
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 11, No. 1, pp. 197-215

DOI: 10.4208/aamm.OA-2018-0045
February 2019

A Hybrided Trapezoidal-Difference Scheme for
Nonlinear Time-Fractional Fourth-Order Advection-Dispersion
Equation Based on Chebyshev Spectral Collocation Method

Shichao Yi1,2 and Hongguang Sun2,∗

1 School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu
212003, China
2 Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai
University, Nanjing, Jiangsu 210098, China

Received 3 February 2018; Accepted (in revised version) 16 August 2018

Abstract. In this paper, we firstly present a novel simple method based on a Picard in-
tegral type formulation for the nonlinear multi-dimensional variable coefficient fourth-
order advection-dispersion equation with the time fractional derivative order α∈(1,2).
A new unknown function v(x,t)=∂u(x,t)/∂t is introduced and u(x,t) is recovered us-
ing the trapezoidal formula. As a result of the variable v(x,t) are introduced in each
time step, the constraints of traditional plans considering the non-integer time situa-
tion of u(x,t) is no longer considered. The stability and solvability are proved with
detailed proofs and the precise describe of error estimates is derived. Further, Cheby-
shev spectral collocation method supports accurate and efficient variable coefficient
model with variable coefficients. Several numerical results are obtained and analyzed
in multi-dimensional spatial domains and numerical convergence order are consistent
with the theoretical value 3−α order for different α under infinite norm.
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1 Introduction

Fractional calculus is a natural generalization of integer order operator. Utilizing the
models based on derivatives of fractional orders in several branches of science and engi-
neering is a major study of many mathematicians and physicians [1–5]. Roughly speak-
ing time fractional derivative is designed to characterize physical processes and dynamic
systems with history memory. As a counterpart of traditional integer order differential
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equation, fractional differential equation can be obtained by replacing the integer order
derivatives with fractional ones in integer order differential equation. Fractional par-
tial differential equations(FPDEs), particularly space and time-fractional equations, have
been widely studied to construct the existence of solution and validity of these prob-
lems [6–8]. In addition, the reliable and powerful numerical and analytical methods for
solving FPDEs has been focused in the last two decades. According to the mathemat-
ical literature, fractional partial differential equations have been progressed in various
problems in science and engineering such as the Schrödinger, diffusion and telegraph
fractional equations [6, 9–14].

In several applications, the fourth-order model system [15, 16] is an important part
of the fractional order system and can be found in physics, engineering, statistics, and
other fields, such as wave propagation in beam problems [17], A flat surface system of
grooves [5,18], several mathematical models of fourth-order subdiffusion systems [18–21]
and so on. Here we will consider the following the nonlinear multi-dimensional variable
coefficient time-fractional fourth-order advection-dispersion equation:

c
0D

α
t u(x,t)−(A(x,t)+c

0D
α
t )∆u(x,t)

=−B(x,t)∆2u(x,t)+N (u(x,t))+ f (x,t), x∈Ω, t∈ (0,T], (1.1)

where A(x,t) and B(x,t) are positive variable coefficients with the following initial and
boundary conditions:

u(x,0)=u0(x), ut(x,0)=v0(x), x∈Ω, (1.2a)
u(x,t)=∆u(x,t)=0, x∈∂Ω, t∈ (0,T], (1.2b)

where u(x,t) is unknown functions. Here c
0D

β(x,t)
t denotes the higher order Caputo frac-

tional derivative of variable order β(x,t) with respect to t in [4, 5, 11, 15–21]

c
0D

β(x,t)
t u(x,t)=

1
Γ(n−β(x,t))

∫ t

0

∂nu(x,η)
∂ηn

dη

(t−η)β(x,t)+1−n
, n−1≤β(x,t)≤n, (1.3)

where Γ(·) is the Gamma function. The nonlinear term N (u(x,t)) is assumed to satisfy
the following conditions: a) |N (u(x,t))| ≤C|u|, b) The first-order derivative function of
N (u(x,t)) with respect to u is bounded, i.e., |N ′(u(x,t))|≤ a, a is a positive constant.

