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Abstract. The Degasperis–Procesi (DP) equation is split into a system of a hyper-
bolic equation and an elliptic equation. For the hyperbolic equation, we use an op-
timized finite difference weighted essentially non-oscillatory (OWENO) scheme. New
smoothness measurement is presented to approximate the typical shockpeakon struc-
ture in the solution to the DP equation, which evidently reduces the dissipation arising
from discontinuities simultaneously removing nonphysical oscillations. For the ellip-
tic equation, the Fourier pseudospectral method (FPM) is employed to discretize the
high order derivative. Due to the combination of the WENO reconstruction and FPM,
the splitting method shows an excellent performance in capturing the formation and
propagation of shockpeakon solutions. The numerical simulations for different solu-
tions of the DP equation are conducted to illustrate the high accuracy and capability of
the method.
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1 Introduction

In this paper, we consider the Degasperis–Procesi equation

ut+3κ3ux−uxxt+4 f (u)x = f (u)xxx, (1.1)

∗Corresponding author.
Email: yunruiguo@nudt.edu.cn (Y. R. Guo)

http://www.global-sci.org/aamm 53 c©2019 Global Science Press



54 Y. R. Guo, W. J. Yang, H. Zhang, J. Wang and S. H. Song / Adv. Appl. Math. Mech., 11 (2019), pp. 53-71

where u(x,t) is a real function and f (u)=u2/2. This equation is an approximate model
of shallow water wave propagation in small amplitude and long wavelength regime.
It was first found by Degasperis and Procesi when they were studying the asymptotic
integrability to the third-order dispersive equation [1]

ut−α2uxxt+γuxxx+c0ux =(c1u2+c2u2
x+c3uuxx)x, (1.2)

with six real constants c0, c1, c2, c3, γ, α ∈R, for which only three of them satisfy the
integrability condition, namely, the Korteweg–de Vries (KdV) equation (α= c2 = c3 = 0),
the Camassa–Holm (CH) equation (c1=− 3c3

2α2 , c2=
c3
2 ), and the DP equation (1.1). The KdV

equation, as the simplest model, has been studied in detail [2, 3]. While the DP equation
is more complicated, because of the existence of the mixed derivative term uxxt and the
nonlinear dispersion terms uuxxx and uxuxx.

Degasperis proved the integrability of the DP equation by constructing a Lax pair and
a bi-Hamiltonian structure [4]. It was related to the AKNS shallow water wave equation
by a hodograph transformation [5]. Based on above results, Matsuno obtained the mul-
tisoliton solutions of the DP equation for the case κ 6= 0 [6]. Furthermore, Lundmark
and Szmigielski found the explicit form of multipeakon solutions for κ = 0 by solving
an inverse scattering problem of a discrete cubic string [7–9]. Additionally, the peakon
solutions for these two equations are orbitally stable [10].

One of the important features of the DP equation (κ=0) is that it has not only a peaked
solution u(x,t)= ce−|x−ct| [4], but also a shock wave solution of the form [11, 12]

u(x,t)= ce−|x−ct|+
s

ts+1
sign(x−ct)e−|x−ct|, (1.3)

where c, s (s> 0) are constants. Moreover, the DP equation possesses a periodic shock
wave solution [13] given by

u(x,t)=


(

cosh( 1
2 )

sinh( 1
2 )

t+c
)−1 sinh(x−|x|− 1

2 )
sinh 1

2
, x∈R\Z, c>0,

0, x∈Z.
(1.4)

Lundmark further extended the multipeakon solution of the DP equation to the multi-
shockpeakon solution [11]

u(x,t)=
n

∑
i=1

mi(t)e−|x−xi(t)|+
n

∑
i=1

si(t)sign(x−xi)e−|x−xi(t)|, (1.5)

where mi(t), xi(t) and si(t) represent the momentum, position and strength of the i-th
shockpeakon, respectively. It was proved that (1.5) is a weak solution of the DP equation
if and only if mi(t), xi(t) and si(t) satisfy an ODE system. Inspired by the existence of
these discontinuous solutions, Coclite et al. developd a well-posedness theory which de-
pends on some functional spaces containing discontinuous functions [11]. They proved
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the existence and uniqueness for entropy weak solutions belonging to the class L1∩BV
and extended the conclusion to a class of generalized DP equations. Furthermore, Lund-
mark found some explicit shock solutions, i.e., entropy weak solutions to the DP equa-
tion [11].

