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Abstract. Linear partial differential equations in (3 + 1)-dimensions consisting of all

mixed second-order derivatives are considered, and Maple symbolic computations are

made to construct their lump and interaction solutions, including lump-periodic, lump-

kink and lump-soliton solutions.
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1. Introduction

Lump solutions are special exact solutions of partial differential equations (PDFs),which

describe important wave phenomena [1,29]. Specific lumps can be obtained from solitons

through taking long wave limits [30]. Other classes of solutions to integrable equations

include positons and complxitons [16, 35], and interaction solutions [26], which exhibit

more diverse nonlinear wave phenomena.

From a mathematical point of view, soliton solutions are exponentially localised in time

and in all space directions, whereas lump solutions are rationally localised in all space
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directions. Let P be a polynomial, and Dx and Dt be the Hirota bilinear derivatives. Based

on the Hirota bilinear form

P(Dx , Dt) f · f = 0,

the corresponding N -soliton solution in (1+ 1)-dimensions can take the form

f =

N
∑

i, j=1

exp(

N
∑

i=1

µiξi +
∑

i< j

µiµ jai j),

where µ j ∈ {0,1}, j = 1,2, · · · , N , and

ξi = ki x −ωi t + ξi,0, 1≤ i ≤ N ,

eai j = −
P(ki − k j,ω j −ωi)

P(ki + k j,ω j +ωi)
, 1≤ i < j ≤ N ,

with the wave numbers ki and the wave frequencies ωi satisfying the dispersion relation,

and ξi,0 being arbitrary shifts.

It is known [21] that the KPI equation

(ut + 6uux + ux x x )x − uy y = 0

has the lump solution

u = 2(ln f )x x , f =
�

a1 x + a2 y + a3 t + a4

�2
+
�

a5 x + a6 y + a7 t + a8

�2
+ a9,

where

a3 =
a1a2

2 − a1a6
2 + 2, a2a5a6

a1
2 + a5

2
, a7 =

2a1a2a6 − a2
2a5 + a5a6

2

a1
2 + a5

2
, a9 =

3(a1
2 + a5

2)3

(a1a6 − a2a5)
2

,

and a1a6 − a2a5 6= 0. The last condition guarantees the rational localisation in all direc-

tions in the (x , y)-plane. There are many other integrable equations with lump solutions —

e.g. three-dimensional three-wave resonant interaction [8], BKP equation [5, 38], Davey-

Stewartson equation II [30], Ishimori-I equation [7] — cf. also Refs. [27, 46]. Moreover,

non-integrable equations can also have lump solutions [2,24,43,44], and there are interac-

tion solutions of nonlinear integrable equation in (2+1)-dimensions, including lump-soliton

interaction solutions [25,39,41,42] and lump-kink interaction solutions [9,31,45,48]. In

(3 + 1)-dimensions, only the integrable Jimbo-Miwa equation has been known to have

lump-type solutions, rationally localised in almost all (but not all) space directions. On the

other hand, all analytical rational solutions of the (3+ 1)-dimensional Jimbo-Miwa equa-

tion in [22,40,47] and of the (3+1)-dimensional Jimbo-Miwa like equation in [6] are not

rationally localised in all space directions, either. Therefore, in (3 + 1)-dimensions, lump

and interaction solutions of PDEs are interesting objects to study.

The aims of this work is to show the existence of lump and interaction solutions of PDEs

in (3+ 1)-dimensions. A class of particular examples of equations in (3+ 1)-dimensions is
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considered. In particular, we provide explicit representations of lump, mixed lump-periodic

and mixed lump-soliton solutions of a class of (3+1)-dimensional linear PDEs. Using Maple

symbolic computations, we establish sufficient conditions for the existence of lumps, and

present lump and interaction solutions of the equations under consideration. Concluding

remarks are given in the last section.

2. Diverse Lump and Interaction Solutions

Let u = u(x , y, z, t) be a real function of real variables x , y, z and t. We consider the

following class of linear PDEs, consisting of all mixed second-order derivative terms:

α1ux y +α2uxz +α3ux t +α4uyz +α5uy t +α6uzt = 0, (2.1)

where αi , i = 1,2, · · · , 6 are real constant coefficients and subscripts denote partial differ-

entiation.