Most of fractional partial differential equations do not have the analytic solutions,
many researchers in the last two decades have focused on the approximation or numer-
ical methods of these fractional order systems in [22, 23]. Lots of the researchers focus
their attention on the strong format. This format is directly obtained by the original dis-
crete equation. So, it is also called the collocation method. Strong formulation is reliable,
simple in structure, and easy to erect the algebra system. The homotopy analysis method
was utilized to approximate some FPDEs in [24, 25]. The finite difference scheme and
fractional predictor-corrector method are introduced for simulating the multi-term time-
fractional wave-diffusion equations with computationally effective results by Adams-
Bashforth method [26]. Also, some fractional differential equations utilized for model-
ing dynamical systems are investigated by an implicit difference approximation in [27].
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The Jacobi collocation method is used to find the numerical solution of the fractional
advection-diffusion equation with a nonlinear source term by Parvizi et al. in [28] and so
on.

Underlying model of time appropriate to the application of discrete schemes, almost
these schemes need to consider the half time step situation of u because it is easy to obtain
the representations of the derivative situation and the integration process. Meanwhile the
energy method of the u commonly considers the variable value coupled with v. So, in
this work the situation of v is changed as the main consideration. The stability, solvability
of the system are proved in detail and the convergence of u is given with 3−α order. Fur-
thermore, the derivative operation is an unbounded operator, by constant, the integration
is a refinement operator. In this paper, the integral formula coupled with the difference
scheme is proved to be a good stable scheme in Section 4. Finally, the high temporal
schemes, such as high order Lagrange scheme, high order Runge-Kutta method and so
on, have high accuracy in time direction. However, it is regrettable that these schemes
are hard to get the regularity in the time process. The conservation of energy is merely
proved on these scheme and only on special conditions or semi-analytical method, such
as, mass-conservative Fourier spectral methods [26] and so on.

Thus, we use the v(t) to replace the the unknown value u′(t) in this paper. Let σ(x,t)=
∆u(x,t) and this problem is rewritten as

c
0D

α
t

(
u0(x)+

∫ t

0
v′(x,η)dη

)
−(A(x,t)+c

0D
α
t )∆

(
u0(x)+

∫ t

0
v′(x,η)dη

)
=−B(x,t)∆σ+N

(
u0(x)+

∫ t

0
v′(x,η)dη

)
+ f (x,t), (1.4a)

σ(x,t)=∆
(

u0(x)+
∫ t

0
v′(x,η)dη

)
, t∈ (0,T], (1.4b)

with the following initial and boundary conditions:

v(x,0)=v0(x), x∈Ω, (1.5a)
σ(x,t)=v(x,t)=0, x∈∂Ω, t∈ (0,T]. (1.5b)

On space discrete schemes, the Lagrange approach is a choice for dealing with poly-
nomial interpolations in most cases. Taken as one of the high order lagrange schemes,
Chebyshev collocation method is chosen as the priority scheme in this paper. Firstly, the
Lemma 4.1 of this paper illustrates the hybrided trapezoidal-difference scheme based on
Chebyshev collocation method keeping the regularity and conservation of energy in the
time-difference process. Secondly, the Chebyshev collocation method has a good numer-
ical stability and high accuracy. The key is that the Lagrange polynomial must be ma-
nipulated through the formulas of barycentric interpolation [29]. When the nodes are of
uniform distribution, the weight functions becomes extremely big lead to the Runge phe-
nomenon and ruins the merits of the lagrange interpolation. But, the family of Chebyshev
points following the density proportion (1−x2)−1/2 has good numerical stability [30–35].
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The collocation method based on Chebyshev polynomial interpolation was recently ex-
tended to solve various ordinary and partial differential equations including 1D high
order initial and boundary values problems [36] and nonlinear Burgers’ equation [37]. In
fact, there are few reports about the application of barycentric lagrange interpolation in
the literature, especially for the high dimensional problems.

In summary, the hybrided trapezoidal-difference scheme based on Chebyshev spec-
tral collocation method is a stable, high accuracy scheme. The rest of the paper is orga-
nized as follows: In Section 2, the formula of a compact finite difference coupled with
spectral collocation method is derived. In Section 3, some preliminary information and
lemmas are presented. In Section 4, the stability, convergence and solvability are proofed.
In Section 5, computational results for some numerical experiments are illustrated. Fi-
nally, some conclusions are discussed in Section 6.

