ψ1
∂b̂

∂x̂3
, ψ2

∂b̂

∂x̂3
, 0)
∣∣
x̂2=0

dŝ

=

∫

f̂3

(λ̂1λ̂2λ̂4(β11 λ̂1 + β12 λ̂2), λ̂1λ̂2λ̂4(β21 λ̂1 + β22 λ̂4), 0) dŝ

=
|f̂2|
180

(β11 + β12 , β21 + β22 , 0) = 0,
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which yields

β11 + β12 = 0, β21 + β22 = 0. (3.26)

On f̂4, 1− x̂1 − x̂2 − x̂3 = 0, n̂4 =
1√
3
(1, 1, 1),

√
3

∫

f̂4

Q ∧ n̂ dŝ =

∫

f̂4

∣∣∣∣∣∣∣

~i ~j ~k

q1 q2 q3
1 1 1

∣∣∣∣∣∣∣
f̂4

dŝ =

∫

f̂4

(q2 − q3, q3 − q1, q1 − q2) dŝ

(3.21)
=

∫

f̂4

(λ̂1λ̂2λ̂3(−2ψ1 + ψ2 + ψ3), λ̂1λ̂2λ̂3(ψ1 − 2ψ2 + ψ3), λ̂1λ̂2λ̂3(ψ1 + ψ2 − 2ψ3)) dŝ

= 0,

Hence we have

− 2(β11 + β12 + β13) + (β21 + β22 + β23) + (β31 + β32 + β33) = 0, (3.27)

− 2(β21 + β22 + β23) + (β11 + β12 + β13) + (β31 + β32 + β33) = 0. (3.28)

Its follows from the definition of (3.2), that

β11 + β22 + β33 = 0. (3.29)

From the above (3.24)–(3.29), it yields that

Aβ = 0,

where A is 9 × 9 matrix,

A =




1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

−2 −2 −2 1 1 1 1 1 1

1 1 1 −2 −2 −2 1 1 1

1 0 0 0 1 0 0 0 1




.

It is easy to show that det(A) = 9. Then

βij = 0, 1 ≤ i, j ≤ 3. (3.30)

From (3.19), ψ = 0, ϕ = b̂ψ = 0, and from (3.13), v = 0 is deduced. �

Remark 3.1. Firstly, from (3.10), we know that the finite element space of DST20 is conform-

ing in H(div,Ω). Secondly, in [30], authors presented a tetrahedral element for Darcy-Stokes

problem whose convergent rate is the same as ours, but the dimension of V (T ) of their element

is 24. So our element is simplified form of [30]. On the other hand, our proof for unique solv-

ability of V (T̂ ) by the degrees of freedom is different from theirs. Thirdly, the above element

has the same degrees of freedom as the element in [30], but it has different shape function space,

ours is simple and has the explicit expression.
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The interpolation operator Π̂ : H 1 ∩H1
0(d̂iv) → V (T̂ ) is defined via

∫

f̂i

(v̂− Π̂v̂) · n̂p dŝ, ∀p ∈ P1(f̂i), 1 ≤ i ≤ 4, (3.31a)

∫

f̂i

(v̂− Π̂v̂) ∧ n̂ dŝ, 1 ≤ i ≤ 4. (3.31b)

ΠT : H 1 ∩H1
0(div) → V (T ) is defined by

∫

fi

(v−ΠT v) · np ds, ∀p ∈ P1(fi), 1 ≤ i ≤ 4, (3.32a)

∫

fi

(v−ΠT v) ∧ n ds, 1 ≤ i ≤ 4. (3.32b)

Define Πh : H 1 ∩H1
0(div) → V h, Πh|T = ΠT , and Vh|T = V(T ), ∀T ∈ Th.

