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Abstract. This paper presents a new numerical technique for solving initial and bound-
ary value problems with unsteady strongly nonlinear advection diffusion reaction
(ADR) equations. The method is based on the use of the radial basis functions (RBF)
for the approximation space of the solution. The Crank-Nicolson scheme is used for
approximation in time. This results in a sequence of stationary nonlinear ADR equa-
tions. The equations are solved sequentially at each time step using the proposed semi-
analytical technique based on the RBFs. The approximate solution is sought in the form
of the analytical expansion over basis functions and contains free parameters. The ba-
sis functions are constructed in such a way that the expansion satisfies the boundary
conditions of the problem for any choice of the free parameters. The free parameters
are determined by substitution of the expansion in the equation and collocation in the
solution domain. In the case of a nonlinear equation, we use the well-known proce-
dure of quasilinearization. This transforms the original equation into a sequence of the
linear ones on each time layer. The numerical examples confirm the high accuracy and
robustness of the proposed numerical scheme.
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1 Introduction

The governing equation of a variety of physical problems in engineering and science is
expressed by the advection-diffusion-reaction (ADR) equation. The ADR equation is a
second order parabolic partial differential equation (PDE). In this paper we consider the
ADR equation in the form:

∂C(x,t)

∂t
=div [Q(x,t,C)]+∇·(a(x,t)C)+R

(
x,C,Cx,Cy,t

)
=0, x=(x1,x2)∈Ω, (1.1)

where C(x,t) is the variable of interest (such as the concentration of pollutant for mass
transfer and the temperature for heat transfer etc). The diffusion term div [Q(x,t,C)] de-
scribes the micro transport of C(x,t) due to its gradients. Here Q(x,t,C) is the flux vector
of C(x,t)

Q(x,t,C)= D̂(x,C,t)∇C(x,t). (1.2)

In the general case of anisotropic media, the diffusivity D̂ is the second order tensor
which can be represented as a symmetric matrix whose entries are bounded functions:

D̂(x,C,t)=

(
D11(x,C,t),D12(x,C,t)

D21(x,C,t),D22(x,C,t)

)
, (1.3)

where D21 = D12, D11D22 > D12D21 from Onsagar’s reciprocity relation which provides
the elliptic type of the differential operator in the right hand side of the equation. The
advection term ∇·(a(x,t)C) describes the macro transfer of the quantities, where a(x,t)=
(a1(x,t) ,a2(x,t)) is the velocity of the media, i.e., is the velocity field that the quantity C
is moving with. For incompressible media, the velocity vector satisfies the condition
div[a(x)]= 0. The term R

(
x,C,Cx,Cy,t

)
describes ”sources” or ”sinks” of C(x,t) (results

of the chemical reactions, heat sources etc.). Below we represent this term in the form

R
(
x,C,Cx,Cy,t

)
=q
(
x,C,Cx,Cy,t

)
− f (x,t) .

In engineering applications, the ADR equation expresses heat transfer and transport
of mass and chemicals into porous or nonporous media [1]. The systems of ADR equa-
tions are common mathematical models used to describe the transport of contamina-
tion in atmosphere [2] and groundwater [3], radiation of microwaves [4], climate mod-
elling [5], batch culture of biofilm [6] and wetland hydrology [7]. In most cases it is
difficult and also time consuming to solve such problems explicitly. Therefore, it is nec-
essary to obtain their approximate solutions by using some efficient numerical methods.
The finite difference method (FDM) and the finite element (FEM) techniques [8] are clas-
sical tools for the numerical modeling of the ADR problem. A detailed review of the
classic methods involving FEMs and FDMs can be found in [9]. Recent developments
of these techniques can be found in [10, 11] and references therein. Spectral methods
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(Galerkin, tau and collocation methods etc.) are other techniques which are widely used
(see, e.g., [12, 13] and references therein).

In the last two decades there has been considerable interest in developing efficient
meshless algorithms for solving partial differential equations [14–19]. In particular, con-
cerning time-dependent ADR problems, Gharib et al. presented in [20] the meshless gen-
eralized reproducing kernel particle method to simulate time-dependent ADR problems
with variable coefficients in a general n−dimensional space. Recently, there has been a
research boom in developing meshless methods for solving engineering problems with
RBFs [21]. In the 1990s, Kansa made the first attempt to extend RBFs for solving partial
differential equations in fluid mechanics [22, 23]. After that, Kansa’s method has been
widely used in science and engineering for solving heat conduction problems, elastic
problem, wave propagation problems, etc. The RBF-based methods have also been used
for the simulation of ADR problems. Dehghan and Mohammadi have proposed [24]
two numerical methods based on RBFs for solving the time-dependent linear and non-
linear Fokker-Planck equations in two dimensions. The compactly supported (CS) RBF
and the local RBF methods have been used for solving the advection-diffusion equa-
tions in [25, 26]. Varun et al. proposed the RBF-finite difference method for solving the
coupled problem of chemical transport in a fluid [27]. The thin plate spline radial ba-
sis function scheme for the advection diffusion problem was proposed by Boztosun et
al. in [28]. A semi-analytical RBF collocation technique was proposed for steady-state
strongly nonlinear ADR problems with variable coefficients in [29, 30]. The RBF finite
collocation approach was proposed for capturing the sharp fronts for time-dependent
advection problems in [31]. In [32] Askari and Adibi have presented the RBFs in combi-
nation with the method of lines for solving the advection diffusion equations. In [33] De-
hghan and Shirzadi have studied a meshless method based on RBFs for solving stochastic
advection-diffusion equations.

This paper presents a novel semi-analytical technique for solving the ADR equation
based on the use of the RBFs for the space approximation of the solution and the Crank-
Nicolson scheme for approximation in time. The second order Crank-Nicolson scheme is
applied to transform the original Eq. (1.1) into a sequence of steady-state ADR equations.
An improved version of the backward substitution method (BSM) is used for solving the
stationary problem in this paper. This belongs to the category of the RBF-based meshless
methods. The BSM was first proposed for solving the multi-point problems [34]. Then it
was extended to steady-state heat conduction problems and multi-term fractional partial
differential equations with time variable coefficients [35, 36]. Recently the BSM has been
extended to the simulation of nonlinear 2D steady state ADR problems [29, 37] and the
telegraph equation with variable coefficients [38]. It should be noted here that in the orig-
inal BSM, the problem is transformed into a system of Laplace problem which are solved
by the meshless method of fundamental solutions. However, we cannot form such gen-
eral Laplace systems for general problems such as problems in anisotropic media. And,
the original method can not be extended to problems whose governing equations do
not have the Laplace operators. Furthermore, the method of fundamental solutions is
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applied to solve the corresponding Laplace system. The optimal determination of the
sources nodes in the method of fundamental solution remains an open issue. In this pa-
per, a new version of this method has been proposed. The solution of the problems is
divided into the approximation of the boundary data and the correcting functions by us-
ing the radial basis functions. The final solution is approximated by the summation of the
primary approximation with series of basis functions which consist of a correcting func-
tion and a radial basis function with some free parameters. Then these free parameters
are obtained by enforcing the approximations to satisfy the governing equations. The
main difference between the new version BSM and the original BSM is that the approx-
imations of the boundary data and the correcting functions are only on the boundary
which don’t have to satisfy any governing equations. In such a way the new version
of the BSM can be easily extended to anisotropic problems which avoiding to solve the
Laplace systems. As for the non-linear problems, the original equations are transformed
into a system of linear ADR equations with variable coefficients in anisotropic media by
using the quasilinearization technique [39] which can be solved by the proposed mesh-
less scheme. It should be noted here that, since the approximations of the boundary data
and the correcting functions do not have to satisfy the governing equations, the proposed
method can be easily extended to other general fully nonlinear problems.