In the last decade, several numerical methods have been proposed for the DP equa-
tion. Coclite, Karlsen and Risebro constructed a set of splitting approximations and
proved that they converged to entropy weak solutions [14]. Feng and Liu developed
another different operator splitting method for the DP equation [7], which was based on
a second order TVD method and a linearized implicit finite difference method. However,
the spatial accuracies of all above methods are no higher than second order. In order
to preserve the Hamiltonian invariants of the DP equation, conservative finite difference
methods for continuous solutions were first investigated by Miyatake and Matsuo [15].
Later Yu et al. proposed a compact finite difference method with symplectic implicit
Runge–Kutta integration [16]. Xu and Shu developed and tested high order local dis-
continuous Galerkin methods for the DP equation, and showed the L2 stability for gen-
eral solutions [17]. Moreover, the Fourier spectral methods with the Gegenbauer post-
processing was adopted to the discontinuous solutions [18], for the purpose of avoiding
spurious oscillations nearby the contact discontinuities or strong shocks. Recently, Song
et al. proposed a modified structure-preserving method for the DP equation, but it failed
to approximate shocks [19].

The WENO methodologies [20, 21] are high order numerical simulations for PDEs
charactered with discontinuities, sharp gradient regions and other complex solution struc-
tures. Xia and Xu first applied WENO schemes to solve the DP equation (κ=0) by decom-
posing it into a hyperbolic equation and an elliptic equation [22]. This decomposition re-
flects the mechanism of shock formation in the DP equation to some extent. In our work,
the method is based on this decomposition as well. It is worth noting that the solution
generally contains some critical points (points of zero derivatives of the flux function)
and shockpeakons, comprising a peakon and a shock (i.e., the maximum or minimum
generally emerges at a discontinuity). Nonetheless, the classical choice of smoothness
indicators in WENO schemes (known as WENO-JS) is inclined to loss accuracy at critical
points [23] and amplify dissipations at shockpeakons, resulting from excessively small
weights assigned to substencils appearing high gradients. To fix that, a mapping function
which corrected the weights was proposed, resulting in WENO-M scheme. On top of fix-
ing the accuracy issue, WENO-M was also the first scheme to show significant improve-
ment on the quality of the solution close to shocks and high gradients. As a drawback,
the proposed mapping reveals to be computationally expensive. Alternatively, Borges et
al. introduced [24] another new scheme, dubbed as WENO-Z, which achieved superior
results with almost the same computational effort of the WENO-JS scheme. This scheme
attains much better resolution at the smooth parts of the solution, while keeping the same
numerical stability as WENO-JS at shocks and discontinuities. Also, the analogous im-
provements on smoothness indicators have been present in [25–27] generating the same
effect as WENO-Z.
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Our purpose is to extend the WENO reconstructions to the general DP equation using
the finite difference discretization. We are interested in a new smoothness measurement,
which was studied recently to optimize the fifth order WENO scheme for capturing shock
waves [28]. Nevertheless, the original proof, supporting its priority than WENO-JS, is not
rigorous enough. Thus a complete theoretical analysis is provided in this paper. Further-
more, we compare our scheme with WENO-Z when approximating shockpeakons. And
we discretize the linear dispersion term by FPM instead of linear finite difference meth-
ods (LFD) used by Xu [22]. This method is proved to be effective for periodic initial
value problems with constant coefficients, and has been successfully applied to model
wave propagation [29].