Given the shape function space of the pressure of DST20

Q(T̂ ) = P0(T̂ ). (3.33)

The degrees of freedom are taken as ∫

T̂

q̂ dx̂. (3.34)

The corresponding interpolation operator also being L2-projection on Q(T̂ ) is P
T̂
: L2(T̂ ) →

Q(T̂ ) satisfying, ∫

T̂

(q̂ − P
T̂
q̂) dŝ = 0. (3.35)

On the general element T , we have

||q − PT q||j,T . hl−j |q|l,T , 0 ≤ j ≤ l ≤ 1. (3.36)

4. Uniformly Convergent of Element DSC20

4.1. Uniformly convergence of the discrete Darcy-Stokes system

Now we consider the finite element method for (2.1). Let Th be a shape regular triangulation

of Ω with the mesh parameter h = max
T∈Th

{diameter of T }, Ω =
⋃

T∈Th
T, T be an element. The

discrete problem of (2.1) is

{
aε,h(uh, vh) + (ph, divvh) = (f , vh), ∀vh ∈ V h,

(divuh, qh) = 0, ∀qh ∈ Qh,
(4.1)

where

aε,h(uh, vh) = (uh, vh) + ε2
∑

∂T

∫

∂T

Duh : Dvh dx.

The discrete energy norm is defined by

|||vh|||2ε,h = ||vh||20,Ω + ||divvh||20,Ω + ε2
∑

T∈T
|vh|21,T . (4.2)

Lemma 4.1. It holds that divVh = Qh.
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Proof. For any vh ∈ Vh, because divvh

∣∣
T
= divV(T ) = P0(T ), and

∫

Ω

divvh dx =

∫

∂Ω

vh · n dx = 0,

it implies that divVh ⊂ Qh. On the other hand, for all qh ∈ Qh ⊂ L2
0(Ω), there exists

v ∈ H 1
0(Ω), divv = q, we obtain Πhv ∈ Vh,

∫

Ω

divΠhv dx =

∫

∂Ω

Πhv · n ds =
∫

∂Ω

v · n ds =
∫

Ω

divv dx,

which implies that

divΠhv = Phdivv = Phqh
qh∈Qh
= qh, qh ∈ divVh, (4.3)

that is Qh ⊂ divVh. �

We shall discuss the proper uniform inf-sup condition of the discrete Darcy-Stokes system

(4.1). For all qh ∈ Qh ⊂ L2
0(T ), there exists v ∈ H 1

0(T ), divv = qh, ||v||1 ≤ c||qh||0. Conse-

quently

Πhv ∈ Vh, divΠhv = qh, ||Πhv ||1,h ≤ ||v||1 + ||v −Πhv||1,h ≤ c||v ||1.
Note that

|||Πhv |||2ε,h = ||Πhv||20 + ||divΠhv ||20 + ε2|Πhv|21,h ≤ c||Πhv||21,h ≤ c||v||21 ≤ c||qh||20,

we get

sup
vh∈Vh

(qh, divvh)

|||vh|||ε,h
≥ (qh, divΠhv)

|||Πhv |||ε,h
≥ ||qh||20
c||qh||0

=
1

c
||qh||0,

and then the assertion is proved.

Since divV h = Qh, we obtain

Zh =
{
vh ∈ Vh, (qh, divvh) = 0, ∀qh ∈ Qh

}
=
{
vh ∈ Vh; divvh = 0

}
.

Then for all vh ∈ Zh, we have

aε,h(vh, vh) = ||vh||20 + ε2|vh|21,h
= ||vh||20 + ε2|v|21,h + ||divvh||20 ≡ |||vh|||2ε,h. (4.4)

Combining our previous relations, the discrete system (4.1) has one and only one solution.

4.2. Uniform error estimates for the Darcy-Stokes system

Lemma 4.2. ([11]) The discrete problem (4.1) has following error estimates

|||u− uh|||ε,h ≤ 2|||u−Πhu|||ε,h + sup
wh∈Vh

|Eε,h(u,wh)|
|||wh|||ε,h

, (4.5)

||p− ph||0,Ω ≤ c

(
|||u − uh|||ε,h + ||p− Php||0,Ω + sup

wh∈Vh

|Eε,h(u,wh)|
|||wh|||ε,h

)
, (4.6)

where c is independent of ε, h, f and

Eε,h(u,wh) =
∑

T∈Th

ε2
∫

∂T

∂u

∂n
·wh dx. (4.7)
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In the following, we estimate |||u − Πhu|||ε,h and sup
wh∈V h

|Eε,h(u ,wh)|/|||wh|||ε,h . By the

standard interpolation theory of [5], we have

|v−ΠT v |j,T ≤ chl−j |v|l,T , 1 ≤ l ≤ 2, 0 ≤ j ≤ 1, (4.8)

||q − Ihq||0,T ≤ ch|q|1,T . (4.9)

Firstly, we estimate ||u−Πhu||0,T . Define

Piv =
1

|fi|

∫

fi

v ds, v =
∂u

∂n
, PT v =

1

|T |

∫

T

v ds.