The rest of this paper is organized as follows. In Section 2 the mathematical descrip-
tion of the linear and nonlinear ADR problems is presented. We describe the main algo-
rithm of the present method is in Section 3. Section 4 shows the accuracy of the proposed
method, using numerical examples and making comparisons with other methods. The
short conclusions and remarks are given in Section 5.

2 Mathematical description of the problem

Using Eqs. (1.2), (1.3) and Onsagar’s reciprocity relation, the ADRE can be recast as fol-
lows:

∂C(x,t)

∂t
=D11(x,C,t)

∂2C

∂x2
1

+2D12(x,C,t)
∂2C

∂x1∂x2
+D22(x,C,t)

∂2C

∂x2
2

+

(
dD11(x,C,t)

dx1
+

dD12(x,C,t)

dx2
−a1(x,t)

)
∂C

∂x1

+

(
dD12(x,C,t)

dx1
+

dD22(x,C,t)

dx2
−a2(x,t)

)
∂C

∂x2

−diva(x,t)C+q

(
x,C,

∂C

∂x1
,

∂C

∂x2
,t

)
− f (x,t) , (2.1)

where d
dxk

Dij(x,C,t) denotes the total derivative:

d

dxk
Dij(x,C,t)=

∂Dij (x,C,t)

∂xk
+

∂Dij (x,C,t)

∂C

∂C

∂xk
.
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Remark 2.1. The general form of Eq. (2.1) includes many important equations. For ex-
ample: the Fitzhugh-Nagumo equation [40], the Fokker-Planck equation [24], the gener-
alized Burgers-Fisher equation [41] and others.

Dealing with a linear problem

D̂(x,C,t)= D̂(x,t) ,R
(
x,C,Cx,Cy,t

)
=q(x,t)C− f (x,t) ,

we use the simplified equation:

∂C(x,t)

∂t
=D11(x,t)

∂2C

∂x2
1

+2D12(x,t)
∂2C

∂x1∂x2
+D22(x,t)

∂2C

∂x2
2

+

(
dD11(x,t)

dx1
+

dD12(x,t)

dx2
−a1 (x,t)

)
∂C

∂x1

+

(
dD12(x,t)

dx1
+

dD22(x,t)

dx2
−a2 (x,t)

)
∂C

∂x2

+(q(x,t)−diva(x,t))C− f (x,t) , (2.2)

or in the compact form:

∂C(x,t)

∂t
= L(x,t)[C(x,t)]− f (x,t), (2.3)

where L represents the linear differential operator, as follows:

L=D11(x,t)
∂2

∂x2
1

+2D12(x,t)
∂2

∂x1∂x2
+D22(x,t)

∂2

∂x2
2

+

(
dD11(x,t)

dx1
+

dD12(x,t)

dx2
−a1 (x,t)

)
∂

∂x1

+

(
dD12(x,t)

dx1
+

dD22(x,t)

dx2
−a2 (x,t)

)
∂

∂x2
+(q(x,t)−diva(x,t)). (2.4)

The following Dirichlet boundary condition (BC) is presented:

C(x,t)= g1 (x,t) , x∈Γ1, (2.5)

and the Neumann BC for the boundary flux Qn (x,t)

Qn (x,t)= g2(x,t) , x∈Γ2, (2.6)

where n=(n1,n2) denotes the unit outward normal vector, Γ1∩Γ2 =∅, and Γ1∪Γ2 = ∂Ω

and g1(x,t) , g2(x,t) are known functions. The normal component of the heat flux on the
boundary with the unit outward normal vector n=(n1,n2) has the form

Qn (x,t)=

(
D11(x,C,t)

∂u

∂x1
+D12(x,C,t)

∂C

∂x2

)
n1+

(
D21(x,C,t)

∂C

∂x1
+D22(x,C,t)

∂C

∂x2

)
n2.

(2.7)
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Below, for the sake of simplicity we denote the boundary as follows

B [C(x,t)]= g(x,t) , x∈∂Ω. (2.8)

Besides this C(x,t) satisfies the initial condition at t=0

C(x,0)=h(x), x∈Ω. (2.9)

3 Main algorithm

3.1 Linear advection diffusion reaction problems

In order to solve Eq. (2.3), we first discretize the time domain. For this purpose we apply
the Crank-Nicolson method. The main reason for choosing this method is its good con-
vergence order. Theoretically, the Crank-Nicolson method is unconditionally stable [42].

Applying the Crank-Nicolson scheme to Eq. (2.3), we obtain the following systems:

Cn+1(x)−Cn (x)

∆t
=

1

2

(
L
(

x,tn+1
)[

Cn+1(x)
]
+L(x,tn)[Cn(x)]

)
− f
(

x,tn+1/2
)

, (3.1)

where the superscripts n and n+1 denote successive time levels, tn=n∆t, and we denote
C(x,tn)=Cn(x). Next, changing the order of members, we get the equation for Cn+1(x)

Ln+1
[
Cn+1(x)

]
≡ L

(
x,tn+1

)[
Cn+1(x)

]
−

2

∆t
Cn+1(x)

=−L(x,tn)[Cn(x)]−
2

∆t
Cn(x)+2 f

(
x,tn+1/2

)
≡Fn+1(x). (3.2)

with the boundary condition

B
[

Cn+1(x)
]
= g
(

x,tn+1
)
≡ gn+1(x), x∈∂Ω. (3.3)

At the first time step we get the following equation:

L1
[
C1(x)

]
≡ L

(
x,t1

)[
C1(x)

]
−

2

∆t
C1(x)

=−L
(
x,t0

)[
C0(x)

]
−

2

∆t
C0(x)+2 f

(
x,t1/2

)
≡F1(x) , (3.4)

subject to the boundary condition

B
[
C1(x)