Real-valued solutions of (2.1) are sought in the form

u= v(ξ1,ξ2,ξ3,ξ4), (2.2)

where

ξi = ai x + bi y + ciz + di t + ei, i = 1,2,3,4

and ai , bi, ci , di and ei are real constants to be determined. Substituting (2.2) in (2.1), we

obtain
4
∑

i=1

4
∑

j=i

wi j vξiξ j
= 0,

where wi j , i, j = 1,2,3,4 are quadratic functions of ai, bi, ci and di. Setting wi j = 0 for all

present combinations of i and j, we arrive at the system of equations

α1ai bi +α2aici +α3aidi +α4 bici +α5 bidi +α6cidi = 0, 1≤ i ≤ 4,

α1(ai b j + a j bi) +α2(aic j + a jci) +α3(aid j + a jdi)

+α4(bic j + b jci) +α5(bid j + b jdi) +α6(cid j + c jdi) = 0, 1≤ i < j ≤ 4.

Various solutions of this system of quadratic equations can be derived by Maple symbolic

computations, but we chose only two interesting sets of solutions — viz.
§

b1 = c1 = c2 = 0, d2 =
a2d1

a1

, d3 =
a3d1

a1

, d4 =
a4d1

a1

,

α1 = −
d1

a1

α5, α2 = −
d1

a1

α6, α3 = α4 = 0

ª

,

and
§

b1 = c1 = 0, a3 =
a2c3d1 − a1c3d2 + a1c2d3

c2d1

, a4 =
a2c4d1 − a1c4d2 + a1c2d4

c2d1

,

α1 =
a2d1 − a1d2

a1c2

α5, α2 = α3 = 0, α4 = −
d1

a1

α5, α6 = 0

ª

.
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The parameters not determined above, are arbitrary provided that the resulting formulas

are well defined. Although the parameters in these sets generate lumps and the correspond-

ing interaction solutions, they all satisfy the determinant equation

�

�

�

�

�

�

�

�

�

�

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

�

�

�

�

�

�

�

�

�

�

= 0,

which implies that the resulting solutions are not rogue waves.

Taking into account the two solutions above, we consider two types of equations.

Case 1: Setting a1 = −d1 leads to the following reduced linear PDE:

ux y + uxz + ut y + utz = 0, (2.3)

which has the solutions of the form

u = (ln f )x x , f = ξ
2n1

1
+ ξ

2n2

2
+ ξ

2n3

3
+ g(ξ4),

with arbitrary natural numbers ni, i = 1,2,3, an arbitrary function g and the wave variables

ξ1 = a1 x − a1t + e1,

ξ2 = a2 x + b2 y − a2 t + e2,

ξ3 = a3 x + b3 y + c3z − a3 t + e3,

ξ4 = a4 x + b4 y + c4z − a4 t + e4.

Therefore, if g(ξ4) is one of the functions

β1, β2 + β3 cosξ4, β4eξ4 , β5 coshξ4,

with constants βi such that f takes only positive values, then we obtain lump solutions

and also interaction solutions of the Eq. (2.3) such as lump-periodic, lump-kink and lump-

soliton solutions. For example, if n1 = n2 = n3 = 1, then

u=
fx x f − f 2

x

f 2
=

2a2
1 + 2a2

2 + 2a2
3 + a2

4 g′′(ξ4)

f

−
[2a1ξ1 + 2a2ξ2 + 2a3ξ3 + a4 g′(ξ4)]

2

f 2
. (2.4)

Case 2: Setting a1 = −d1, a2 = −2d2 and c2 = d2, leads to another reduced linear PDE

— viz.

ux y + uyz + ut y = 0, (2.5)

which has the solutions of the form

u = (ln f )x x , f = ξ
2n1

1
+ ξ

2n2

2
+ ξ

2n3

3
+ g(ξ4),
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with arbitrary natural numbers ni, i = 1,2,3, an arbitrary function g and the wave variables

ξ1 = a1 x − a1t + e1,

ξ2 = −2c2 x + b2 y + c2z + c2 t + e2,

ξ3 = −(c3 + d3)x + b3 y + c3z + d3t + e3,

ξ4 = −(c4 + d4)x + b4 y + c4z + d4t + e4.