It can be verified that

||u −Πhu||0,T ≤ ch||û − Π̂û||0,T̂ (4.10)

≤ ch(||(Î − Π̂)(û − û
0)||0,T̂ + ||û0 − Π̂û0||0,T̂ )

= ch(||(Î − Π̂)((û − û
0)− P

T̂
(û − û

0))||0,T̂ + ||û0 − Π̂û0||0,T̂ )
≤ ch(||(û − û

0)− P
T̂
(û − û

0)||0,T̂ + ||Π̂((û − û
0)− P

T̂
(û − û

0))||0,T̂ + ||û0 − Π̂û0||0,T̂ ).

Note that

||(û − û
0)− P

T̂
(û − û

0)||0,T̂
= ||(û − û

0)− P
T̂
(û − û

0)||
1

2

0,T̂
||(û − û

0)− P
T̂
(û − û

0)||
1

2

0,T̂

≤ ||û − û
0||

1

2

0,T̂
|û − û

0|
1

2

1,T̂

≤ ch−
1

2 ||u− u0||
1

2

0,T |u− u0|
1

2

1,T

(2.4)(2.5)

≤ ch−
1

2 · ε 1

4 ||f||
1

2

1,T · ε− 1

4 ||f||
1

2

1,T ≤ ch−
1

2 ||f||1,T , (4.11)

||Π̂((û − û
0)− P

T̂
(û − û

0))||0,T̂
(4.8)

≤ c||(û − û
0)− P

T̂
(û − û

0)||
1

2

0,T̂
||(û − û

0)− P
T̂
(û − û

0)||
1

2

0,T̂

≤ ch−
1

2 ||f||1,T . (4.12)

Then we have

||û0 − Π̂û0||0,T̂
(4.8)

≤ c|û0|1,T̂ ≤ c|u0|1,T
(2.4)

≤ c||f||1. (4.13)

Substituting (4.11)–(4.13) into (4.10) gives

||u−Πhu ||0,T ≤ ch
1

2 ||f||1,T . (4.14)

Secondly, we note

||div(u −Πhu)||0 = 0. (4.15)

Thirdly, by noting that

ε||D(u −Πhu)||0,T

= ε|u−Πhu|1,T ≤ cεh
1

2 |u|
1

2

1,T |u|
1

2

2,T

(2.5)

≤ ch
1

2 ||f||1,T ,
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we obtain

ε||D(u −Πhu)||0,h ≤ ch
1

2 ||f||1. (4.16)

Using (4.14)–(4.16) leads to

|||u −Πhu|||ε,h

=
(
||u −Πhu||20 + ||divu − divΠhu||20 + ε2||D(u −Πhu)||20,h

) 1

2 ≤ ch
1

2 ||f||1. (4.17)

Lastly, we estimate sup
wh∈V h

|Eε,h(u ,wh)|/|||wh|||ε,h. It can be verified that

|Eε,h(u ,wh)| =
∣∣∣∣
∑

T∈Th

ε2
∫

∂T

∂u

∂n
·wh ds

∣∣∣∣ =
∣∣∣∣
∑

T∈Th

ε2
6∑

i=1

∫

∂fi

v ·wh ds

∣∣∣∣

= ε
2

∣∣∣∣
∑

T∈Th

6∑

i=1

∫

∂fi

(v − PTv ) · (wh − Piwh)

∣∣∣∣

≤ cε
2
∑

T∈Th

6∑

i=1

|fi| · ||v̂ − P
T̂
v̂ ||0,f̂i ||ŵh − P̂iŵh‖0,f̂i

≤ cε
2
∑

T∈Th

h2||v̂ − P
T̂
v̂ ||

1

2

0,T̂
||v̂ − P

Î
v̂ ||

1

2

1,T̂
||ŵh − P̂iŵh||1,T̂ ≤ cε

2
∑

T∈Th

h2||v̂||
1

2

0,T̂
|v̂|

1

2

1,T̂
|ŵh|1,T̂

≤ cε2
∑

T∈Th

h2 · h− 3

4 ||v||
1

2

0,T · h− 3

4h
1

2 |v|
1

2

1,T · h− 3

2h|wh|1,T ≤ cε2h
1

2

∑

T∈Th

|u|
1

2

1,T |u|
1

2

2,T |vh|1,T

≤ cε2h
1

2 |u|
1

2

1 |u|
1

2

2 |wh|1,T ≤ ch
1

2

(
ε−

1

4 ||f||
1

2

1 · ε− 3

4 ||f||
1

2

1

)
ε2|wh|1,h ≤ ch

1

2 ||f||1||wh||ε,h, (4.18)

