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Abstract. Nonlinear normal modes and a numerical iterative approach are applied
to study the parametric vibrations of pipes conveying pulsating fluid as an exam-
ple of gyroscopic continua. The nonlinear non-autonomous governing equations are
transformed into a set of pseudo-autonomous ones by employing the harmonic bal-
ance method. The nonlinear normal modes are constructed by the invariant manifold
method on the state space and a numerical iterative approach is adopted to obtain nu-
merical solutions, in which two types of initial conditions for the modal coefficients are
employed. The results show that both initial conditions can lead to fast convergence.
The frequency-amplitude responses with some modal motions in phase space are ob-
tained by the present iterative method. Quadrature phase difference and traveling
waves are found in the time-domain complex modal analysis.
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1 Introduction

The gyroscopic device is a kind of basic engineering structure with extensive applications
in aerospace, navigation, petroleum and mechanical automation. The gyroscopic systems
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can generally be classified into two categories: one is the translating materials, such as
pipes conveying fluid and axially moving systems, the gyroscopic coupling of which is
caused by the coupling between general coordinates of arbitrary transverse motion; the
other is rotating bodies, the gyroscopic coupling of which is due to the coupling between
two directions in the motion plane [1].

In whichever of the above gyroscopic systems, the presence of skew-symmetric gy-
roscopic operator in the governing equations limits analytical results but enriches dy-
namic behaviors dramatically, which has attracted much research attention to this field
over years. Investigations of the gyroscopic systems were originated from the study of
dynamics of the band saws [2]. Earlier research was confined to the analysis of natu-
ral frequencies, critical speed, and stability of the linear free vibrations [3]. With deeper
understanding of the gyroscopic dynamics, the nonlinear properties of gyroscopic sys-
tems gradually became research focus, including the responses to external excitation and
parametric resonance studied by perturbation method [4] and numerical method [5], and
the mode interactions due to internal resonance [6]. Currently, great progress has been
made towards exploration of various gyroscopic structures, involving the fluid-structure
interaction systems [7, 8], axially moving systems [9] and rotating bodies [10]. The three-
body problems in celestial mechanics, a discrete gyroscopic system, are also concerned in
nonlinear dynamic realm [11].

Natural frequencies and vibration responses of a non-gyroscopic system are often
predicted by means of modal analysis, even in the case of mode interactions. However
for a gyroscopic system, the modal analysis becomes complicated because the complex
modes must be involved to capture the dynamics in nature [12, 13]. In the classical real
modal analysis, as we have known, if the coordinate/velocity of one arbitrary DOF is
given, those of all the other DOFs can be represented as functions of the given coordi-
nate/velocity. It implies that the coordinates/velocities of all DOFs will hold the same
phase or the phase difference of π, which leads to an in-unison vibration. Whereas in a
complex modal analysis, the coordinate/velocity of each DOF is the function of combina-
tion of the given coordinate and velocity. There thus exist any possible phase differences
among the DOFs and an out-of-unison vibration is present. Current researches on com-
plex modes are mostly regarding their applications in linear damped systems since the
fundamental significance of modal analysis lies in the design of mechanical systems in
linear regimes, such as the acquisition of natural frequencies and mode shapes of a dy-
namic structure [14, 15]. Related studies have been extended to the rotor systems [16]
and biomechanics [17]. Whereas in many cases, the nonlinear effects on these mechan-
ical structures are often hard to be neglected, such that the subsequent concentrations
have been put into the nonlinear modes. Among the related researches, the contribution
of Nayfeh [18] is respected as a significant foundation in this area, wherein comprehen-
sive nonlinear interactions, involving nonlinear mode couplings, have been explored and
summarized by analytical, numerical and experimental approaches. With these develop-
ments, nonlinear complex modes are gradually adopted to extend the conventional linear
complex modal theory into nonlinear fields, which shed a new light on the modal analy-
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sis of nonlinear systems [19–21].
As a typical gyroscopic continuum, the pipes conveying fluid have been broadly ap-

plied in various fields of modern industry and agriculture. By absorbing the kinetic
energy of the flowing fluid, the pipe often vibrates intensely due to the fluid-structure
interaction, namely self-excited vibration, which is hazardous or potentially risky for
mechanical structures. In the past decades, theoretical and experimental researches to-
wards the dynamics of pipes conveying fluid have been carried out extensively. Sig-
nificant dynamic behaviors, including internal resonance, friction coupling and bifurca-
tion and chaos, have been revealed, as reported in numerous literature such as that by
Paı̈doussis [22], Ferràs et al. [23], Xu and Yang [24,25] and Wang [26]. Especially from the
perspective of gyroscopic continua, Ni et al. [27] examined the free vibration of pipes con-
veying fluid via the differential transformation method. Öz and Boyaci [28] and Panda
and Kar [29] carried out parametric vibration analysis of pipes conveying pulsating fluid
by using the method of multiple scales. Actually, the fluid-conveying pipe behaves more
like an axially moving system merely with the difference that the axially moving system
moves axially by itself without static surrounding medium, while the fluid-conveying
pipe is static with the fluid medium moving axially.