]
= g
(

x,t1
)
≡ g1(x) , x∈∂Ω, (3.5)

where C0(x)= h(x) is given by the initial condition. Suppose that C1
p(x) is a sufficiently

smooth function which satisfies the boundary conditions of Eq. (2.8):

B
[

C1
p(x)

]
= g1(x) , x∈∂Ω. (3.6)
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We denote
C1(x)=C1

p(x)+w1(x) . (3.7)

Then w1(x) is a solution of the problem with the same differential operator but with a
new source term and with homogeneous boundary conditions on ∂Ω

L1
[
w1(x)

]
=F1(x)−L1

[
C1

p(x)
]
= F̃1(x), x∈Ω, (3.8)

B
[
w1(x)

]
=0, x∈∂Ω. (3.9)

Let φm(x) be a system of basis functions defined in the solution domain Ω. Through-
out the paper we shall use RBFs of different kinds as the basis system. Let us define the
corrected basis functions

Φm (x)=φm(x)+ωm(x) , (3.10)

where the correcting functions ωm(x) are chosen in such a way that Φm (x) satisfies the
homogeneous boundary condition

B [Φm (x)]=0, x∈∂Ω, (3.11)

i.e.,
B [ωm(x)]=−B [φm(x)], x∈∂Ω. (3.12)

From Eq. (3.11) it follows that any linear combination

w1(x)=
∞

∑
m=1

q1
mΦm (x) (3.13)

satisfies the homogeneous boundary condition Eq. (3.9). We assume that the solution of
the problem Eqs. (3.8), (3.9) can be represented in the form Eq. (3.13) over the functions
Φm (x).

Let us denote the functions ϕ1
m(x) , x∈Ω as follows:

ϕ1
m(x)=L1 [Φm (x)]. (3.14)

It is easy to find that if
∞

∑
m=1

qm ϕ1
m(x)= F̃1(x) , (3.15)

then Eq. (3.13) is a solution of the equation

L1
[
w1
]
= F̃1(x) , (3.16)

and the sum Eq. (3.7) satisfies the problem Eqs. (3.8), (3.9) with any choice of the param-
eters q1

m.
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We consider the truncated series

w1
M(x)=

M

∑
m=1

q1
mΦm (x) , (3.17)

as an approximate solution of the problem. To get the parameters qm we apply the collo-
cation procedure to the Eq. (3.15) inside the solution domain

M

∑
m=1

q1
m ϕ1

m

(
xj

)
= F̃1(xj), xj ∈Ω, j=1,··· ,N≥M. (3.18)

After determining the unknown coefficients
{

q1
m

}M

m=1
, the approximate solution C1

M(x)

of the problem Eqs. (3.8), (3.9) can be written as the sum C1
M(x)=C1

p(x)+w1
M (x).

At the next time steps we get a similar problem

Ln+1
[
Cn+1(x)

]
=Fn+1(x) , (3.19)

B
[

Cn+1(x)
]
= gn+1(x) , x∈∂Ω. (3.20)

So, we can repeat all the manipulations Eqs. (3.6)-(3.18) with the new Ln+1 [···], Fn+1

and gn+1 at each time step. As a result we get the approximate solution

Cn+1
M (x)=wn+1

M (x)+Cn+1
p (x), (3.21)

where Cn+1
p (x) is a sufficiently smooth function which approximates the boundary data

B
[

Cn+1
p (x)

]
= gn+1(x) , x∈∂Ω, (3.22)

wn+1
M (x)=

M

∑
m=1

qn+1
m Φm (x) , (3.23)

and the coefficients
{

qn+1
m

}M

m=1
are determined by the use of the collocation procedure

inside the solution domain

M

∑
m=1

qn+1
m ϕn+1

m

(
xj

)
= F̃n+1(xj), xj ∈Ω, j=1,··· ,N≥M. (3.24)

Here

ϕn+1
m (x)=Ln+1 [Φm (x)] (3.25)

and the functions Φm (x) are the same at all time levels.
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3.2 Approximation of the boundary data

It should be noted that: 1) the functions Cn
p (x), ωm(x) should not necessarily satisfy any

equation inside the solution domain. These are sufficiently smooth functions which only
approximate the boundary data. Thus, to obtain them we can use the approximation by
any system of functions which is complete in Ω; 2) this is not a 2D approximation over
the domain. It is a 1D approximation of the boundary date over the boundary ∂Ω. The
following system of trigonometric functions is used for this goal:

θk (α,x)= θk1 ,k2
(α,x)=sin

(
k1π

x1+α

2α

)
sin

(
k2π

x2+α

2α

)
. (3.26)

This system forms a complete orthogonal system in [−α, α]×[−α, α] for 2D problems.
Choosing α large enough to satisfy Ω ⊂ Ωα, we approximate the correcting functions
ωm(x) and Cn

p (x) by the sums:

ωm(x)=
K

∑
k=1

pm,kθk (α,x) , Cn
p (x)=

K

∑
k=1

pn
M+1,kθk (α,x) , (3.27)

where k1 and k2 are given in the sequence which satisfies k1+k2 = const from 1 until the
number of basis function reaches K, i.e. the trigonometric functions are posted in the
order: θ1,1,θ2,1,θ1,2, θ3,1,θ2,2,θ1,3, etc. By using the collocation procedure, we get the linear
systems:

K

∑
k=1

pm,kB [θk (α,yi)]=−B [φm(yi)], yi∈∂Ω, i=1,··· ,K1, (3.28)

K

∑
k=1

pn
M+1,kB [θk (α,yi)]= g(yi,t

n), yi∈∂Ω, i=1,··· ,K1. (3.29)

We take the number of the collocation points K1 > K. Note that the linear systems
Eqs. (3.28), (3.29) have the same matrix and different right hand sides and are solved
by a single call of the standard procedure.

Remark 3.1. The system of trigonometric functions Eq. (3.26) is not the only possible
basis system for the approximation of the boundary data. The use of polynomials and
RBFs for this goal is demonstrated in [30, 35]. From the above-mentioned illustrations,
we have three linear systems Eq. (3.24) and Eqs. (3.28) and (3.29) to be solved to obtain
the numerical approximations. From Eqs. (3.28) and (3.29), we can see that the same
coefficient matrix B [θk (α,yi)] are used for the approximation of ωm(x) and Cp(x) with
different right-hand-sides −B [φm(yi)] and g(yi,t

n). Therefore, the two linear systems are
of N×M and K1×K where N>M and K1>K where N is the number of collocation nodes
inside the solution domain and K1 is the number of collocation nodes on the boundary.
For some well-known methods such as Kansa’s method, we will form the (N+K1)×(N+
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K1) matrix where N is the number of collocation nodes inside the solution domain and
K1 is the number of collocation nodes on the boundary. For the proposed method, we
form two linear systems of N×M and K1×K with N>M and K1>K. If we take M=N,
K = K1, we have the maximum dimension of the matrix of N×N and K1×K1. If the
Gaussian elimination method is used to solve such systems, we reduce the computational
complexity from O

(
(N+K1)

3
)

to O
(

N3+K3
1

)
. Furthermore, in this paper, only a few

number of M and K is required which can reduce the computational cost shapely.