which yields

sup
wh∈V h

|Eε,h(u ,wh)|
|||wh|||ε,h

≤ ch
1

2 ||f||1. (4.19)

Theorem 4.1. Suppose u and uh are the solution of (2.1) and (4.1), Th is a regular division

of Ω into rectangle elements, then the discrete problem has a unique solution and

|||u− uh|||ε,h + ||p− ph||0 ≤ ch
1

2 ||f||1, (4.20)

where c is independent of ε, h and u.

Proof. Combining (4.5), (4.17) and (4.19), we obtain

|||u − uh|||ε,h ≤ ch
1

2 ||f||1, (4.21)

(ph − Ihp, divvh) = (ph − p, divvh) + (p− Ihp, divvh)

= aε,h(u− uh, vh)− Eε,h(u, vh) + (p− Ihp, divvh)

≤ |||u− uh|||ε,h|||vh|||ε,h + |Eε,h(u, vh)|+ ||p− Ihp||0|||vh|||ε,h. (4.22)

Consequently, we obtain

β||ph − Ihp||0 ≤ sup
vh∈V h

(ph − Ihp, divvh)

|||vh|||ε,h
(4.22)

≤ |||u− uh|||ε,h + sup
vh∈V h

|Eε,h(u, vh)|
|||vh|||ε,h

+ ||p− Ihp||0

(4.19)(4.21)

≤ ch
1

2 ||f||1 + ch|p|1
(4.4)(4.7)

≤ ch
1

2 ||f||1, (4.23)
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which leads to (4.20). �

5. The Discrete de Rham Complex Corresponding to DST20

The purpose of this section is to present de Rham complexes in three space dimensions

corresponding to DST20 elements. In three space dimensions, the Sobolev space version of the

de Rham complex can be written in the form

R
⊂−→ H2 grad−→ H(curl)

curl−→ H(div)
div−→ L2 −→ 0. (5.1)

A corresponding discrete de Rham complex is the form

R
⊂−→ Sh

grad−→ Wh
curl−→ Vh

div−→ Qh −→ 0, (5.2)

where Sh,Wh,Vh and Qh are conforming or nonconforming finite element spaces of H2(Ω),

H(curl,Ω), H(div,Ω) and L2(Ω), respectively.

Note that (5.2) is an exact de Rham complex means that:

(1) The composition of two consecutive maps is zero, that is

curlgrad = 0, divcurl = 0. (5.3)

Obviously, (5.3) holds.

(2) If the domain Ω is simply connected, the range of each map is exactly the null space of

the succeeding map, that is

Range(grad) = Ker(curl), Range(curl) = Ker(div), (5.4)

where

Range(grad) =
{
wh ∈ Wh; ∃sh ∈ Sh such that wh = gradsh

}
,

Ker(curl) =
{
wh ∈ W h; curlwh = 0

}
,

Range(curl) =
{
vh ∈ Vh; ∃wh ∈ W h such that vh = curlwh

}
,

Ker(div) =
{
vh ∈ V h; divvh = 0

}
.