The parametric vibration is a significant dynamical phenomenon for a gyroscopic
structure. Although plenty of achievements on the dynamics of gyroscopic continua have
been made, there have not been comprehensive investigations regarding the parametric
vibration problems from the modal point of view, to the best knowledge of authors, espe-
cially by using the nonlinear modes. In the present paper, the pipes conveying pulsating
fluid are used as a representative example to explore the nonlinear parametric vibra-
tion responses of the gyroscopic continua. The nonlinear normal modes are constructed
by employing the invariant manifold method proposed by Shaw and Pierre [30] and an
efficient iterative approach is adopted to derive the numerical solution. The frequency-
domain response analysis and the time-domain complex modal response analysis are
both performed, which will provide in-depth interpretation for the nonlinear parametric
vibrations of gyroscopic continua.

2 A typical gyroscopic continuum: Pipes conveying fluid

When the fluid flows through an elastic hollow cylinder at a certain relative velocity, the
Coriolis force will be present due to the fluid-structure interaction. This is a typical re-
flection of the gyroscopic effect on the translating materials. In the following analysis,
we will take the pipes conveying pulsating fluid as an example to investigate the non-
linear parametric vibration responses of a gyroscopic system. The mechanical model of
a pinned-pinned uniform pipe conveying fluid is shown in Fig. 1. The pipe is assumed
to be subject to transverse planar motions: y(x,t) and its axis in the undeformed state
coincides with the x-axis. We use t to denote time variable and U the flow velocity. Tak-
ing the geometrical nonlinearity into account, the partial differential equation governing
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Figure 1: Mechanical model of a pinned-pinned pipe conveying fluid.
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where E, I, L, Ap and m are the Young’s modulus, inertia moment of cross section, length,
cross-sectional area and mass per unit length of the pipe, respectively, and M represents
the mass per unit length of the fluid conveyed.
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and the dimensionless harmonically fluctuated flow

u=u0 [1+µcos(2ωτ)], (2.4)

where u0 is the mean flow velocity, µ the amplitude of the harmonic fluctuation (assumed
small) and 2ω its frequency. Substitutions of Eqs. (2.2) and (2.4) into Eq. (2.1) yield the
dimensionless governing equation as follows
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Note that in Eq. (2.5) the higher-order terms of µ have been omitted.
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In order to introduce the nonlinear normal modes, the continuous model governed by
the partial differential equation will first be discretized via the Galerkin technique with
2-term truncation

η(ξ,τ)=
2

∑
i=1

ψi(ξ)qi(τ), (2.6)

where ψi(ε) and qi(τ) stand for the ith admissible mode function and general coordi-
nate, respectively. It is noted that some theoretical and experimental research works
have pointed out that a 2-term Galerkin truncation for the supported pipes conveying
fluid could attain adequate precision, and the experimental results were at least in good
qualitative agreement with the theoretical ones [32, 33]. Also, the results obtained later
will prove that the numerical solutions can convergence fast and the accuracy of the so-
lutions is not affected by this truncation. Now, we choose the mode functions of static
pinned-pinned beams as admissible functions

ψr(ξ)=
√

2sin(rπξ), r=1,2, (2.7)

for simplicity. Substituting Eqs. (2.6) and (2.7) into Eq. (2.5) and employing the orthog-
onality property of the admissible mode functions, one can get a set of two-dimensional
second-order ordinary differential equations

q̈1−β[1+µcos(2ωτ)] q̇2+

[
k1+

3
16

π2µβωsin(2ωτ)−2π2µu2
0cos(2ωτ)

]
q1

+
8
3

µβωsin(2ωτ)q2+n11q3
1+n12q1q2

2=0,

q̈2+β[1+µcos(2ωτ)] q̇1+

[
k2+

3
4

π2µβωsin(2ωτ)−8π2µu2
0cos(2ωτ)