The rest of the paper is organized as follows. In Section 2, preliminaries about the DP
equation and its splitting technique are recalled. Section 3 emphasizes on the construc-
tion of the OWENO finite difference scheme for the DP equation. The novel smoothness
technique is introduced in detail. In Section 4, the Fourier pseudospectral method is pre-
sented for the discretization of the dispersion term. In Section 5, the proposed method is
tested on a number of numerical problems. Concluding remarks are given in Section 6.

2 Preliminary about the DP equation

We are interested in the DP equation (1.1) with initial condition u(x,0) = u0(x) in the
interval [−L,L], and assume that the solution satisfies the periodic boundary condition.
Using the inverse operator I−∂xx, we can split the DP equation into a simple hyperbolic-
elliptic system [22]

ut+ f (u)x+p=0, (2.1a)

p−pxx =3 f (u)x+3κ3ux, (2.1b)

for which two useful conservation laws

I1(u)=
∫

R
udx, I2(u)=

∫
R

u3dx, (2.2)

are important approaches in testing the preserving ability of the proposed method.
To solve (2.1) numerically, a standard solution procedure starts with the spatial dis-

cretization of the equation and then does the time integration. Consider a uniform grid
defined by the points

−L= x0< x1< ···< xN =L,

which are called cell centers with cell nodes given by xi+ 1
2
= h

2 +xi, here h is the uniform

grid step. The discretized grid functions are denoted by uh = {ui}N−1
i=0 and ph = {pi}N−1

i=0
separately. Thus the semi-discrete formulation for the DP equation can be given by{

∂tuh+D f (uh)+ph =0,
ph−∆ph =3D f (uh)+3κ3Duh,

(2.3)

where the differential operators D and ∆ indicate the approximations of ∂x and ∂2
xx.
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3 High order optimized finite difference WENO method

In this subsection, we present the fifth order optimized WENO reconstruction (OWENO5)
for the hyperbolic equation (2.1a).

The spatial finite difference discretization of Eq. (2.1a) can be written as

d
dt

ui+
∂ f
∂x

∣∣∣∣
xi

+pi =0, i=0,1,··· ,N−1. (3.1)

For the construction of flux differences across uniformly-spaced cells, a conservative fi-
nite difference formulation for the DP equation requires high order consistent numerical
fluxes at the cell nodes. Thus we implicitly define the numerical flux function g(x) as

f (x)=
1
h

∫ x+ h
2

x− h
2

g(ξ)dξ,

such that the spatial derivative in Eq. (3.1) is exactly approximated by the following con-
servative finite difference method

d
dt

ui+
1
h

(
gi+ 1

2
−gi− 1

2

)
+pi =0, (3.2)

where gi+ 1
2
= g(xi+ 1

2
).

The classical (2r−1)-order WENO method uses a (2r−1)-point global stencil, which is
subdivided into r substencils S0,S1,··· ,Sr−1 with each substencil containing r grid points.
With the smooth flux splitting f (u)= f+(u)+ f−(u), we can obtain (2r−1)-order polyno-
mial interpolations to gi± 1

2
and denote them as f̂i± 1

2
, where d f+(u)

du ≥0, d f−(u)
du ≤0. Conse-

quently, the conservative finite difference formula for fx can be given by

(D f (uh))i =
1
h

(
f̂i+ 1

2
− f̂i− 1

2

)
, (Duh)i =

1
h

(
ûi+ 1

2
−ûi− 1

2

)
.

In this paper, the Lax–Friedrichs splitting technique is applied as:

f±(u)=
1
2
( f (u)±αu), α=max

u
| f ′(u)|.