(3) Let ΠS
h : H2(Ω) → Sh, Π

W
h : H1(Ω) → Wh, Π

V
h : H1(Ω) → Vh, Π

Q
h : L2(Ω) → Qh be

the interpolation operators determined by the finite element space Sh, W h, Vh and Qh,

respectively. Then the following diagram commutes:

R
⊂−−−−→ H2 grad−−−−→ H(curl)

curl−−−−→ H(div)
div−−−−→ L2(Ω) −−−−→ 0

ΠS
h

y ΠW
h

y ΠV
h

y ΠQ

h

y

R −−−−→ Sh
grad−−−−→ Wh

curl−−−−→ Vh
div−−−−→ Qh −−−−→ 0

In other words, the following identities hold:

gradΠS
h = ΠW

h grad, curlΠW
h = ΠV

h curl, divΠV
h = ΠQ

h div. (5.5)
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First we construct the finite element spaces S(T ) and W(T ). We define

S(T ) = P2(T ) + bP1(T ). (5.6)

The degrees of freedom are

s(ai), 1 ≤ i ≤ 4, (5.7a)
∫

li

s(x) dl, 1 ≤ i ≤ 6, (5.7b)

∫

fi

∂s

∂n
ds, 1 ≤ i ≤ 4. (5.7c)

This element was presented in [30], also see [9]. As S(T ) is defined by (5.6), this element is

also H1-conforming and H2-average conforming. We define

W (T ) = N1(T )⊕ grad(bP1(T ))⊕ bP̃ 3∗
1 (T ), (5.8)

where

N1(T ) = P 3
1 (T )⊕ S2(T ), S2(T ) =

{
w ∈ P̃ 3

2 (T );w · r = 0, r = (x1, x2, x3)
T
}
,

N1(T ) is presented in [21], dimN1(T )=20, and

P̃ ∗3
1 (T ) =

{
w ∈ P̃ 3

1 (T ); divw = 0
}
.

We easily get dimW (T ) = 20 + 4 + 8 = 32.

The degrees of freedom are
∫

li

w · tp dl, ∀p ∈ P1(li), 1 ≤ i ≤ 6, (5.9a)

∫

fi

w ∧ n ds, 1 ≤ i ≤ 4, (5.9b)

∫

fi

w · n ds, 1 ≤ i ≤ 4, (5.9c)

∫

fi

curlw ∧ n ds, 1 ≤ i ≤ 4. (5.9d)

Theorem 5.1. The element of W(T ) are uniquely determined by the 32 degrees of freedom

given by (5.9).

Proof. Suppose that w(x) ∈ W(T ) and the degrees of freedom of w(x) are zero, i.e.,

∫

li

w · tp dl = 0, ∀p ∈ P1(li), 1 ≤ i ≤ 6, (5.10a)

∫

fi

w ∧ n ds = 0, 1 ≤ i ≤ 4, (5.10b)

∫

fi

w · n ds = 0, 1 ≤ i ≤ 4, (5.10c)

∫

fi

curlw ∧ n ds = 0, 1 ≤ i ≤ 4. (5.10d)
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Let

w(x) = w1(x) ⊕ grad(bp) + bq ,

where w1(x) ∈ N1(T ), p ∈ P1(T ), q ∈ P̃ 3∗
1 (T ). Obviously,

grad(bp) · t|li = 0, bq · t|li = 0, 1 ≤ i ≤ 6. (5.11a)

bq ∧ n|fi = 0, 1 ≤ i ≤ 4. (5.11b)

We have

grad(bp) ∧ n |fi = 0, 1 ≤ i ≤ 4. (5.12)

Then by (5.12), (5.11a) and (5.11b), we have

∫

li

w · tp dl = 0 ⇐⇒
∫

li

w1 · tp dl = 0, ∀p ∈ P1(li), 1 ≤ i ≤ 6,

∫

fi

w ∧ n ds = 0 ⇐⇒
∫

fi

w1 ∧ n ds = 0, 1 ≤ i ≤ 4.

By Theorem 1 of [25], we have

w1(x) ∧ n|fi = 0, 1 ≤ i ≤ 4. (5.13)

w1(x) = 0. (5.14)

Since

bq · n|fi = 0, 1 ≤ i ≤ 4,
∫

fi

w · n ds = 0 ⇐⇒
∫

fi

grad(bp) · n ds = 0, 1 ≤ i ≤ 4,

∫

fi

grad(bp) · n ds =
∫

fi

p
∂b

∂n
ds = 0,

it is easy to check that
∂b

∂n

∣∣∣
fi
> 0 in f̊ , 1 ≤ i ≤ 4. Hence there exists bi ∈ f̊i such that p(bi) = 0,

1 ≤ i ≤ 4. Consequently,

p(x) = 0. (5.15)

Now ∫

fi

curlw ∧ n ds = 0 ⇐⇒
∫

fi

curl(bq) ∧ n ds = 0.