]
q2

+
2
3

µβωsin(2ωτ)q1+n21q2q2
1+n22q3

2=0,

(2.8)

where

β=
16
3

Mru0, k1=−π2u2
0+π4, k2=−4π2u2

0+16π4, (2.9)

n11=π4γ, n12=4π4γ, n21=n12, n22=16π4γ. (2.10)

3 Construction of the nonlinear normal modes

In this section, the nonlinear normal modes of the present gyroscopic system will be
constructed with the invariant manifold method, by which the parametric resonances
of the gyroscopic system are discussed. It should be mentioned that some general so-
lution approaches have been developed to deal with the continuous systems, inclusive
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of gyroscopic systems, with cubic nonlinearity, especially the method of multiple scales
employed by Özhan and Pakdemirli [34] and Ghayesh et al. [35], by which closed-form
solutions can be obtained to clearly reflect the dynamical evolutions of the system with
parameters. However, these analytical solutions are valid only within a limited range of
parameters. In order to find accurate solutions in an extensive region, numerical proce-
dures may have to be applied. In the following analysis, the nonlinear normal modes
in conjunction with a numerical iterative approach proposed by Avramov [36] are used
to investigate the responses to the parametric resonances of the gyroscopic system. To
efficiently perform the iterative loop, we should first select an appropriate initial value.
Herein two types of initial conditions for the modal coefficients are considered. The first
case takes the conditions of the corresponding autonomous part of the parametric excited
system and the second case utilizes the decoupled coordinate of the non-autonomous sys-
tem as initial conditions. The results obtained by different initial iterative conditions can
be compared and verified mutually.

For the first initial conditions, let

[p1,p2]= [q̇1,q̇2], (3.1)

and µ is assumed to be zero, Eq. (2.8) is then transformed into a set of first-order state
equations governing the nonlinear free vibration of the pipe conveying fluid

q̇1= p1, ṗ1= f1(q1,q2;p1,p2)=βp2−k1q1−n11q3
1−n12q1q2

2

q̇2= p2, ṗ2= f2(q1,q2;p1,p2)=−βp1−k2q2−n21q2q2
1−n22q3

2

}
. (3.2)

The invariant manifold method is now implemented to obtain the initial modal coeffi-
cients of the coupled autonomous system. Considering the gyroscopic coupling of the
system and only the cubic nonlinearity of Eq. (3.2), we can assume a purely modal mo-
tion by requiring that q1, p1, q2 and p2 are related nonlinearly as

q1=w, p1=v, (3.3a)

q2= a1w+a2v+a3w3+a4w2v+a5wv2+a6v3, (3.3b)

p2=b1w+b2v+b3w3+b4w2v+b5wv2+b6v3. (3.3c)

Substituting Eqs. (3.2) and (3.3) into the time derivatives of the last two equations of
Eq. (3.3), and collecting the coefficients of w, v, w3, w2v, wv2 and v3 the nonlinear equa-
tions with respect to aj and bj, j=1∼6 can be yielded, which have been given in Appendix.
The first four of these equations can be solved for the linear modal coefficients as

a1=0, a2=
−
(

β2+k1−k2
)
∓
√
(β2+k1−k2)

2+4β2k2

2βk2
, (3.4a)

b1=
−β2+k1−k2±

√
(β2+k1−k2)

2+4β2k2

2β
, b2=0. (3.4b)
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Along with these linear modal coefficients, the following nonlinear modal coefficients
can be obtained analytically

a3= a5=b4=b6=0, (3.5a)

a6=(s4−2s1s2)/
(
2s2

1−s3
)
, a4= s1a6+s2, (3.5b)

b3=(βa4b1−n11a2−k1a4)/(1−βa2), b5=−k2a6−n22a3
2, (3.5c)

where the expressions of s1∼ s4 are given in Appendix. Thus, the initial values by the
corresponding autonomous system are determined. Now we treat the non-autonomous
equations (2.8). Substituting the last two equations of Eq. (3.3) into the first equation of
Eq. (2.8), we can obtain a decoupled differential equation with respect to q1

q̈1−β[1+µcos(2ωτ)] q̇2(q1,q̇1)+

[
k1+

3
16

π2µβωsin(2ωτ)−2π2µu2
0cos(2ωτ)

]
q1

+
8
3

µβωsin(2ωτ)q2(q1,q̇1)+n11q3
1+n12q1q2

2(q1,q̇1)=0. (3.6)