To be specific, the parameter α is taken by maxu |u| and the constant 1 for f̂ and û, respec-
tively. Thus f̂i± 1

2
= f̂+

i± 1
2
+ f̂−

i± 1
2
, both f̂+

i± 1
2

and f̂−
i± 1

2
are built through the convex combina-

tion of the interpolated values f̂+k (xi± 1
2
) and f̂−k (xi± 1

2
). For simplicity, we only work out

the reconstruction of f̂+
i± 1

2
:

f̂+
i± 1

2
=

r−1

∑
k=0

ωk f̂k(xi± 1
2
), (3.3)
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where f̂k(x) is the r-th degree polynomial defined on each of the substencils Sk,

f̂k(xi+ 1
2
)=

r−1

∑
j=0

ckj fi−k+j, i=0,··· ,N. (3.4)

The Lagrangian interpolation coefficients ckj depend on the parameters k=0,··· ,r−1.
The weights ωk are defined as

ωk =
αk

∑r−1
l=0 αl

, αk =
dk

(βk+ε)2 , βk =
r−1

∑
l=1

h2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂k(x)
)2

dx, (3.5)

where ε is a positive real number to prevent the denominator from being zero. We take it
as 10−6 in numerical experiments. The coefficients d0,d1,··· ,dr−1 are ideal weights [20].

3.1 A new smoothness measurement

For the classical smoothness measurement (3.5), the indicators βk are small enough on
smooth parts of the solution so that ωk approximate the ideal weights dk very well. How-
ever, if one substencil Sk contains discontinuities, then

βk =O(1).

Consequently the corresponding weight ωk approximating zero produces excessive dis-
sipation and weakens the ability to capture shocks. In this subsection, we present a novel
approach to measure the smoothness of numerical solutions on a stencil [28].

Firstly, we introduce conjugate smoothness indicators:

β̄k =
r−1

∑
l=0,l 6=k

βk, k=0,1,··· ,r−1. (3.6)

Then, the new indicators

βE
k =

ε+ β̄k

ε+βk
, k=0,1,··· ,r−1, (3.7)

depend on both β̄k and βk. Thus the optimized nonlinear weights ωE
k can be formulated

by

αk =dkβE
k , ωE

k =
αk

∑r−1
l=0 αl

, k=0,1,··· ,r−1. (3.8)

The new construction of nonlinear weights considers the smoothness interaction among
various substencils. In smooth regions, the optimized weights ωE

k are closer to the ideal
weights than the classical weights ωk. Therefore, the former reconstruction approximates
the exact solution better. In discontinuous regions, ωE

k from ”discontinuous” substencils
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are amplified moderately, which efficiently reduce the dissipation and improve the accu-
racy of discontinuities.

Next, we present a simple analysis and a comparison of both the smoothness tech-
niques theoretically. For convenience, ε is taken as zero. We select the weight of S0 as an
example to illustrate the case of r=3.

In smooth regions:

ω0=
d0

d0+d1

(
β0
β1

)2
+d2

(
β0
β2

)2 , (3.9a)

ωE
0 =

d0

d0+d1

(
β0

β1+β2

)(
β0+β2

β1

)
+d2

(
β0

β1+β2

)(
β0+β1

β2

)
=

d0

d0+d1

(
β0
β1

)(
β0+β2
β1+β2

)
+d2

(
β0
β2

)(
β0+β1
β1+β2

) . (3.9b)

We are interested in the parameters of d1 and d2 in the denominators of Eq. (3.9a) and
Eq. (3.9b):
Case 1. If β0≤β1,β2, then

β0

β1
≤1,

(
β0

β1

)2

≤
(

β0

β1

)(
β0+β2

β1+β2

)
≤1, (3.10a)

β0

β2
≤1,

(
β0

β2

)2

≤
(

β0

β2

)(
β0+β1

β1+β2

)
≤1. (3.10b)

Obviously, the denominator of ωE
0 is closer to 1, so ωE

0 is closer to the ideal weight d0 than
ω0.
Case 2. If β0>β1,β2, then

β0

β1
>1,

(
β0

β1

)2

>

(
β0

β1

)(
β0+β2

β1+β2

)
>1, (3.11a)

β0

β2
>1,

(
β0

β2

)2

>

(
β0

β2

)(
β0+β1

β1+β2

)
>1. (3.11b)

The conclusion is same as Case 1.
Case 3. For β1<β0≤β2 (similar to β2<β0<β1), we can discuss both β1 and β2 just like β0
in Case 2 and Case 1 separately. It demonstrates that ωE

1 , ωE
2 are closer to d1, d2 than ω1,

ω2. According to ωE
0 +ωE

1 +ωE
2 =1, we can infer the same result holding for ωE

0 as well.
In discontinuous regions:
Assume that S0 contains a discontinuity, S1 and S2 are smooth, i.e., β0>β1 and β0>β2.