2 Formulation of time-fractional equation

Let {tn|n≥ 0} is the uniform time interval, where tn = nτ, τ > 0. And the trapezoidal-
difference scheme suppose

un
i =u0

i +τ
n

∑
k=1

(vk−1
i +vk

i )/2,
∫ tn

0
g(η)

∂vi

∂η
dη=

n

∑
k=1

[
vk

i −vk−1
i

τ

∫ tk

tk−1

g(η)dη

]
, (2.1)

where un
i , vn

i , An
i and Bn

i are the values of function, the first derivative function, variable
coefficients A(x,t) and B(x,t) at the time tn of the point xi, and g(t) is the smooth function
in (0,T].

The difference scheme we will consider for (1.4) is as follows:

Case I: n=1

1
τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

− 1
τΓ(2−α)

∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

=τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i +N (u0

i )+Fn
i , (2.2)

Case II: n≥2

1
τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]
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− 1
τΓ(2−α)

∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

=τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i +2N (un−1

i )−N (un−2
i )+Fn

i , (2.3)

where

al =
∫ tl+1

tl

dt
tα−1 =

1
2−α

[
(tl+1)

2−α−(tl)
2−α
]
=

τ3−α

2−α

[
(l+1)2−α−l2−α

]
, l≥0, (2.4)

and
Fn

i =∆(u0
i )−∆2(u0

i )+ f n
i .

It is easy to verify that {al , 0≤ l≤n} is a monotone decreasing sequence for each n with
a0=τ2−α/(2−α).

In the process of Chebyshev spectral collocation method, the essential part is the gen-
eration of the spectral differentiation matrix. We first give the Chebyshev spectral differ-
entiation matrix on the interval [−1,1]. Other intervals can be easily handled by the pan
and zoom.

The collocation points are chosen as Chebyshev-Gauss-Lobatto points xk = cos((k−
1)π/(m−1)), k= 1,2,··· ,m. We assume that u(x) is a smooth function on [−1,1]. Then
u(x) can be interpolated by a sum of smooth shape functions φj(x)

um(x)=
m

∑
j=1

u(xj)φj(x), (2.5)

where

φj(x)=

(
ωj

x−xj

/ m

∑
j=1

ωk

x−xj

)
with ω−1

j =
m

∏
i=1,i 6=j

(xj−xi).

The derivatives of the interpolant um(x) are then estimated at collocation points by dif-
ferentiating (2.5)

u′m(x)=
m

∑
j=1

u(xj)φ
′
j(x). (2.6)

Define the vector of function and derivatives as

U=[u(x1),u(x2),··· ,u(xm)]
T

and
U(1)=[u′(x1),u′(x2),··· ,u′(xm)]

T,

respectively. We can get the matrix formulation of (2.6) on collocation points

U(1)=DmU, (2.7)
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where Dm is the first order Chebyshev spectral differentiation matrix. The entry of Dm is

(Dm)ij =


ωj

ωi

1
xi−xj

, if i 6= j,
m

∑
i=1,i 6=j

(
ωi

ωj

1
xi−xj

)
, if i= j.

(2.8)

From the above analysis, we can also get the second order Chebyshev spectral differenti-
ation matrix D(2)

m by differentiating the interpolant um(x) twice. However, in this work,
in order to construct a conservative scheme for the fourth order differential system, we
compute the second order spectral differentiation matrix by D(2)

m =D2
m, the square of Dm.

The matrix D(2)
m can map the vector U to vector U(2):

U(2)=D2
mU, (2.9)

where U(2)=[u′′(x1),u′′(x2),··· ,u′′(xm)]T represents the second-derivative on collocation
points. These spectral differentiation matrices have some useful properties.

The procedure given above for the calculation of the derivatives in one-dimension
can be readily extended to two dimensions. If an unknown matrix U is defined as
U(xi,yk) = uik, then its partial derivatives evaluated at the collocation points can be ex-
pressed in terms of the matrix-matrix products, where the differentiation with respect to
xk corresponds to multiplying the rows of Dx (the collocation derivative matrix in the
x-direction) by the columns of U, and the differentiation with respect to yk corresponds
to multiplying the rows of U by the columns of Dy (the collocation derivative matrix
transpose in the y-direction).