Assume that the system (3.6) holds the following periodic motion

q1=A1cos(ωτ)+B1sin(ωτ), (3.7)

where A1 and B1 can be determined by the harmonic balance method. At the same time,
according to Eq. (3.7), the following expressions can be derived

cos(2ωτ)=α1q2
1+α2q̇2

1+α3q1q̇1, (3.8a)

sin(2ωτ)=
ωα3

2
q2

1−
α3

2ω
q̇2

1+2ωα2q1q̇1, (3.8b)

where

α1=
A2

1−B2
1(

A2
1+B2

1

)2 , α2=
B2

1−A2
1

ω2
(

A2
1+B2

1

)2 , α3=
4A1B1

ω
(

A2
1+B2

1

)2 . (3.9)

Substitute Eq. (3.8) into Eq. (2.8) and a pseudo-autonomous gyroscopic system will be
derived, which still holds a cubic nonlinearity form. Therefore, the nonlinear normal
modes of the gyroscopic system with parametric excitation can also be taken as the same
form of Eq. (3.3) with the coefficients to be determined. Repeat the steps from Eq. (3.1) to
Eq. (3.5) and the modal coefficients for the first iteration can be obtained.

For the second initial conditions, we consider the case of the first-mode parametric
resonance, at which the amplitude of the modal motion of q1 is much larger than that of
q2. Such motions can be approximately described by taking q2 = 0 and the system (2.8)
thus has the following form

q̈1+

[
k1+

3
16

π2µβωsin(2ωτ)−2π2µu2
0cos(2ωτ)

]
q1+n11q3

1=0. (3.10)

Repeat the steps starting from Eq. (3.7) and the first iteration for this initial conditions
can be completed.
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4 Results and discussion

In this section, the fundamental (first-mode) parametric resonance will be analyzed by
numerical examples. We firstly inspect the convergence of the present iterative loop,
and meanwhile compare the iterative results of two initial conditions. In the following
examples, the parameter values that may be used are all taken as: u0=2, Mr=0.8, ω=7.41,
µ=0.3, γ=0.03. Table 1 and Table 2 list the iterative results of the modal coefficients with
the initial conditions of the coupled autonomous system and decoupled non-autonomous
system, respectively. It can be seen that there already has a higher precision after the
third iteration for both initial conditions. Moreover, the final calculation results of the
modal coefficients with the two initial conditions achieve a good agreement. However, it
should be noted that the initial conditions of decoupled non-autonomous system are of
significance only in the neighbourhood of resonance points, while the initial conditions
of coupled autonomous system can be employed anywhere.

Table 1: The iterative results of the modal coefficients with the initial conditions of coupled autonomous system.

Modal coefficients The n-th iteration
1st 2nd 3rd 4th

A1 -2.775 -2.604 -2.584 -2.581
B1 1.520 1.521 1.529 1.530

a3/E−04 5.436 6.335 6.458 6.473
a4/E−05 -0.512 -1.094 -1.183 -1.195
a5/E−05 7.213 8.292 8.432 8.448
a6/E−06 1.526 1.428 1.390 1.383
b3/E−02 -0.789 -1.008 -1.025 -1.026
b4/E−03 -5.519 -5.913 -5.931 -5.930
b5/E−04 -3.964 -4.362 -4.394 -4.396
b6/E−05 7.138 8.203 8.340 8.357

Table 2: The iterative results of the modal coefficients with the initial conditions of decoupled non-autonomous
system.

Modal coefficients The n-th iteration
1st 2nd 3rd 4th

A1 -2.545 -2.578 -2.580 -2.581
B1 1.353 1.516 1.530 1.531

a3/E−04 6.376 6.475 6.478 6.475
a4/E−05 -0.900 -1.179 -1.197 -1.197
a5/E−05 8.514 8.465 8.455 8.451
a6/E−06 1.967 1.427 1.385 1.382
b3/E−02 -1.299 -1.049 -1.028 -1.026
b4/E−03 -6.726 -5.995 -5.936 -5.930
b5/E−04 -4.894 -4.438 -4.400 -4.396
b6/E−05 8.427 8.374 8.363 8.360
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Fig. 3  The frequency-amplitude responses and modal motions in phase space 
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Figure 3: The frequency-amplitude responses and modal motions in phase space.