3.3 RBF basis systems

To solve 2D problems, we have chosen the multiquadric function, the Gaussian radial
basis function, and the conical radial basis functions to construct the functions ϕ and Φ.
The multiquadric function (MQ) is defined as

φm(x)=
√

r2
m+c2=

√
(x1−x1,m)2+(x2−x2,m)2+c2. (3.30)

The Gaussian radial basis function (GRBF) is defined

φm(x)=exp

(
−
( rm

c

)2
)
=exp


−

(√
(x1−x1,m)2+(x2−x2,m)2

c

)2

. (3.31)

The conical radial basis function (CRBF) is defined as follows:

φm(x)= r13
m =

(
(x1−x1,m)

2+(x2−x2,m)
2
)13/2

. (3.32)

In the above definitions {(x1,m,x2,m)}
M
m=1 are the centers of the basis functions and

c is an arbitrary constant called the shape parameter. Much effort has been devoted to
finding the optimal shape parameters for the radial basis function based on such methods
as the variable shape parameters and random shape parameters (see, e.g., [43] and the
references therein). In this paper we prescribe the constant value of the shape parameter
to verify the accuracy of the present method.

3.4 Fully nonlinear problems

In this subsection, we consider the use of the method described above in the case of the
general nonlinear ADR equation. Let us denote

vi =
∂C

∂xi
, i=1,2, χ11=

∂2C

∂x2
1

, χ12=
∂2C

∂x1∂x2
, χ22=

∂2C

∂x2
2

.
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By using the quasilinearization technique, we consider C, vi, and χij as independent
variables. Using this notation, Eq. (2.1) can be written in the following form:

∂C(x,t)

∂t
=D11(x,C,t)χ11+2D12(x,C,t)χ12+D22(x,C,t)χ22

+

[
∂D11(x,C,t)

∂x1
+

∂D11(x,C,t)

∂C
v1+

∂D12(x,C,t)

∂x2
+

∂D12(x,C,t)

∂C
v2−a1 (x,t)

]
v1

+

[
∂D12(x,C,t)

∂x1
+

∂D12(x,C,t)

∂C
v1+

∂D22(x,C,t)

∂x2
+

∂D22(x,C)

∂C
v2−a2(x,t)

]
v2

−diva(x,t)C+q(x,C,v1,v2,t)− f (x,t), (3.33)

or in the short form:

∂C(x,t)

∂t
= L

(
x,C,vi,χij,t

)
[C(x,t)]− f (x,t), (3.34)

where L is the nonlinear differential operator. By using the Crank-Nicolson scheme to
Eq. (3.34), we obtain the following system of equations:

Cn+1(x)−Cn(x)

∆t
=

1

2

{
L
(

x,Cn+1,vn+1
i ,χn+1

ij ,tn+1
)[

Cn+1(x)
]

+ L
(

x,Cn,vn
i ,χn

ij,t
n
)
[Cn(x)]

}
− f
(

x,tn+1/2
)

, (3.35)

where the superscripts n and n+1 are successive time levels, tn = n∆t, and we denote
C(x,tn)=Cn (x). Next, reordering the terms, we get

L
(

x,Cn+1,vn+1
i ,χn+1

ij ,tn+1
)[

Cn+1(x)
]
−

2

∆t
Cn+1(x)

=−L
(

x,Cn,vn
i ,χn

ij,t
n
)
[Cn (x)]−

2

∆t
Cn(x)+2 f

(
x,tn+1/2

)
. (3.36)

In order to obtain Cn+1, vn+1
i , χn+1

ij from Eq. (3.36), the Cn, vn
i , χn

ij in the right-hand

side should be obtained in advance. It should be noted here that the Cn, vn
i , χn

ij have been

obtained from the previous time steps. Therefore the term L
(
x,Cn,vn

i ,χn
ij,t

n
)
[Cn(x)] can

be obtained directly. So, the right hand-side of the equation is a known function of the
space coordinate. Therefore, the quasilinearization technique is applied only to the left
hand side of Eq. (3.36).

Suppose that Cn+1
0 , vn+1

i,0 , χn+1
ij,0 are the given functions of x which are the initial ap-

proximations of the corresponding exact values at the n+1 steps. Then, we have the
following relations:

Cn+1=Cn+1
0 +(Cn+1−Cn+1

0 )=Cn+1
0 +δCn+1,

vn+1
i =vn+1

i,0 +(vn+1
i −vn+1

i,0 )=vn+1
i,0 +δvn+1

i ,

χn+1
ij =χn+1

ij,0 +(χn+1
ij −χn+1

ij,0 )=χn+1
ij,0 +δχn+1

ij ,
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where δCn+1, δvn+1
i , and δχn+1

ij are correcting functions. Assuming that δCn+1, δvn+1
i ,

and δχn+1
ij are small, the left-hand side of Eq. (3.36) can be linearized by using the

quasilinearization technique. Let us consider the linearization of the first term in
L
(
x,Cn+1,vn+1

i ,χn+1
ij ,tn+1

)
of Eq. (3.36):

D11

(
x,Cn+1,tn+1

)
χn+1

11 =D11

(
x,Cn+1

0 +δCn+1,tn+1
)(

χn+1
11,0 +δχn+1

11

)
(3.37)

≃
(

D11

(
x,Cn+1

0 ,tn+1
)
+∂CD11

(
x,Cn+1

0 ,tn+1
)

δCn+1
)(

χn+1
11,0 +δχn+1

11

)
(3.38)

≃D11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 +∂CD11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 δCn+1

+D11

(
x,Cn+1

0 ,tn+1
)

δχn+1
11 (3.39)

=D11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 +∂CD11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 (C

n+1−Cn+1
0 )

+D11

(
x,Cn+1

0 ,tn+1
)
(χn+1

11 −χn+1
11,0 ) (3.40)

=D11

(
x,Cn+1

0 ,tn+1
)

χn+1
11 +∂CD11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 Cn+1

−∂CD11

(
x,Cn+1

0 ,tn+1
)

χn+1
11,0 Cn+1

0 . (3.41)

It is noted here that the second power of correcting functions (δCn+1δχn+1
11 ) is ignored

from Eq. (3.38) to Eq. (3.39) since the correcting functions are small. The final expression
is a linear equation which contains only two unknowns: χn+1