We also define

‖gn‖∞ = max
1≤i≤m

|gn
i |, |∇gn|=

√
D

m

∑
i=1

(gn
i )

2, (2.10)

where D is the measurement of the space domain Ω. In addition, if g(Γ)=0, we have

‖gn‖∞≤
√

D
2
|∇gn|. (2.11)

Then, we have the following error estimate from the interpolate process

Lemma 2.1 (see [38]). If u ∈ Hp(Ω) and um̂ ∈ Hm̂(Ω), where Ω∈Rd is a nonempty, open
bounded set with a Lipschitz continuous boundary. Then the following error estimates for the
lagrange interpolation collocation method holds

‖∂l
x(u−um̂)‖l≤ n̂l−min{m̂,p}‖u‖l , 0≤ l≤min{m̂,p},

where m̂ and n̂ are the minimum polynomial order and the minimum number of nodes in spatial
coordinates.
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3 Preliminaries and some lemmas

For the fractional derivation of the present scheme, we introduce the following lemmas
from [39].

Lemma 3.1. For any v={v(t0),v(t1),v(t2),···}, we have

m

∑
n=1

[
a0v(tn)−

n−1

∑
k=1

(an−k−1−an−k)v(tk)−an−1v(t0)

]
v(tn)

≥ t1−α
m
2

τ
N

∑
n=1

v(tn)
2−

t2−α
N

2(2−α)
v(t0)

2, (3.1)

where al is defined in (2.4).

Lemma 3.2. For n≥1 and tk = kτ, 0≤ k≤n, we have

0≤
n

∑
k=1

∫ tk

tk−1

[
(tn−t)2−α− (t−tk−1)(tn−tk)

2−α+(tk−t)(tn−tk−1)
2−α

τ

]
dt

≤
[

2−α

12
+

23−α

3−α
−(1+21−α)

]
τ3−α. (3.2)

Lemma 3.3. Suppose v(t)∈C2([0,tn]). Then

∣∣∣∣∣
∫ tn

0
v′(t)

dt
(tn−t)α−1−

n

∑
k=1

v(tk)−v(tk−1)

τ

∫ tk

tk−1

dt
(tn−t)α−1

∣∣∣∣∣
≤τ3−α

2−α

[
2−α

12
+

23−α

3−α
−(1+21−α)

]
‖v(t)‖L2,∞([0,tn]). (3.3)

Lemma 3.4. Suppose v(t)∈C2[0,tn]. Then

∣∣∣∣∣
∫ tn

0
v′(t)

dt
(tn−t)α−1−

1
τ

[
a0v(tn)−

n−1

∑
k=1

(an−k−1−an−k)v(tk)−an−1v(t0)

]∣∣∣∣∣
≤τ3−α

2−α

[
2−α

12
+

23−α

3−α
−(1+21−α)

]
‖v(t)‖L1,∞([0,tn]), (3.4)

where al is defined in (2.4) and 1<α<2.
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Based on Lemmas 2.1 and 3.4, introducing Eqs. (2.2)-(2.3), we have

cDα
0un

i =
1

Γ(2−α)

∫ tn

0

∂2u(xi,τ)
∂τ2

dτ

(tn−τ)α−1

=
1

τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

]
+c1

(
τ3−α+n̂−min{m̂,p}

)
, (3.5a)

cDα
0∆un

i =
1

Γ(2−α)

∫ t

0

∂2∆u(xi,τ)
∂τ2

dτ

(tn−τ)α−1

=
1

τΓ(2−α)

[
∆

(
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

)]
+c1

(
τ3−α+n̂2−min{m̂,p}

)
, (3.5b)

and

An
i ∆un

i −Bn
i ∆2un

i =τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i +c2

(
τ3−α+n̂4−min{m̂,p}

)
. (3.6)

Considering the difference property of the nonlinear term N (u(x,t)),

N (un
i )=

{
N (u(xi,t0))+c3(τ), n=1,
2N (u(xi,tn−1))−N (u(xi,tn−2))+c′3(τ

2), n≥2.

}
. (3.7)

Substituting above results into (1.1) and noticing the initial value condition, we obtain

1
τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

+
1

τΓ(2−α)

[
∆

(
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

)]

=τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i + F̂n

i +Rn
i , (3.8)

where
|Rn

i |≤ c(τ3−α+n̂4−min{m̂,p}), n>1, (3.9)

and F̂n
i involves the original Fn

i and the approximate value of N (un
i ).