Next, we carry out a frequency-domain analysis for the present parameter-excited
gyroscopic system. Before discussing the response characteristics, a stability inspection
should be conducted via the linear system. By using the parameter values given in the
foregoing, the stability region in the ω−µ plane is plotted in Fig. 2 by the averaging
method, which is a dependable perturbation approach employed in much literature [31,
37, 38]. Note that areas inside and outside the boundary in the figure indicate unstable
(parametric resonance) and stable regions, respectively. It is found that a linear stability
boundary is present in Fig. 2, because the damping is neglected. Moreover, the area of
unstable region will be increased, that is, the stability of the system will be impaired, with
increase of the excitation amplitude.

Fig. 3 depicts the nonlinear frequency-amplitude responses of the two general coordi-
nates, q1 and q2, calculated by the present iterative approach. Selected modal motions of
the general coordinates on state space are also presented in the figure. To further verify
the obtained results, the numerical responses by direct integration of Eq. (2.8) are plotted
in Fig. 2 with blue asterisks. A good agreement can be found between the two results,
which demonstrates the effectiveness of the current invariant manifold method and iter-
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Fig. 3  The frequency-amplitude responses and modal motions in phase space 
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(b) p2 as function of q1 and p1 

Fig. 4  The nonlinear invariant manifolds for the parameter-excited gyroscopic system 

Now we investigate the time-domain responses of the system by taking advantage of nonlinear 

complex modes. In terms of Eq. (15), we can describe the period modal motion of q1 in complex 

form 

i
1 eAq  ..                                (19) 

\[{q_1} = A{e^{i\omega \tau }}\] 

Substituting Eq. (19) into Eq. (11), p1, q2 and p2 can also be expressed in complex form. In order to 

examine the phase relations of the two DOFs, we plot the time histories of q1, p1, q2 and p2 during 

parametric vibrations in Fig. 5. In this figure and the following Fig. 6, the parameter values used are 

A = 1, ω = 17. It is found a π/2 phase difference exists between q1 and q2, which is a typical 

phenomenon of the gyroscopic system. In general, the coordinate/velocity of the second DOF is 

mainly associated with the velocity/coordinate of the first DOF, which will result in an 

out-of-unison vibration of the present gyroscopic system.  

To clearly exhibit the complex gyroscopic mode phenomenon, by substituting the general 

coordinates and velocities q1, p1, q2 and p2 into Eq. (5), we can obtain the vibrations of the pipes on 

the physical coordinates. In Fig. 6(a) the snapshot of the parametric vibrations during one period 

(a) q2 as function of q1 and p1 (b) p2 as function of q1 and p1

Figure 4: The nonlinear invariant manifolds for the parameter-excited gyroscopic system.

ative approach. Moreover, although both of q1 and q2 show a hardening response char-
acteristic, as displayed in Fig. 3(a) and Fig. 3(b), there is still evident distinction between
them. The reason is that in the present nonlinear modal analysis, according to Eqs. (3.3)
and (3.7), q1 and p1 perform a simple harmonic motion, while q2 is the complicated non-
linear function of q1 and its velocity p1.

The nonlinear invariant manifolds of the system are plotted in Fig. 4. We can observe
in the figure that the manifolds are not planar owing to the effect of nonlinearity. The
nonlinear invariant manifold of q2 is a warping surface and that of p2 is a waved one.
Furthermore, from the physical point of view, the ”invariance” means that any motion
starting from the manifold will remain in it for all the time, and the system behaves
as a nonlinear single DOF system on the manifold. For the present parameter-excited
gyroscopic system, periodic orbits of the modal motions can be obtained for different
amplitudes in phase space, as shown in Fig. 3, and the nonlinear invariant manifolds are
actually constructed by all the possible three-dimensional periodic orbits with respect to
q2, q1, p1 or p2, q1, p1.

Now we investigate the time-domain responses of the system by taking advantage of
nonlinear complex modes. In terms of Eq. (3.7), we can describe the period modal motion
of q1 in complex form

q1=Aeiωτ. (4.1)

Substituting Eq. (4.1) into Eq. (3.3), p1, q2 and p2 can also be expressed in complex form.
In order to examine the phase relations of the two DOFs, we plot the time histories of q1,
p1, q2 and p2 during parametric vibrations in Fig. 5. In this figure and the following Fig. 6,
the parameter values used are A=1, ω=17. It is found a π/2 phase difference exists be-
tween q1 and q2, which is a typical phenomenon of the gyroscopic system. In general, the
coordinate/velocity of the second DOF is mainly associated with the velocity/coordinate
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of the first DOF, which will result in an out-of-unison vibration of the present gyroscopic
system.