Then we have
ωE

0

ωE
1
=

d0

d1

(
β1

β0

)(
β1+β2

β0+β2

)
>

d0

d1

(
β1

β0

)2

=
ω0

ω1
. (3.12)
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Apparently the value of ωE
0 increases, which also holds for ωE

0 /ωE
2 .

In conclusion, the new weights ωE
k in smooth parts approximate the ideal weights

dk better, and the weights ωE
0 in discontinuous parts are assigned relatively large. This

distinguishing feature has a great advantage over capturing shockpeakon solutions.

4 The Fourier Pseudospectral method for the elliptic equation

In this section, we consider the discretization of the elliptic equation. The FPM has re-
markable conservation properties and high spatial accuracy [30]. Unlike the spectral
method on Fourier space, the method is on real space and does not need the passage
between Fourier space and physical space. So the computation costs less CPU time.
It has been widely used to solve Hamiltonian PDEs, such as the Zakharov–Kuznetsov
equation, the Kadomtsev–Petviashvili equation [30] and the coupled Schrodinger–KdV
equation [31]. In this subsection, we will apply it to Eq. (2.1b) with periodic bound-
ary condition. The discretization is implemented through a trigonometric polynomial at
collocation points {xi}N−1

i=0 , where N is an even number, and the period is 2L. We approx-
imate u(x,t) by

INu(x,t)=
N−1

∑
j=0

ujyj(x), (4.1)

with the N
2 -degree trigonometric polynomials yj(x) given explicitly by

yj(x)=
1
N

N
2

∑
l=− N

2

1
Cl

eilµ(x−xj), (4.2)

where Cl =1 (|l| 6= N
2 ), C N

2
=C− N

2
=2, µ= π

L . Substituting Eq. (4.2) into the expression of
INu(x,t), we obtain

INu(x,t)=
1
N

N
2

∑
l=− N

2

1
cl

eilµx
N−1

∑
j=0

uje−ilµ(xj).

Then

INu(xi,t)=
1
N

N
2

∑
l=− N

2

1
cl

eilµxi
N−1

∑
j=0

uje−ilµ(xj),

ui = INu(xi,t), i=0,1,··· ,N−1.

The values of the derivative ∂k INu(xi ,t)
∂xk at the collocation points xj are obtained by

∂k INu(xi,t)
∂xk =

N−1

∑
j=0

uj
dkyn(xi)

dxk =(Dku)i, (Dk)j,n =
dkyn(xj)

dxk , (4.3)
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where Dk represents Fourier pseudospectral differential matrix with the elements

(D1)i,j =


1
2

µ(−1)i+jcot
(

µ
xi−xj

2

)
, i 6= j,

0, i= j.

Therefore, the Fourier pseudospectral discretization for Eq. (2.1) can be written explicitly
as:

ph−D2
1 ph =3D f (uh)+3κ3Duh. (4.4)

Remark 4.1. In this paper, we restrict our consideration to the splitting strategy between
FPM and various WENO methods only. In fact, the presented splitting framework is also
available to general numerical approaches, such as the wavelet collocation method [31]
and DG method. For instance, we also test the combination of WENO-Z and the wavelet
collocation method in this framework. A good agreement is obtained in Section 5.

5 Numerical examples

In this section, we provide several numerical examples to illustrate the accuracy and
capability of the proposed method. Considering the total variation bounded property
of the DP equation, we employe the third order explicit TVD Runge–Kutta method [20]
for time integration. Firstly, the numerical convergence is verified by a single soliton
propagation, consisting of a single smooth soliton when κ 6=0, and a single peakon when
κ=0. Then the proposed method is employed to simulate two-peakon solutions

u(x,t)=
2

∑
i=1

ci(t)e−|x−xi(t)| (5.1)

including binary peakon-peakon and shockpeakon interactions. Besides, a delicate triple
Peakon-Antipeakon-Shockpeakon interaction is resolved to verify the effect of the new
smoothness technique. Finally, two types of general initial value problems are provided
to verify the resolution and stability of the proposed method.