4 Analysis of the hybrided trapezoidal-difference scheme

Before we prove the solvability, stability and convergence, we first give the notation the
inner product and the bilinear form by

(u,w)=
∫

Ω
uwdΩ, ∀u,w∈ L2(Ω), especially, (u,u)=‖u‖2=

m

∑
i=1

wi(ui)
2, (4.1)
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wi denotes the gauss weight at the corresponding gauss point xi. Then, we give some
lemmas.

Lemma 4.1. Suppose {vn} is the solution of

1
τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

+
1

τΓ(2−α)

[
∆

(
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

)]

=τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i +Rn

i , un
i (∂Ω)=0, i=1,2,··· , m,n=1,2,··· . (4.2)

We have

N

∑
n=1
‖∇un‖2≤

N

∑
n=1
‖∇u0‖2+

t2−α
N

4ĈΓ(3−α)

(
‖v0‖2+‖∇v0‖2)+ Γ(2−α)tα−1

N

4Ĉ
τ

N

∑
n=1
‖Rn‖2 (4.3)

with An
i ≥ Â>0, Bn

i ≥ B̂>0 and Ĉ=min{Â,B̂}.

Proof. Multiplying both sides of (4.2) by wivn
i and summing up for i from 1 to m and for

n from 1 to N, we obtain

1
τΓ(2−α)

m

∑
i=1

{ N

∑
n=1

wi

([
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

]
−∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

])
vn

i

}
=

N

∑
n=1

m

∑
i=1

(
An

i wi

[
∑
x∈x

δ2
x

(n−1

∑
k=1

vk+
v0+vn

2

)]
vn

i

)
−

N

∑
n=1

m

∑
i=1

(
Bn

i wi

[
∑
x∈x

δ2
x

(n−1

∑
k=1

∆vk+
∆v0+∆vn

2

)]
vn

i

)
+

N

∑
n=1

m

∑
i=1

wiRn
i vn

i . (4.4)

Using Lemma 3.1, we have

1
τΓ(2−α)

N

∑
n=1

m

∑
i=1

(
wi

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

]
vn

i

)

≥ 1
2Γ(2−α)

t1−α
N

N

∑
n=1
‖vn‖2−

t2−α
N

2τΓ(3−α)
‖v0‖2, (4.5)
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and

1
τΓ(2−α)

N

∑
n=1

m

∑
i=1

(
wi∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vk
i −an−1v0

i

]
vn

i

)

≥ 1
2Γ(2−α)

t1−α
N

N

∑
n=1
‖∇vn‖2−

t2−α
N

2τΓ(3−α)
‖∇v0‖2. (4.6)

Applying the boundary conditions in (4.2), we have vn
i (∂Ω)=∇vn

i (∂Ω)=0. Consequently,

τ
m

∑
i=1

(
wi∆

(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
vn

i

)
=−τ

m

∑
i=1

(
wi∆(

n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)vn
i

)
=−τ

2
‖

n

∑
k=1
∇vk‖2, (4.7a)

−τ
m

∑
i=1

(
wi∆2

(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
vn

i

)
=−τ

m

∑
i=1

(
wi∆2(

n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)vn
i

)

=−τ

2
‖

n

∑
k=1

∆vk‖2. (4.7b)

In addition,
N

∑
n=1

m

∑
i=1

wiRn
i vn

i ≤
1
2

1
Γ(2−α)

t1−α
N

N

∑
n=1
‖vn‖2+

Γ(2−α)

2
tα−1

N

N

∑
n=1
‖Rn‖2. (4.8)

Substituting (4.5)-(4.8) into (4.4), we obtain

1
2Γ(2−α)

t1−α
N

N

∑
n=1
‖vn‖2−

t2−α
N

2τΓ(3−α)

N

∑
n=1
‖v0‖2+

1
2Γ(2−α)

t1−α
N

N

∑
n=1
‖∇vn‖2

−
t2−α

N
2τΓ(3−α)

N

∑
n=1
‖∇v0‖2

≤− τÂ
2

N

∑
n=1
‖

n

∑
k=1
∇vk‖2− τB̂

2

N

∑
n=1
‖

n

∑
k=1

∆vk‖2+
1

2Γ(2−α)
t1−α

N

N

∑
n=1
‖vn‖2

+
Γ(2−α)