To clearly exhibit the complex gyroscopic mode phenomenon, by substituting the
general coordinates and velocities q1, p1, q2 and p2 into Eq. (2.6), we can obtain the vibra-
tions of the pipes on the physical coordinates. In Fig. 6(a) the snapshot of the parametric
vibrations during one period process is presented for the pipes conveying fluid. For bet-
ter comparison, that of the vibration process for the pipe without moving fluid, which is a
non-gyroscopic system, is also plotted in Fig. 6(b). In both figures, the curve colours from
shallow to deep indicate the direction of time going. It can be observed that unlike a vi-
bration with fixed nodes in non-gyroscopic systems, which shows the ”standing waves”,
the nodes of the gyroscopic system are shifting with time, which shows the ”traveling
waves”. It is also found that the wave for the first mode is travelling leftward for the
present modal motion whereas the fluid flows rightward. This is a significant distinction
of vibrations between gyroscopic and non-gyroscopic structures.
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5 Conclusions

This paper investigates the parametric vibrations of gyroscopic continua from a modal
perspective. The pipes conveying pulsating fluid are used as a typical example of gy-
roscopic structures. The nonlinear normal modes for such gyroscopic system are con-
structed by the invariant manifold method. An iterative approach is applied to obtain
numerical solutions and the frequency-domain and time-domain response analysis are
carried out to show the vibrations due to parametric resonances. The fast convergence
of the response solutions proves the high efficiency of the present iterative approach.
The amplitude responses to the pulsating frequencies are presented by the proposed nu-
merical method. The quadrature phase difference and traveling waves are found in the
time-domain complex modal analysis of the pipes conveying fluid.

Moreover, it should be noted that the present solution method is in nature a semi-
analytical and semi-numerical method, which consists of two procedures: nonlinear nor-
mal modes and numerical iteration. It is applicable for any dynamical system with finite
degrees of freedom, including high nonlinear systems, in which just more terms will be
involved. The solution precision mainly depends on the iteration times, and has nothing
to do with the nonlinearity.

Appendix

Substituting Eqs. (3.2) and (3.3) into the time derivatives of the last two equations of
Eq. (3.3), and collecting the coefficients of w, v, w3, w2v, wv2 and v3, the nonlinear equa-
tions with respect to aj and bj, j=1∼6 can be yielded as

w term: b1−βa2b1+k1a2=0, (A.1a)
βb1b2−k1b2+k2a1=0, (A.1b)

v term: a1−b2+βa2b2=0, (A.1c)

b1+βb2
2+k2a2+β=0, (A.1d)

w3 term: b3+n11a2+n12a2
1a2−βa4b1−βa2b3+k1a4=0, (A.1e)

n11b2+n12a2
1b2−n21a1−n22a3

1−βb2b3−βb1b4+k1b4−k2a3=0, (A.1f)

w2v term: 3a3−b4−2n12a1a2
2+2βa5b1+βa4b2+βa2b4−2k1a5=0, (A.1g)

3b3−2n12a1a2b2+n21a2+3n22a2
1a2+2βb2b4+2βb1b5−2k1b5+k2a4=0, (A.1h)

wv2 term: 2a4−b5−n12a3
2+3βa6b1+2βa5b2+βa2b5−3k1a6=0, (A.1i)

2b4−n12a2
2b2+3n22a1a2

2+3βb2b5+3βb1b6−3k1b6+k2a5=0, (A.1j)

v3 term: a5−b6+3βa6b2+βa2b6=0, (A.1k)

b5+n22a3
2+4βb2b6+k2a6=0. (A.1l)
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The expressions of s1∼ s4 in Eq. (3.5) are given as follows

s1=
1
2
(βk2a2−k2−3βb1+3k1), (A.2a)

s2=
1
2

(
βn22a4

2−n22a3
2+n12a3

2

)
, (A.2b)

s3=2
(

β2k2a2b1−βk1k2a2−βk2b1+k1k2
)

, (A.2c)

s4=2
(

β2n22a4
2b1−βk1n22a4

2−βn22a3
2b1+k1n22a3

2

)
−βn21a2

2+n21a2−3n11a2. (A.2d)
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[22] M. P. PAÏDOUSSIS, Fluid-Structure Interactions: Slender Structures and Axial Flow, Second
ed., Academic Press, London, 2014.
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[33] M. P. PAÏDOUSSIS AND N. T. ISSID, Experiments on parametric resonance of pipes containing

pulsatile flow, J. Appl. Mech., 43 (1976), pp. 198–202.
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