5.1 Single soliton solutions

To test the accuracy of the proposed method, we first solve the DP equation with a smooth
solution.

Example 5.1 (Single smooth soliton). When κ 6= 0 the DP Eq. (1.1) admits smooth N-
soliton solutions in the parametric form [6], in which a smooth single soliton solution is



62 Y. R. Guo, W. J. Yang, H. Zhang, J. Wang and S. H. Song / Adv. Appl. Math. Mech., 11 (2019), pp. 53-71

-20 -15 -10 -5 0 5 10 15 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Exact
OWENO-FPM
Initial profile

Figure 1: The numerical results computed with h=0.125 and ∆t=0.0625 of single soliton solution.

Table 1: Convergence rate for a smooth soliton solution.

N L∞ error order L1 error order E1 E2
80 4.08×10−3 − 2.39×10−4 − 4.95×10−7 1.05×10−3

160 3.04×10−4 3.74 1.03×10−5 4.53 2.99×10−8 6.14×10−5

320 1.16×10−5 4.71 3.30×10−7 4.96 1.48×10−8 2.51×10−6

640 4.92×10−7 4.56 1.17×10−8 4.82 7.48×10−9 9.46×10−8

of the form

u(y,t)=
2κ3(a2

1−1)(4a2
1−1)

a1(coshξ1+2a1−a−1
1 )

, (5.2a)

x(y,t)=
y
κ
+ln

(
α1+1+(α1−1)eξ1

α1−1+(α1+1)eξ1

)
. (5.2b)

Here

ξ1= k1

(
y− 3κ4

1−κ2k2
1

t−y0

)
, a1=

1
2

√
4−κ2k2

1

1−κ2k2
1

, α1=

√
(2a1−1)(a1+1)
(2a1+1)(a1−1)

.

We carry out the simulation in a domain [−20,20] with parameters κ = 0.511, κk1 = 0.8,
y0 = 0. The profiles in Fig. 1 are the numerical and the exact solution at t = 10, which
display that the overall solution transition is of high accuracy. Table 1 shows L∞, L2
errors and two conservative quantities I1, I2 at t=1.0. Here E1= |I1− Ī1| and E2= |I2− Ī2|
indicate the relative errors in I1 and I1; Īi and Ii (i=1,2) stand for the numerical and exact
values. Trapezoidal rule is employed for the numerical quadrature of the integrals. The
table shows that the proposed scheme can achieve the designed fifth order accuracy.

Example 5.2 (Single peakon solution). Consider the traveling solution

u(x,t)= ce−|x−ct| (5.3)
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Table 2: Comparison of errors between OWENO-FPM and WENO-JS-LFD.

Time Method L∞ E1 E2

t=2.0 FPM 4.25×10−2 1.13×10−8 1.89×10−3

LFD 4.56×10−2 2.36×10−8 2.20×10−3

t=4.0 FPM 4.38×10−2 1.08×10−7 3.35×10−3

LFD 4.41×10−2 8.28×10−7 4.34×10−3

t=6.0 FPM 4.39×10−2 1.51×10−6 4.88×10−3

LFD 4.72×10−2 1.11×10−6 6.75×10−3

t=8.0 FPM 4.41×10−2 6.14×10−6 6.41×10−3

LFD 4.71×10−2 1.11×10−5 9.23×10−3

for the DP equation when κ = 0. In our numerical simulation, we choose the traveling
speed c=1.0 and the computation domain [−20,20] with N=640. Table 2 compares the
errors of uh and two conservative quantities for different methods at different times. It
shows that the proposed method maintains the accuracy and conservative quantities rel-
atively better than WENO-JS-LFD [22], where LFD stands for the linear finite difference
method.