2
tα−1

N

N

∑
n=1
‖Rn‖2. (4.9)

Then,
N

∑
n=1
‖

n

∑
k=1
∇vk‖2≤

t2−α
N

Ĉτ2Γ(3−α)

(
‖v0‖2+‖∇v0‖2)+ Γ(2−α)tα−1

N

Ĉτ

N

∑
n=1
‖Rn‖2. (4.10)

Combing the correction between v and u with (4.10), the following inequality is obtained
N

∑
n=1
‖∇un‖2≤

N

∑
n=1
‖∇u0‖2+

(τ

2

)2 N

∑
n=1
‖

n

∑
k=1
∇vk‖2

≤
N

∑
n=1
‖∇u0‖2+

t2−α
N

4ĈΓ(3−α)

(
‖v0‖2+‖∇v0‖2)+ Γ(2−α)tα−1

N

4Ĉ
τ

N

∑
n=1
‖Rn‖2. (4.11)
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Thus, we complete the proof.

Theorem 4.1. The difference scheme (2.2)-(2.3) is uniquely solvable.

Proof. Since (2.2)-(2.3) are a system of linear algebraic equations at each iterative process
of different time level, it suffices to show that the corresponding homogeneous equations:

1
τΓ(2−α)

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

− 1
τΓ(2−α)

∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1−an−k)vn
i −an−1v0

i

]

=τAn
i ∆
(n−1

∑
k=1

vk
i +

v0
i +vn

i
2

)
−Bn

i ∆σn
i , (4.12a)

un
i (Γ)=∇un

i (Γ)=0, 1≤ i≤m, n≥1, (4.12b)

have only zero solution. Using Lemma 4.1, we have

∇un =0, n=1,··· ,N,

and combining the above equality with the boundary condition in (2.4), we obtain

un
i =vn

i =0, n≥1, 1≤ i≤m.

This completes the proof.

Theorem 4.2. Let u(x,t)∈C4,3
x,t (Ω×[0,T]) and {vn|n≥0} be the solution of the difference scheme

(2.2)-(2.3). Then, for τ<nτ≤T, we have

‖u(xi,tn)−un
i ‖∞≤C∗D

√
Γ(2−α)Tα(τ3−α+n̂4−min{m̂,p}),

where C∗ is a constant number.

Proof. Denote

v̂n
i =v(xi,tn)−vn

i , (4.13a)
ûn

i =u(xi,tn)−un
i , n≥0. (4.13b)

Subtracting (2.2-2.3) from (3.8) and (3.9) respectively, we have the error equations

1
τΓ(2−α)

[
a0v̂n

i −
n−1

∑
k=1

(an−k−1−an−k)v̂n
i −an−1v̂0

i

]

− 1
τΓ(2−α)

∆

[
a0v̂n

i −
n−1

∑
k=1

(an−k−1−an−k)v̂n
i −an−1v̂0

i

]

=τAn
i ∆
(n−1

∑
k=1

v̂k
i +

v̂0+ v̂n

2

)
−Bn

i ∆σ̂n
i , (4.14a)

ûn
i (Γ)= v̂n

i (Γ)= σ̂n
i (Γ)=0, n≥1. (4.14b)
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Using Lemma 3.3, we have

‖∇un‖2≤ Γ(2−α)tα−1
n

4Ĉ
τ

n

∑
k=1
‖Rk‖2, τ<nτ≤T. (4.15)

Inserting (3.8) into the right hand of the above inequality and considering the correction
(2.10), we get

|∇ûn|≤ c∗
√

DΓ(2−α)Tα

4Ĉ
(τ3−α+n̂4−min{m̂,p}), τ<nτ≤T. (4.16)

Noticing (2.11), we have the result:

‖ûn‖∞≤C∗D
√

Γ(2−α)Tα(τ3−α+n̂4−min{m̂,p}), τ<nτ≤T, (4.17)

where C∗ are constant. This completes the proof.

Remark 4.1. Obviously, when n is equal to 1, the error order of the spatial variable t is
equal to O(τ). But, by the increasing of n, the final error order will tend to O(τ3−α) at
t=T. The detailed conclusions are considered in the following numerical examples.