Therefore, if g(ξ4) is one of the functions

β1, β2 + β3 sinξ4, β4 coshξ4,

with constants βi such that f takes only positive values, then we obtain lump solutions and

also interaction solutions of the Eq. (2.5) such as lump-periodic and lump-soliton solutions.

For example, if n1 = n2 = n3 = 1, then

u =
fx x f − f 2

x

f 2
=

2a2
1
+ 8c2

2
+ 2(c3 + d3)

2 + (c4 + d4)
2 g′′(ξ4)

f

−
[2a1ξ1 − 4c2ξ2 − 2(c3 + d3)ξ3 − (c4 + d4)g

′(ξ4)]
2

f 2
. (2.6)

The above results supplement the existing theories of rational, soliton and dromion-type

solutions obtained earlier by using Hirota perturbation technique [15], symmetry reduc-

tions [4,10,34], symmetry constraints [3,11,12,49], multiple exp-function methods [13]

and the Riemann-Hilbert technique [33].

In particular, considering the following set of parameters

a1 = 1, b2 = 2, d2 = −1,

b3 = 3, c3 = −8, d3 = 5,

b4 = −5, c4 = 7, d4 = −6,

β1 = 1, β2 = 5, β3 = 6, β4 = 15,

we obtain specific solutions ui, i = 1,2,3 of the Eq. (2.5) — viz.

u1 =
28 f1 − (28x + 26y − 52z + 24t)2

f 2
1

,

f1 = (x − t)2 + (2x + 2y − z − t)2 + (3x + 3y − 8z + 5t)2 + 1,

u2 =
(28+ 5 sinξ4) f2 − (28x + 26y − 52z + 24t − 5 sinξ4)

2

f 2
2

,

f2 = (x − t)2 + (2x + 2y − z − t)2 + (3x + 3y − 8z + 5t)2 + 5 sinξ4 + 6,

u3 =
(28+ 15 coshξ4) f3 − (28x + 28y − 52z + 24t + 15 sinhξ4)

2

f 2
3

,

f3 = (x − t)2 + (2x + 2y − z − t)2 + (3x + 3y − 8z + 5t)2 + 15 coshξ4,

where ξ4 = x +5y −7z+6t. The graphs of these solutions are presented in Figs. 1, 2, 3.
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Figure 1: Pro�le of u1, t = 0, 1, 2, z = −2. Top: 3d plots. Bottom: Contour plots.

Figure 2: Pro�le of u2, t = 0, 0.5, 1, z = 1. Top: 3d plots. Bottom: Contour plots.
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Figure 3: Pro�le of u3, t = 0, 0.5, 1, z = 0. Top: 3d plots. Bottom: Contour plots.

3. Concluding Remarks

We considered specific linear partial differential equations in (3 + 1)-dimensions and

showed that they have lump and interaction solutions such as lump-periodic, lump-kink

and lump-soliton solutions, providing a new insight into soliton theory of integrable equa-

tions. The Maple symbolic computations were used to construct exact lump and interaction

solutions of the considered equations in 3+ 1 dimensions.

We observe that (2.4) and (2.6) with g = 0 are lump solutions, rationally localised in all

directions in the (x , y, z)-space. However, we were not able to find any analytical rational

solutions of the considered linear PDEs, localised in all directions in the whole (x , y, z, t)-

space. The lump and interaction solutions obtained above supplement the set of exact

solutions which can be constructed by using various combinations in [23, 32, 36]. Lumps

and interaction solutions of generalised bilinear and tri-linear equations involving gener-

alised bilinear derivatives [17, 18] are also interesting, and the corresponding interaction

solutions will not be the resonant solutions obtained by the linear superposition principles

in [19,20]. Integrable equations determined by generalised bilinear derivatives [17,18]will

have different interaction solutions, but lump solutions generated by quadratic functions

must coincide with those in the Hirota derivative case — cf. Ref. [28]. Besides, there are also

Rossby wave solutions of the generalised Boussinesq and Benjamin-Ono equations [14,37].

The diversity of lump and interaction solutions implies the existence of diverse Lie-

Bäcklund symmetries, thus extending the symmetry theory of partial differential equations.
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It is known that the Wronskian approach can be used to find solutions of integrable equa-

tions. The present study raises the problem of how to generalise the Wronskian solutions by

introducing matrix entries of a new type. Moreover, it would also be of interest to develop

a basic theory of lump and interaction solutions of difference-differential equations.
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