By the proof of Lemma 3.2, it holds

q(x) = 0. (5.16)

From (5.14)–(5.16), we get w(x) = 0. �

Remark 5.1. From (5.11), (5.13) and (5.9), we know that

w(x) ∧ n
∣∣
fi

= 0,

∫

fi

w · n ds = 0, 1 ≤ i ≤ 3.

Hence H(curl,Ω)-conforming and H 1-average conforming.
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Theorem 5.2. The finite element spaces S(T ), W(T ), V(T ) and Q(T ) defined by (5.6), (5.8),

(3.1) and (3.33), respectively, form an exact discrete de Rham complex, i.e., (5.4) and (5.5)

hold.

Proof. (1) We prove (5.4). Obviously, Range(grad) ⊂ Ker(curl). Conversely, suppose

w(x) ∈ Ker(curl), i.e.

w(x) ∈ W(T ), curlw = 0.

Let

w(x) = w1(x) + s(x) + grad(bp) + bq,

where w1(x) ∈ P̃ 3
1 (T ), s(x) ∈ S2(T ), p ∈ P1(T ), q ∈ P̃ 3∗

1 (T ). Then

curlw(x) = curlw1(x) + curls(x) + curl(bq) = 0.

Comparing the coefficients of terms with degrees higher than 3, we get

q(x) = 0.

From [9], S2(T ) = span{q1, · · ·, q8}, where

q1 =




0

−x2x3
x22


 , q2 =




0

−x23
x2x3


 , q3 =




−x1x3
0

x21


 , q4 =




x22
0

−x1x3


 ,

q5 =




−x1x2
x21
0


 , q6 =




−x22
x1x2
0


 , q7 =




x2x3
−x1x3

0


 , q8 =




0

x1x3
−x1x2


 .

Let s(x) =
∑8

i=1 αiqi. We have

curls(x) =




(α7 − 2α8)x1 + 3α1x2 + 3α2x3
3α3x1 + (α7 + α8)x2 + 3α4x3

3α5x1 + 3α6x2 + (−2α7 + α8)x3


 .

From curlw1(x) + curls(x) = 0, we have s(x) = 0. Then

curlw(x) = 0 ⇐⇒ curlw1(x) = 0.

Let w1(x) = w10(x) +w11(x), where

w10(x) = (β10, β20, β30)
⊤,

w11(x) =

(
3∑

j=1

β1jx3,

3∑

j=1

β2jxj ,

3∑

j=1

β3jx3

)⊤

,

curlw1(x) = (β32 − β23, β13 − β31, β12 − β21)
⊤ = 0.

We then have

βi,i+1 = βi+1,i, 1 ≤ i ≤ 3.

Take s(x) = s1(x) + bp(x) with

s1(T ) = a0 +

3∑

j=1

ajxj +

3∑

j=i

bjx
2
j +

3∑

j=1

cjxjxj+1,
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where ai = βi0, bi = βii/2, ci = βi,i+1, 1 ≤ i ≤ 3. We have grads(x) = w(x). That is

Range(grad) = Ker(curl).

Next obviously

Range(curl) ⊂ Ker(div).

Conversely suppose v(x) ∈ Ker(div), i.e.,

v(x) ∈ V (T ), divv(x) = 0.

Let v(x) = v1(x) + curl(bp), where v1(x) ∈ P 3
1 (T ), p ∈ P̃ 3∗(T ).

divv(x) = 0 ⇐⇒ divv1(x) = 0.

Suppose

v1(x) = (v1, v2, v3), vi = βi0 +

3∑

j=1

βijxj , 1 ≤ i ≤ 3.

Then

divv1(x) = 0 ⇐⇒
3∑

i=1

βii = 0.

Taking w(x) = w1(x) + s(x) + bp, where

w1(x) = (β20x3, β30x1, β10x2), s(x) =

8∑

i=1

αiqi,

α1 =
β12
3
, α2 =

β13
3
, α3 =

β21
3
, α4 =

β23
3
, α5 =

β31
3
, α6 =

β32
3
,

we have

curl(w1(x) + s(x)) = v1(x), curlw(x) = v(x).

Hence

Range(curl) = Ker(div).