5 Numerical experiments

In this section, some comparative examples are provided to show the strength of the pro-
posed method in approximating the solution of multi-dimensional time-fractional diffu-
sion equations with a non-local boundary condition

In all numerical experiments, the presented method are local approximate schemes
in spatial dimensions Ω. The numerical results are performed in MATLAB 2014a on an
Intel core i5(8G RAM) Windows Win10 system. The L2 error which will be reported in
those examples are defined as

En =max
xi∈Ω
|un(xi)−un

i | and Order=
log2(En)

log2(E2n)
, (5.1)

where ui and u(xi) denote the numerical and exact solution of the problem respectively.

5.1 1D space fourth order fractional system

Consider the following problem:
c
0D

α
t u(x,t)+(c

0D
α
t −cos(xt))∆u(x,t)+exp(x+t)∆2u(x,t)

=u3(x,t)+ f (x,t), x∈ (0,1), t∈ (0,1], α∈ (1,2), (5.2a)

u(0,t)=0; u(1,t)=0,
∂2u(0,t)

∂x2 =0,
∂2u(1,t)

∂x2 =0,

u(x,0)=sin(πx),
∂u(x,0)

∂t
=sin(πx), x∈ (0,1), t∈ (0,1]. (5.2b)
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Figure 1: The surfaces for the numerical solutions (left and middle) and exact solutions (right).
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Figure 2: the curves of the numerical solutions and exact solutions along with t=0.4 (left) and x=0.5 (right).

The exact solution of the system is

u(x,t)=exp(t)sin(πx). (5.3)

Take τ = 1/10 and m= 11, Fig. 1 shows the numerical solutions (left and middle) of the
proposed method and the exact solutions (right) at t = 1 for the fourth order fractional
diffusion-wave system for α=1.2 (left) and α=1.9 (middle) with m=11.

Fig. 2 plots the curves of the numerical solutions of the compact difference scheme
and the analytical solutions of the same α, (α=1.4) at the time t=0.4 and x=0.5. From
these figures, it is easy to see that the proposed methods meets the analytical solution
effectively.

Take α = 1.7, Table 1 represents some numerical and exact solutions on the points
(0.5,0.5), (0.5,1) for different mesh sizes with fixed temporal step. From there, we can see
the presented scheme converges to the exact solutions quickly.

Table 2 give the temporal convergence order of the presented scheme at t = 1 with
α=1.9, which are close to our theoretical values.
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Table 1: Some numerical results of the different grid schemes (τ=1/160).

(x,t) m=5 7 9 11 13 Exact solution
(0.5,0.5) 1.6530 1.6489 1.6489 1.6489 1.6489 1.6487
(0.5,1) 2.7245 2.7184 2.7184 2.7184 2.7184 2.7183

Table 2: Temporal convergence order of the presented scheme (m=21).

τ 1/10 1/20 1/40 1/80 1/160 1/320 Theoretical value
En 1.0316e-2 3.6200e-3 1.3246e-3 5.1886e-4 2.1650e-4 9.4577e-5

Order 1.5109 1.4504 1.3521 1.2610 1.1948 1.1000

5.2 2D space fourth order fractional system

To implement the numerical effectiveness, we consider the following two dimensional
nonlinear fourth-order equation

c
0D

α
t u(x,y,t)+(c

0D
α
t −cos(xy))∆u(x,y,t)+(t2+1)∆2u(x,y,t)

=u2(x,y,t)−u(x,y,t)+ f (x,y,t), (5.4a)

α∈ (1,2), (x,y)∈ (0,1)2, t∈ (0,1], (5.4b)

with initial conditions and boundary conditions

u(Ω,0)=0; ut(Ω,0)=sin(2πx)sin(2πy); u(Γ,t)=0; σ(Γ,t)=0, t∈ (0,1]. (5.5)

The exact solution of the system is

u(x,y,t)=
(
t3+α+t

)
sin(2πx)sin(2πy). (5.6)

Take m=212, α=1.3,1.5,1.7, respectively. Table 3 gives some numerical results of the maxi-
mum errors and the corresponding temporal convergence order of the different temporal
mesh size at t=1, from which we can see the temporal convergence order is nearly and
close to O(τ3−α).

In Fig. 3, the surfaces of the numerical solution and the absolute error of u are shown
with m=212, τ=1/10 and α=1.4 at t=1. It not hard to see that the numerical solutions is
vary close to the analytical solutions. Compared with the two surfaces of u, the surface of
the absolute error coincides with the surface of numerical results. The similar conclusion
between the numerical solution and absolute error of the σ is obtained in Fig. 3.