11 and Cn+1. The last term
of the expression is a known function of x. In the same way, the next two terms of the
Eq. (3.36) can be linearized as follows:

2D12

(
x,Cn+1,tn+1

)
χn+1

12

≃2D12

(
x,Cn+1

0 ,tn+1
)

χn+1
12 +2∂CD12

(
x,Cn+1

0 ,tn+1
)

χn+1
12,0 Cn+1

−2∂CD12

(
x,Cn+1

0 ,tn+1
)

χn+1
12,0 Cn+1

0 , (3.42)

D22

(
x,Cn+1,tn+1

)
χn+1

22

≃D22

(
x,Cn+1

0 ,tn+1
)

χn+1
22 +∂CD22

(
x,Cn+1

0 ,tn+1
)

χn+1
22,0 Cn+1

−∂CD22

(
x,Cn+1

0 ,tn+1
)

χn+1
22,0 Cn+1

0 , (3.43)

Eq. (3.42) and Eq. (3.43) are linear equations which contain three unknowns χn+1
12 , χn+1

22 ,
and Cn+1.
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Let us consider the next part of Eq. (3.36):

[
∂D11

(
x,Cn+1,tn+1

)

∂x1
+

∂D11

(
x,Cn+1,tn+1

)

∂C
vn+1

1

]
vn+1

1

+

[
∂D12

(
x,Cn+1,tn+1

)

∂x2
+

∂D12

(
x,Cn+1,tn+1

)

∂C
vn+1

2 −a1

(
x,tn+1

)]
vn+1

1

=

(1a)

∂D11

(
x,Cn+1,tn+1

)

∂x1
vn+1

1

(2a)

+
∂D11

(
x,Cn+1,tn+1

)

∂C

(
vn+1

1

)2

+

(3a)

∂D12

(
x,Cn+1,tn+1

)

∂x2
vn+1

1 +

(4a)

∂D12

(
x,Cn+1,tn+1

)

∂C
vn+1

1 vn+1
2 −

linear term

a1

(
x,tn+1

)
vn+1

1 .

The nonlinear terms are transformed as follows using the same way by ignoring the high
power of the correcting functions:

(1a)≃∂x1 ,CD11

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 Cn+1+∂x1

D11

(
x,Cn+1

0 ,tn+1
)

vn+1
1

−∂x1 ,CD11

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 Cn+1

0 ,

(2a)≃∂C,CD11

(
x,Cn+1

0 ,tn+1
)(

vn+1
1,0

)2
Cn+1+2vn+1

1,0 ∂CD11

(
x,Cn+1

0 ,tn+1
)

vn+1
1

−∂CD11

(
x,Cn+1

0 ,tn+1
)(

vn+1
1,0

)2
−∂C,CD11

(
x,Cn+1

0 ,tn+1
)(

vn+1
1,0

)2
Cn+1

0 ,

(3a)≃∂x2 ,CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 Cn+1+∂x2 D12

(
x,Cn+1

0 ,tn+1
)

vn+1
1

−∂x2 ,CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 Cn+1

0 ,

(4a)≃∂C,CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 vn+1

2,0 Cn+1+∂CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
2,0 vn+1

1

+∂CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 vn+1

2 −∂C,CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 vn+1

2,0 Cn+1
0

−∂CD12

(
x,Cn+1

0 ,tn+1
)

vn+1
1,0 vn+1

2,0 .

(3.44)

Let us consider the next term:

[
∂D12

(
x,Cn+1,tn+1

)

∂x1
+

∂D12

(
x,Cn+1,tn+1

)

∂C
vn+1

1

]
vn+1

2

+

[
∂D22

(
x,Cn+1,tn+1

)

∂x2
+

∂D22

(
x,Cn+1,tn+1

)

∂C
vn+1

2 −a2

(
x,tn+1

)]
vn+1

2
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=

(1b)

∂D12

(
x,Cn+1,tn+1

)

∂x1
vn+1

2

(2b)

+
∂D12

(
x,Cn+1,tn+1

)

∂C
vn+1

1 vn+1
2

+

(3b)

∂D22

(
x,Cn+1,tn+1

)

∂x2
vn+1

2 +

(4b)

∂D22

(
x,Cn+1,tn+1

)

∂C

(
vn+1

2

)2
−

linear term

a2

(
x,tn+1

)
vn+1

2 ,

where the term (1b) is transformed as term (1a) with the substitutions D11→D12, v1→v2.
The term (2b) is the same as the term (4a). The term (3b) is transformed as term (1a)
with the substitutions D11→D22, v1→v2, ∂x1

→∂x2 . The term (4b) is transformed as term
(2a) with the substitutions D11→D22, v1 →v2. Therefore, it can be easily linearized from
Eq. (3.44).

Let us consider the last nonlinear term q
(
x,Cn+1,vn+1

1 ,vn+1
2

)
using the same method

q
(

x,Cn+1,vn+1
1 ,vn+1

2 ,tn+1
)

≃∂Cq
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
Cn+1+∂v1

q
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
vn+1

1

+∂v2 q
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
vn+1

2 −∂Cq
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
Cn+1

0

−∂v1
q
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
vn+1

1,0 −∂v2 q
(

x,Cn+1
0 ,vn+1

1,0 ,vn+1
2,0 ,tn+1

)
vn+1

2,0 . (3.45)

Using the formulae Eqs. (3.37)-(3.45), the original nonlinear Eq. (2.1) is transformed
to the linear form:

D11

(
x,Cn+1

0 ,tn+1
) ∂2Cn+1

∂x2
1

+2D12

(
x,Cn+1

0 ,tn+1
) ∂2Cn+1

∂x1∂x2
+D11

(
x,Cn+1

0 ,tn+1
) ∂2Cn+1

∂x2
2

+B1

(
x,Cn+1

0 ,vn+1
i,0 ,tn+1

) ∂Cn+1

∂x1
+B2

(
x,Cn+1

0 ,vn+1
i,0 ,tn+1

) ∂Cn+1

∂x2

+

[
B3

(
x,Cn+1

0 ,vn+1
i,0 ,χn+1

ij,0 ,tn+1
)
−

2

∆t

]
Cn+1

=B4

(
x,Cn+1

0 ,vn+1
i,0 ,χn+1

ij,0 ,tn+1
)
−L
(

x,Cn,vn
i ,χn

ij,t
n
)
[Cn(x)]−

2

∆t
Cn(x)+2 f

(
x,tn+1/2

)
,

(3.46)

where the coefficients Bi depend on the initial approximations Cn+1
0 (x), vn+1

i,0 (x), χn+1
ij,0 (x)

and, so, are the known functions. Therefore, linear Eq. (3.46) can be solved by the RBF-
based method described above. The coefficients Bi(x) are changed during the inner it-
erations with each fixed tn+1. Note, that the term −L

(
x,Cn,vn

i ,χn
ij,t

n
)
[Cn (x)]− 2

∆t Cn(x)+

2 f
(
x,tn+1/2

)
in the right hand side of the equation and the function Cn+1

p (x) are fixed
during the inner iterations. Usually 3-5 iterations at each time step are enough to obtain
convergent solution. It should be noted here that for problems without exact solutions,
we may stop the iteration when the difference between values of two successive steps
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is less than the required tolerance or simply fix the number of iterations. In this pa-
per, we fix the number of iterations. As for the initial approximations Cn+1

0 (x), we take
Cn

0 (x)=Cp(x), Cn
0 (x)≡0, Cn

0 (x)≡1 and Cn
0 (x)= rand (rand: Uniformly distributed pseu-

dorandom numbers on the open interval (0,1). The vn+1
i,0 (x) and χn+1

ij,0 (x) are taken by

corresponding derivatives with respective to x.