(2) Now we prove (5.5). To prove gradΠS
h = ΠW

h grad, it is enough to prove that ∀s(x) ∈
S(T ), gradΠS

h satisfies the interpolation conditions of ΠW
h for grads(x), by (5.9), that is to

prove that
∫

li

gradΠS
hs · tp dl =

∫

li

grads · tp dl, ∀p ∈ P1(li), 1 ≤ i ≤ 6, (5.17a)

∫

fi

gradΠS
hs ∧ n ds =

∫

fi

grads ∧ n ds, 1 ≤ i ≤ 4, (5.17b)

∫

fi

gradΠS
hs · n ds =

∫

fi

grads · n ds, 1 ≤ i ≤ 4, (5.17c)

∫

fi

curlgradΠS
hs ∧ n ds =

∫

fi

curlgrads ∧ n ds, 1 ≤ i ≤ 4. (5.17d)

In fact, by the interpolation conditions of ΠS
h according to (5.5), we have

∫

li

gradΠS
hs · tp dl =

∫

li

∂ΠS
hs

∂t
p dl = ΠS

hsp
∣∣∣
li
−
∫

li

ΠS
hs
∂p

∂t
dl

(5.7)
= sp|li −

∫

li

s
∂p

∂t
dl =

∫

li

grads · tp dl, ∀p ∈ P1(li), 1 ≤ i ≤ 4.
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That is (5.17a) is proved. For n = (1, 0, 0),

∫

f

gradΠS
hs ∧ n ds =

∫

f

(0,
∂ΠS

hs

∂x3
,−∂Π

S
h

∂x2
) ds

=

∫

∂f

(0,ΠS
hsn3,−ΠS

hsn2) dl
(5.7)
=

∫

∂f

(0, sn3,−sn2) dl =

∫

f

grads ∧ n dl.

In the same way, for other n, (5.17b) is proved. Furthermore, note that

∫

fi

gradΠS
hs · n ds =

∫

fi

∂ΠS
hs

∂n
ds

(5.7)
=

∫

fi

∂s

∂n
ds =

∫

fi

grads · n ds.

Then (5.17c) is proved. Since curlgrad = 0, (5.17d) automatically holds.

Next to prove curlΠW
h = ΠV

h curl. It is enough to prove that ∀w(x) ∈ W (T ), curlΠW
h w(x)

satisfies the interpolation conditions of ΠV
h for curlw(x) according to (3.34), that is to prove

that
∫

fi

curlΠW
h w · np ds =

∫

fi

curlw · np ds, ∀p ∈ P1(fi), 1 ≤ i ≤ 4, (5.18a)

∫

fi

curlΠW
h w ∧ n ds =

∫

fi

curlw ∧ n ds, 1 ≤ i ≤ 4. (5.18b)

First we have

curlv · n = ∇ ∧ v · n = ∇ · (v ∧ n) = div(v ∧ n).

By the interpolation conditions of ΠW
h , according to (5.5), we have

∫

fi

curlΠW
h · np ds =

∫

fi

div(ΠW
h w ∧ n)p ds =

∫

∂fi

ΠW
h w ∧ n · n,

−
∫

fi

ΠW
h w ∧ n · ∇p ds (5.10b)

= −
∫

fi

w ∧ n · ∇p ds =
∫

fi

curlw · np ds, 1 ≤ i ≤ 4,

i.e. (5.18a) is proved. Note also
∫

fi

curlΠW
h w ∧ n ds

(5.10d)
=

∫

fi

curlw ∧ n ds, 1 ≤ i ≤ 4,

i.e. (5.18b) holds.

Last we prove divΠV
h = ΠQ

h div. It is sufficient to prove that for any ∀v ∈ Vh, divΠ
V
h v

satisfies the interpolation conditions of ΠQ
h for divv . According to (3.35), that is to prove that

∫

T

pdivΠV
h v dx =

∫

T

pdivv dx, ∀p ∈ P1(T ). (5.19)

To obtain (5.19), we observe
∫

T

pdivΠV
h v dx =

∫

∂T

pΠV
h v · n ds−

∫

T

ΠV
h v · ∇p dx

(4.17)
=

∫

∂T

pv · n ds−
∫

T

v · ∇p dx =

∫

T

pdivv dx.

This completes the proof of the theorem. �
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