5.3 3D space fourth order fractional system

To implement the numerical effectiveness, we consider the following three dimensional
nonlinear fourth-order equation

c
0D

α
t u(x,y,z,t)+(c

0D
α
t −1)∆u(x,y,z,t)+∆2u(x,y,z,t)

=u3(x,y,z,t)−u(x,y,z,t)+ f (x,y,z,t), α∈ (1,2), (x,y,z)∈ (0,1)3, t∈ (0,1], (5.7)
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Figure 3: The surfaces of the numerical solution (left) and absolute error (right) of u (up) and σ (down).

Table 3: Some numerical results of the maximum errors and the corresponding temporal order at t=1 for the
fourth order fractional equation.

τ
α=1.7 α=1.5 α=1.3

En Order En Order En Order
1/10 3.3835e-2 1.4740e-2 5.7372e-3
1/20 1.5782e-2 1.1002 5.2540e-3 1.4882 1.7887e-3 1.6814
1/40 6.4484e-3 1.2913 1.8611e-3 1.4973 5.4500e-4 1.7164
1/80 2.6267e-3 1.2957 6.8512e-4 1.4997 1.6497e-4 1.7241
1/160 1.0685e-3 1.2977 2.3267e-4 1.5001 4.9872e-5 1.7259
1/320 4.3429e-4 1.2989 8.2263e-5 1.5000 1.5149e-5 1.7190
1/640 1.7645e-4 1.2994 2.9087e-5 1.4999 4.6189e-6 1.7136

1/1280 7.1680e-5 1.2996 1.0285e-5 1.4998 1.4126e-6 1.7092
1/2560 2.9114e-5 1.2999 3.6367e-6 1.4998 4.3292e-7 1.7062

Theoretical value 1.3000 1.5000 1.7000

with initial conditions and boundary conditions

u(Ω,0)=0; ut(Ω,0)=0; u(Γ,t)=0; σ(Γ,t)=0, t∈ (0,1]. (5.8)
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Figure 4: The surfaces for the numerical solutions (left) and exact solutions (right).

Table 4: Some numerical results of the maximum errors and the corresponding temporal order at t=1 for the
fourth order fractional equation.

τ
α=1.3 α=1.5 α=1.7

En Order En Order En Order
1/10 7.7200e-4 1.8211e-3 4.1648e-3
1/20 2.3963e-4 1.6878 6.4596e-4 1.4953 1.7144e-3 1.2805
1/40 7.4216e-5 1.6910 2.2917e-4 1.4950 6.9422e-4 1.3042
1/80 2.2945e-5 1.6936 8.1211e-5 1.4967 2.8068e-4 1.3065

1/160 7.0933e-6 1.6937 2.8757e-5 1.4978 1.1369e-4 1.3038
1/320 2.2197e-6 1.6961 1.0182e-5 1.4979 4.6115e-5 1.3018

The exact solution of the system is

u(x,y,z,t)=
t3

3
sin(πx)sin(πy)sin(2πz). (5.9)

For the convenience of the numerical calculation, we now take M=173 and τ=1/20.
In Fig. 4, Three comparisons for the surfaces of the exact solution and the numerical

solution are shown along with x=1/2 at t=1 considering α=1.6.
Take α=1.3,1.5,1.7, respectively. Table 4 gives some numerical results of the maximum

errors and the corresponding temporal convergence order of the different temporal mesh
size at t=1, from which we also take the conclusion that the temporal convergence order
is nearly and close to O

(
τ3−α

)
.

6 Conclusions

In this paper, based on the Picard integral formulation, we present a compact finite dif-
ference scheme coupled with Chebyshev spectral collocation method to solve the multi-
dimensional nonlinear variable coefficient time-fractional fourth-order partial differential
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system. Different from other many schemes, the proposed method consider the regular-
ity of the derivative function v on the integer time step. The stability and solvability are
proved with detailed proofs and the precisely describe of error estimates is derived. To
confirm the practicability and accuracy of the proposed method. several numerical re-
sults are calculated and analyzed in one-dimensional, two-dimensional and even three
dimensional spatial domain. Numerical convergence rate consistent with the theoretical
value 3−α in L∞ norm.
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