4 Numerical examples and discussions

To validate the accuracy and efficiency of the present method we consider several ex-
amples. It is noted that the computations are carried out in MATLAB in OS windows 7
(64bit) with Intel Core I7-6500, 2.5GHz CPU and 12GB memory. To evaluate the numeri-
cal accuracy the error norm is defined in the following form:

L∞= max
1≤i≤Nt

|uexact (xi)−uM(xi)|, (4.1)

where uexact and uM are the analytical and approximate solution, respectively, Nt is the
number of the test points xi which are randomly distributed inside the solution domain
Ω.

Example 4.1. As the first example we consider the following linear ADR equation

∂C(x,y,t)

∂t
=−y

∂C(x,y,t)

∂x
+(y−x2)

∂C(x,y,t)

∂y
+C(x,y,t)+

∂2C(x,y,t)

∂y2
− f (x,y,t),

(x,y)∈Ω, 0< t<T, (4.2)

in the square Ω= {(x,y) : 0≤ x,y≤1}. The initial condition, the Dirichlet boundary con-
dition on ∂Ω and the source term f (x,y,t) correspond to the exact solution

C(x,y,t)=sin[(x+y)]t. (4.3)

Fig. 1 shows the maximal absolute error obtained with the use of the RBFs of different
kinds (MQ, GRBF, and CRBF). The shape parameter c = 1 is the same for the MQ and
GRBF basis functions. The numerical results are obtained with the fixed number of the
RBF centers M=225 and with N=400 collocation nodes inside the solution domain. The
number of the trigonometric products (3.26) in the approximation of the boundary data
(the functions ωm(x) and Cn

p (x)) is K=150. The number of the collocation points on the
boundary is K1 = 160. The time step is ∆t = 0.1 and the data which are shown in the
figure correspond to the time T=1. The figure shows that the present method provides
a good approximation for all the RBFs considered. Fig. 2 displays the absolute maximal
error as a function of the shape parameter c for MQ and GRBF basis functions. The error
decreases with the growth of the c for small values of c and it reaches the minimal value
at copt. Then the error increases with a further increase of the parameter c. This is the
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Figure 1: Example 4.1. The exact solution and the absolute errors for the MQ, the GRBF and the CRBF.

common trend for RBF-based numerical methods. However, as Fig. 2 shows, the worst
maximum absolute error is about 10−6 which is acceptable for practical applications.

Fig. 3 demonstrates the convergence of the method with the growth of the number of
the trigonometric functions K, the number of boundary nodes K1 and with the growth of
the number of centers of the RBFs M. The figure shows that the error decreases sharply
with the increasing of the parameters K, K1, and M. With the further growth of the
parameters it keeps around 10−10. The data shown in Fig. 4 correspond to the time T=
1000, i.e., the steady-state solution. They are obtained using the MQ RBF (c=1) and the
large time step ∆t=100. These data demonstrate the stability of the present method.

The data placed in Table 1 correspond to the MQ RBF with two different values of
the shape parameter: c = 0.6 and c = 1. The time step is ∆t = 0.001 and the final time
is T = 0.1. The number of the centers of the MQ RBFs is M = 100, the number of the
collocation points is N=121. The parameters of the approximation of the boundary data
are: K = 20, K1 = 44 and α= 5. The data of the table demonstrate that the approximate
solution obtained with the shape parameter c=0.6 is much more accurate. Dehghan and
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Figure 2: Example 4.1. The maximum absolute error as a function of the shape parameter for the MQ and
GRBF.
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Figure 3: Example 4.1. The convergence as a function of the K, K1 and M.
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Figure 4: Example 4.1. Numerical results and absolute errors at T=1000 using ∆t=100.

Table 1: Example 4.1. The maximum absolute errors at T=0.1 using the MQ basis.

(x,y) Exact MQ (c=0.6) MQ (c=1) Ref. [24]

(0.1,0.1) 0.019866933079506 4.15×10−8 3.53×10−5 1.45×10−5

(0.2,0.2) 0.038941834230865 2.94×10−8 7.40×10−6 5.46×10−5

(0.3,0.3) 0.056464247339504 2.29×10−8 4.61×10−6 1.31×10−4

(0.4,0.4) 0.071735609089952 3.16×10−8 7.73×10−6 2.17×10−4

(0.5,0.5) 0.084147098480790 3.25×10−8 9.93×10−6 2.82×10−4

Mohammadi [24] have considered this problem by using Kansa’s approach. The data of
their calculation are shown in the right hand side of the table. The comparison shows that
the present method provides a more accurate solution even when the shape parameter
c=1 is used.

Finally, we display the elapsed time at the first time step size versus the number of
domain collocation nodes N with M=25, K1=20, and K=80 using the MQ basis functions
(c=1) in Fig. 5(left). The elapsed time versus the number of boundary collocation nodes
K1 with M=25, K=20, and N=324 is displayed in Fig. 5(right). From this figure, it is evi-
dently that the computational complexity is reduced which is far less than the traditional
methods about O

(
(N+K1)

3
)

such as the Kansa’s method.

Example 4.2. In this example, we consider the ADR equation which models the transfer
process in the anisotropic media. Let us consider Eq. (2.1) with the following coefficients

D11(x,t)=(1+0.2(x1+x2))exp(x1+x2+t),

D22(x,t)=(1+0.2(x1−x2))exp(x1−x2+t),



J. Lin et al. / Commun. Comput. Phys., 26 (2019), pp. 233-264 251

100 102 104 106

The number of domain collocation nodes N

10-2

10-1

100

101
E

la
ps

ed
 ti

m
e

y=1.95x

100 102 104 106

The number of boundary collocation nodes K
1

10-2

10-1

100

101

E
la

ps
ed

 ti
m

e

y=2.09x

Figure 5: Example 4.1. The elapsed time versus the number of domain collocation nodes N (left) and the
boundary collocation nodes K1 (right) respectively.