5.2 Peakons and shockpeakons interactions

Example 5.3 (Two-peakon interaction). In this example, we consider the two-peakon so-
lution for the DP equation (κ=0) with the initial condition

u(x,0)= c1e−|x−x1|+c2e−|x−x2|, (5.4)

where the parameters c1 = 2.0, c2 = 1.0, x1 =−13.792 and x2 =−4.0. In these interac-
tions, the peakon should preserve its shape and velocity before and after encountering
a nonlinear interaction with other similar peakon [18]. From Fig. 2, we can observe the
precise snapshots at different times during the whole collision process. Furthermore, we
continue the interaction to t= 20. For all methods, the numerical results in Fig. 3 show
accurate approximations to the peakon location except for WENO-JS-LFD, but WENO-
JS-FPM and OWENO-FPM demonstrate relatively better approximations to the peakon
amplitude.

Example 5.4 (Shockpeakon solution). The DP equation also admits the shockpeakon so-
lution

u(x,t)=− 1
t+1

sign(x)e−|x|,

containing a discontinuity at x= 0 in the domain [−25,25], which always triggers oscil-
lations for general linear schemes. In this example, we investigate, through comparison
with WENO-JS and WENO-Z, the behavior of optimized smoothness technique under
two coarse grids. Table 3 lists their relative errors and convergence rates when disconti-
nuity occurs. Fig. 4 provides a comparison with the exact solution at t=3.0. Obviously,
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Figure 2: Snapshots for the interaction of two-peakon solutions (a) t= 0; (b) t= 4; (c) t= 8; (d) t= 13 with
N=640 in the domain [−20,20].

Table 3: Comparison of errors for different methods of shockpeakon solution.

Method Mesh size L∞ Order L1 Order E1

WENO-JS-LFD 200 4.04×10−3 1.41×10−4 1.78×10−12

400 5.84×10−3 -0.53 7.10×10−5 0.99 1.94×10−11

WENO-JS-FPM 200 3.92×10−3 1.39×10−4 1.78×10−12

400 5.84×10−3 -0.57 7.09×10−5 0.97 7.60×10−13

OWENO-FPM 200 1.28×10−2 1.51×10−4 1.76×10−12

400 4.36×10−3 1.55 1.11×10−4 1.83 7.57×10−13

WENO-Z-FPM 200 8.54×10−2 6.14×10−4 2.49×10−12

400 4.54×10−2 0.91 1.11×10−5 1.82 1.20×10−12

the resolution of OWENO-FPM is superior than other three methods in the vicinity of the
shock.

Example 5.5 (A triple interaction). The triple interaction conducts among peakon, an-
tipeakon and one stationary shockpeakon [11, 14], with initial condition

u(x,0)= e−|x+5|+sign(x)e−|x|−e−|x−5|, (5.5)

in the computational domain [−20,20]. The profiles in Fig. 5 reveal the formation process
of multiple shocks accurately. For this example, WENO-Z-FPM have a higher conver-
gence rate than other three methods, as shown in Table 4.
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Figure 3: The numerical results with N = 640: (a) WENO-JS-LFD; (b) WENO-JS-FPM; (c) OWENO-FPM;
(d) WENO-Z-FPM.

Table 4: Comparison of errors for different methods of triple interaction.

Method 320(L∞) 640(L∞) Order 320(L1) 640(L1) Order
WENO-JS-LFD 2.694×10−1 1.042×10−1 1.36 5.700×10−2 2.145×10−2 1.41
WENO-JS-FPM 2.695×10−1 1.043×10−1 1.36 5.700×10−2 2.145×10−2 1.41
OWENO-FPM 2.635×10−1 1.009×10−1 1.38 5.311×10−2 1.967×10−2 1.43
WENO-Z-FPM 2.422×10−1 8.951×10−2 1.43 4.682×10−2 1.659×10−2 1.50

5.3 General initial value problems

Example 5.6 (Shock formation). In this example, we are interested in the shock formation
with the smooth initial condition

u(x,0)= e0.5x2
sin(πx), x∈ [−2,2].

Fig. 6 shows the snapshots during the process of shock formation and transition with
N = 512. It demonstrates that even with the smooth initial condition, shocks appear in
finite time. Also, we perform an comparative experiment on coarse grid N = 256 to test
the stability of capturing shock. As shown in snapshot (b) of Fig. 7, the local oscillations
appearing at discontinuities spread into the whole space, which can be attributed to the



66 Y. R. Guo, W. J. Yang, H. Zhang, J. Wang and S. H. Song / Adv. Appl. Math. Mech., 11 (2019), pp. 53-71

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

EXACT
WENO-JS-LFD

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

EXACT
WENO-JS-FPM

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

EXACT
OWENO-FPM

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

EXACT
WENO-Z-FPM

Figure 4: Numerical results of shockpeakon solution at t=3.0 with N=400.
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Figure 5: The triple interaction at different times with N=512 in the domain [−20,20].

insufficient dissipation. While WENO-JS-LFD is the most dissipative one, OWENO-FPM
and WENO-Z-FPM occupy intermediary levels and provide sharper approximations to
the shock shape than WENO-JS-LFD.

Example 5.7 (Wave breaking). In the last example, we consider the evolution of the initial
condition

u(x,0)=sech2(d(x−x0)), (5.6)
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Figure 6: The snapshots for the shock formation at different times.
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Figure 7: The numerical solutions computed by WENO-JS-FPM, WENO-FPM, OWENO-FPM and WENO-Z-
FPM with N=256 and CFL=1/6.

for κ 6=0. The parameters are chosen as d=0.1, x0 =−50 and the computational domain
is [−100,100]. The value of κ is 0.01, which implies a very small dispersion term, corre-
sponding to the dispersiveness of the DP equation. The initial profile and the approxi-
mate solution at t=60 are shown in Fig. 8. This result is similar to the results presented
in [7], we can observe that a structured peakon train is generated gradually. Furthermore,
we compare the conservative quantities preserved by different methods in Fig. 9. For this
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Figure 8: The numerical solution from initial condition with d=0.1 and κ=0.01.
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Figure 9: The conservative quantity errors for different methods with N=256 and CFL=1/6.

case, we can see no obvious difference of I2 error, but WENO-JS-FPM and OWENO-FPM
show smaller I1 error than other two methods.

Example 5.8 (Shockpeakon-shockpeakon interaction). To validate the compatibility and
flexibility of the splitting framework, we further compute a Shockpeakon-shockpeakon
interaction problem using WENO-Z and the wavelet collocation method. The initial con-
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Figure 10: The numerical solutions computed by WENO-Z and the wavelet collocation method with N=640
and CFL=1/8.

dition is set to be

u(x,0)=
2

∑
i=1

mie−|x−xi |+
2

∑
i=1

sisign(x−xi)e−|x−xi |

with m1 = 2.0, s1 =−1.0, m2 =−1.0, s2 =−0.5, x1 =−5.0 and x2 = 5.0. From Fig. 10, we
can clearly see that two shockpeakons merge into one at t≈3.5, then the resulting shock-
peakon gains a constant velocity and moves to the right. It illustrates the high resolution
of the method to approximate the exact solutions, even in the presence of discontinuities.

6 Conclusions

We develop a splitting method for the DP equation, based on the OWENO reconstruction
together with the Fourier pseudospectral discretization. A novel smoothness technique is
presented to improve the resolution and the stability of OWENO-FPM. The formation of
distinct nonlinear weights is discussed and analyzed in detail. Several coupling methods
under this framework are provided to make comparison. Numerical examples show that
OWENO-FPM have a comprehensively better performance in all examples. Moreover,
we extend the framework to WENO-Z and the wavelet collocation method to explain
flexibility and capability of the splitting strategy. Comparing with the DG method [17] or
the spectral method [18], the proposed method can also achieve high order accuracy for
the smooth solutions, but no limiter, filter or post-processing procedure is needed for the
discontinuous solutions.
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