D12(x,t)=D21(x,t)=0.1(x1+x2)exp(x1−x2+t) ,

a1 (x,t)=−1−2x2
1x2−t, a2(x,t)=1+2x1x2

2−t,

q
(
x,t,C,Cx,Cy

)
=−1−sin2(x1+x2)−0.1|x|2 C2−0.1CxCy,

with the solution domain shown in Fig. 6 which is bounded by the following parametric
equation

∂Ω={(x1,x2) | x1=ρ(s)cos(s), x2=ρ(s)sin(s), 0≤ s≤2π} , (4.4)

where

ρ(s)=
(

cos(3s)+
(
2−sin2(3s)

)1/2
)1/3

.

The source term f in Eq. (2.1) and the Dirichlet boundary conditions can be obtained
from the exact solution

C(x,y,t)=exp(x−y−t)cos(y). (4.5)

Table 2 shows the maximum absolute errors at the times T = 0.2, 0.4, 0.8, 1.0, 5, 10
with different time steps ∆t. The data correspond to the parameters: K= 100, K1 = 160,
M= 54 and N = 110 using the MQ RBF (c= 1). Three inner iterations are used on each
time layer in the procedure of the quasilinearization. The data show that the error de-
creases monotonically with the decreasing of the time step size. Fig. 7 also demonstrates
the accuracy of the present method. It displays the analytical solution and the absolute
error of the approximate solution. Finally, Table 3 shows the maximum absolute errors at
T = 1 versus the number of iterations using different initial solutions. It is obvious that
if Cp(x) is used as the initial approximation Cn

0 (x) in the inner iterations on each time
layer, then the most accurate results are obtained even with only one iteration. For other
initial approximations Cn

0 (x)≡0, Cn
0 (x)≡1 and Cn

0 (x)=rand (rand: Uniformly distributed
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Figure 6: Example 4.2. The profile of the solution domain.

Table 2: Example 4.2. The maximum absolute error versus the time step size.

T ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.001

0.2 1.85×10−4 4.81×10−5 3.37×10−5 1.90×10−6

0.4 1.46×10−4 3.88×10−5 2.76×10−5 1.58×10−6

0.8 6.67×10−5 1.95×10−5 1.86×10−5 1.06×10−6

1 4.52×10−5 1.44×10−5 1.52×10−5 8.73×10−7

5 2.80×10−7 2.71×10−7 2.70×10−7 1.81×10−8

10 1.85×10−9 1.82×10−9 1.83×10−9 1.27×10−10

Table 3: Example 4.2. The maximum absolute error at T= 1 versus the number of iterations using different
initial solution.

Number of Iterations C=up C=0 C=1 C= rand

1 9.66×10−7 3.29×10−4 1.02×10−3 4.03×10−4

2 9.21×10−7 9.40×10−7 9.38×10−7 9.40×10−7

3 9.21×10−7 9.21×10−7 9.21×10−7 9.21×10−7

4 9.21×10−7 9.21×10−7 9.21×10−7 9.21×10−7

5 9.21×10−7 9.21×10−7 9.21×10−7 9.21×10−7

pseudorandom numbers on the open interval (0,1)), the approximate solution of the sim-
ilar accuracy is achieved with less than three iterations on each time layer. The present
method converges to the same order of accuracy for all the considered initial solutions
after several iterations. This indicates the robustness of the present method. Further-
more,the computational cost versus the number of domain collocation nodes N and the
boundary collocation nodes K1 is displayed in Fig. 8 where M = 35, K1 = 20, K=70 and
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Figure 7: Example 4.2. The exact solution and absolute error at T=10 with ∆t=0.001.
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Figure 8: Example 4.2. The elapsed time versus the number of domain collocation nodes N (left) and the
boundary collocation nodes K1 (right) respectively.

M=35, K=20, N=324 are used for computations respectively. It should be noted that we
only show the computational time at the first time step size using the MQ basis functions
(c=1) with three inner iterations.

Example 4.3. In this example, we test our method when dealing with a semi-linear equa-
tion which is subject to periodic boundary conditions:





Ct+

(
1

2
C2

)

x

+

(
1

2
C2

)

y

=Cxx+Cyy+2C+cos(x+y+t)(1+2sin(x+y+t)),

C(x,y,0)=sin(x+y), 0< x, y<1,

(4.6)

where the exact solution is C(x,y,t)=sin(x+y+t).
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Figure 9: Example 4.3. The absolute error at T=1 with ∆t=0.1, ∆t=0.01 and ∆t=0.001.

The computation is carried up to the time T=1 at which the maximum absolute error
is calculated. Fig. 9 displays the absolute errors of the approximate solutions correspond-
ing to the time steps ∆t=0.1, ∆t=0.01, and ∆t=0.001. The rest parameters are: N=576,
M= 324, K = 160, K1 = 100 and α= 5. The MQ RBF (c= 2.3) is used. This figure shows
that the error decreases from 10−5 to 10−8 as the time step decreases from ∆t = 0.1 to
∆t= 0.01. With the further diminution of ∆t the error keeps the same order. This may
be explained by the accumulation of rounding errors for small ∆t. Note that in these cal-
culations the step size of the spatial approximation is about 0.041. This means that the
time step can be less than ∆t=O(∆x) and this does not break the stability of the method.
On the other hand, some well-known methods such as the Runge-Kutta method require
the stability condition ∆t=O(∆x2). Therefore, applying the present method, we can use
a large time step and keep the stability of the calculations. Fig. 10 displays the absolute
errors at T=100 obtained with the time steps ∆t=1 and ∆t=5. It should be noted that in
all the calculations shown in Fig. 9 and Fig. 10, the function Cp(x) is used as the initial ap-
proximation Cn

0 (x) in the inner iterations and 3 iterations are applied on each time layers.
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Figure 10: Example 4.3. The absolute errors at T=100 with ∆t=1 and ∆t=5.

Table 4: Example 4.3: The maximum absolute errors at T= 1 versus the number of iterations using different
initial solution with ∆t=0.01.

Number of Iterations u=up u=0 u=1 u= rand

1 4.44×10−6 2.65×10−2 9.17×10−3 9.96×10−3

2 4.39×10−8 1.03×10−6 7.68×10−7 2.37×10−7

3 4.39×10−8 3.81×10−7 4.39×10−8 4.39×10−8

4 4.39×10−8 4.39×10−8 4.39×10−8 4.39×10−8

5 4.39×10−8 4.39×10−8 4.39×10−8 4.39×10−8

Table 4 demonstrates the maximum absolute errors versus the number of iterations using
different initial approximations: Cn

0 (x)=Cp(x), Cn
0 (x)=0, Cn

0 (x)=1, and Cn
0 (x)=rand. It is

evident that the present method converges faster when the initial approximation Cp(x) is
applied. In this case only two inner iterations are needed for the convergence. For other
initial approximations the present method converges in 3-4 inner iterations on each time
layer. The computational cost versus the number of domain collocation nodes N and the
boundary collocation nodes K1 is displayed in Fig. 11 where M=81, K1=20, K=160 and
M=81, K=20, N=400 are used for computations respectively. It should be noted that we
only show the computational time at the first time step size using the MQ basis functions
(c=1) with three inner iterations.

Example 4.4. We apply the proposed method for solving the fully nonlinear ADR equa-
tion:

Ct+

(
1

2
C2

)

x

+

(
1

2
C2

)

y

=∇·(C∇C)−C2+ f (x,y,t), (4.7)
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Figure 11: Example 4.3. The elapsed time versus the number of domain collocation nodes N (left) and the
boundary collocation nodes K1 (right) respectively.

in the irregular domain which is bounded by

∂Ω={(x1,x2) | x1=ρ(s)cos(s), x2=ρ(s)sin(s), 0≤ s≤2π} , (4.8)

where

ρ(s)=
{

cos(5s)+
[
18/5−sin(5s)2

]1/2
}1/3

.

The periodic boundary condition and the initial condition correspond to the following
exact solution:

C(x,y,t)=1+
1

2
sin(x+y−t). (4.9)

The source function f (x,y,t) is defined correspondingly:

f (x,y,t)=1.125−0.625cos(2x+2y−2t)+0.25sin(2x+2y−2t)

+0.5cos(x+y−t)+2sin(x+y−t). (4.10)

Thus, in this equation all the spatial terms are nonlinear. The approximate solutions
depicted in Fig. 12 are obtained at the time T = 1 by using the present method with the
following parameters: N=256, M=144, K=120, K1=100, α=5 and the MQ RBFs (c=1).
Three inner iterations are used on each time layer applying the quasilinearization pro-
cedure to the nonlinear terms. Fig. 12 shows that the error of the approximate solution
decreases as the second degree of the time step size. Thus, this is the error of the ap-
proximation by the Crank-Nicolson scheme which dominates in these calculations. The
stability and robustness of the method provide the calculation with large time steps. This
is demonstrated by the graphs in Fig. 13. The graphs show the analytical and approxi-
mate solutions at the time T=100. The approximate solutions are obtained using the MQ
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Figure 12: Example 4.4. The absolute error at T=1 with ∆t=0.1, ∆t=0.01 and ∆t=0.001.

RBFs (c=1), the GRBF (c=1) and CRBF with time step ∆t=1. The computational cost ver-
sus the number of domain collocation nodes N and the boundary collocation nodes K1 is
displayed in Fig. 14 where M=81, K1=80, K=20and M=81, K=20, N=184 are used for
computations respectively. It should be noted that we only show the computational time
at the first time step size using the MQ basis functions (c=1) with three inner iterations.

Example 4.5. Finally, we apply the proposed method for solving nonlinear problems
Eqs. (4.7) and (4.9) in multiply-connected domain which is bounded by

∂Ω={(x1,x2) | x1=ρ(s)cos(s), x2=ρ(s)sin(s), 0≤ s≤2π} , (4.11)

where

ρ(s)=
{

cos(5s)+
[
18/5−sin(5s)2

]1/2
}1/3

,

with four holes as shown in Fig. 15.
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Figure 13: Example 4.4. The relative error at T= 100 with ∆t= 1 using the MQ (c= 1), GRBF (c= 1) and
CRBF basis functions.

101 102 103 104 105

The number of domain collocation nodes N

10-2

10-1

100

101

102

E
la

ps
ed

 ti
m

e

y=1.03x

100 102 104 106

The number of boundary collocation nodes K
1

10-2

10-1

100

101

E
la

ps
ed

 ti
m

e

y=1.81x

Figure 14: Example 4.4. The elapsed time versus the number of domain collocation nodes N (left) and the
boundary collocation nodes K1 (right) respectively.
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Figure 15: Example 4.5. The profile of the solution domain.

The computation is carried up to the time T=1 at which the domain absolute error is
calculated. Fig. 16 displays the absolute errors of the approximate solutions correspond-
ing to the time steps ∆t= 0.1 and ∆t= 0.01 using the MQ RBFs (c= 1), the GRBF (c= 1)
and CRBF. The rest parameters are: N=128, M=65, K=40, K1=300 and α=5. There are
100 nodes on the boundary governed by Eq. (4.11) and 50 boundary nodes on each hole.

5 Conclusions

In this paper we present a novel numerical method for solving the fully nonlinear time-
dependent ADR equations in arbitrary 2D domains. These equations are widely used
for modeling the transfer processes in anisotropic and inhomogeneous media. So, the
solution technique for solving these equations is relevant to many branches of the engi-
neering and science. For the approximation of the time derivative in the ADR equation,
we have used the Crank-Nicolson method because of its unconditional stability. As a
result, we get a sequence of the stationary ADR problems. To solve the stationary ADR
equation we have applied the effective meshless RBF-based technique called the BSM.
We have used RBFs of three different kinds: the MQ RBF, the Gaussian RBF and the con-
ical RBF. The key idea of the method is the use of the basis functions which satisfy the
homogeneous boundary conditions of the problem. Each basis function used in the algo-
rithm is a sum of an RBF and a special correcting function (see Eq. (3.10)) which is chosen
to satisfy the homogeneous BC of the problem. This allows us to seek an approximate
solution in the form which satisfies the boundary conditions of the initial problem with
any choice of free parameters (see Eq. (3.13)). As a result we separate the approxima-
tion of the boundary conditions and the approximation of the ADR equation inside the
solution domain. This separation provides much higher accuracy of the approximate so-
lution when compared with other methods such as Kansa’s method. In order to solve the
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(e) CRBF, ∆t=0.1
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Figure 16: Example 4.5. The relative errors at T = 1 using the MQ (c= 1), GRBF (c= 1) and CRBF basis
functions.
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nonlinear ADR equation we use the well-known procedure of quasilinearization. This
transforms the original equation into a sequence of linear ones at each time layer. As the
numerical experiments have shown, 2-3 inner iterations are enough to reach the approx-
imate solution on the time layer. The numerical experiments were carried out to test the
accuracy, stability, convergence and robustness of the proposed method. We have com-
pared the numerical results obtained in the paper with the exact solutions and with the
data obtained by the use of other numerical techniques. The numerical results demon-
strate that the present method is accurate, convergent, stable, and robust in solving ADR
problems. The present method also can be extended to 3D problems. This will be the
subject of further studies.
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