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Abstract. We study the error analysis of the weak Galerkin finite element method
in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and
three dimensions. Using a modified duality argument proposed by Zhu and Wu, we
obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error es-
timates with explicit dependence on the wave number k are derived. This shows that
the pollution error in the broken H1-norm is bounded by O(k(kh)2p) under mesh con-
dition k7/2h2≤C0 or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the
finite element method obtained by existent dispersion analyses. Here h is the mesh
size, p is the order of the approximation space and C0 is a constant independent of k
and h. Furthermore, numerical tests are provided to verify the theoretical findings and
to illustrate the great capability of the WG-FEM in reducing the pollution effect.
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1 Introduction

Let Ω∈Rd,d=2,3, be a bounded domain with smooth boundary Γ=∂Ω. We consider the
following Helmholtz problem with the Robin boundary condition:

−∆u−k2u= f in Ω, (1.1)

∂u

∂n
+iku= g on Γ, (1.2)

where i=
√
−1 denotes the imaginary unit and n denotes the unit outward normal to Γ.
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The above Helmholtz problem is an approximation of the acoustic scattering problem.
The Robin boundary condition (1.2) is known as the first order approximation of the
radiation condition [13]. We remark that the Helmholtz problem (1.1)-(1.2) also arises in
applications as a consequence of frequency domain treatment of attenuated scalar waves
[10].

It is well-known that the finite element method of fixed order for the Helmholtz prob-
lem (1.1)-(1.2) at high frequencies (k≫1) is subject to the effect of pollution: the ratio of
the error of the finite element solution to the error of the best approximation from the
finite element space cannot be uniformly bounded with respect to k [1, 3, 4, 9, 16, 18, 19].
In other words, the error bound of the finite element solution to the Helmholtz problem
(1.1)-(1.2) usually consists of two parts: one is the same order as the error of the best
approximation of u from the finite element space, the other dominates the error bound
of the finite element solution for large wave number k. The second part is the so-called
pollution error (cf. [8, 17]). We recall that, the term “asymptotic error estimate” refers to
the error estimate without pollution error and the term “preasymptotic error estimate”
refers to the estimate with non-negligible pollution effect.

However, the highly indefinite nature of the Helmholtz problem with high wave
number makes the error analysis of the FEM (including discontinuous Galerkin meth-
ods) very difficult. The reader is referred to [21, 22] for the pollution free error estimates
of the FEM for the one and higher dimensional Helmholtz problems, and to [11,12,33,34]
for the estimates with pollution error of the FEM and CIP-FEM for two and three dimen-
sional Helmholtz problem.

Weak Galerkin finite element methods were first introduced as nonconforming meth-
ods in [31] by Wang and Ye in 2013 for second order elliptic equations, which has been
used to solve various problems [36–38]. The WG-FEMs admit various finite element
meshes, such as a mix of arbitrary shape of polygons and polyhedrons and less num-
ber of the degree of freedoms in algebraic system than the general DG methods after
parallel computation. The biggest feature of WG-FEMs is their ability to replace the
classic derivatives in various variational formulations by the weak derivatives defined
in [31]. Wang and Ye have applied the WG formulation for solving the Helmholtz prob-
lem in [38] and have shown the error estimates under the mesh condition k2h ≤ C0 by
using the Schatz argument, where C0 is a constant independent of the wave number k
and the mesh size h of a uniform partition. Since k2h≤C0 is too strict for large k, later
they improved the mesh condition and derived the stability and well-posedness without
a mesh size constraint using arguments similar to those provided in [14, 15] by Feng and
Wu. However, the convergence rate in their estimates lost one order under the general
assumption that kh≤ 1 for the large wave number problem. The goal of this work is to
obtain the optimal pre-asymptotic error estimates under the mesh condition k7/2h2 ≤C0

or (kh)2+k(kh)p+1≤C0 by using a modified dual argument like the one recently proposed
in [33, 34].

Other than the WG-FEMs, various discontinuous Galerkin methods are also noncon-
forming methods. We refer the reader to [20] by Melenk et al. for the latest asymptotic
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error analysis of the general DG-method on regular mesh if k(kh)p≤C0, to [14,15] by Feng
and Wu for the stability without any mesh constraint and the broken H1 error estimate of
the interior penalty DG method and to [11, 34] by Wu et al. for the pre-asymptotic error
estimates under the improved mesh condition k(kh)p+1 ≤C0 or k(kh)2p ≤C0 of the IP-DG
methods. For the error analysis of other methods including DG methods, we refer the
reader to [6, 8, 27, 35].

The remainder of this paper is organized as follows. The weak Galerkin finite element
methods are introduced in Section 2. Some preliminary results, including the stability of
the continuous solution, the error estimates of various L2-projections and elliptic pro-
jections defined in the weak Galerkin FEM space are cited or proved in Section 3. The
preasymptotic error analysis of WG-FEMs is given in Section 4. Finally, we simulate a
model problem in two dimensions on triangulation and verify the theoretical findings in
Section 5.

Throughout the paper, C is used to denote a generic positive constant which is in-
dependent of h,k, f and g. We also use the shorthand notation A. B and A& B for the
inequalities A≤CB and A≥B. AhB is a shorthand notation for the statement A.B and
B.A. We assume that k≫1 since we are considering high-frequency problems and that
k is constant on Ω for ease of presentation. We also assume that Ω is a strictly star-shaped
domain. Here “strictly star-shaped” means that there exist a point xΩ ∈Ω and a positive
constant cΩ depending only on Ω such that

(x−xΩ)·n≥ cΩ ∀x∈Γ.

2 The weak Galerkin FEM methods

We first introduce some notation. The standard Sobolev and Hilbert space, norm and
inner product notation are adopted. Their definitions can be found in [5,7]. In particular,
(·,·)K and 〈·,·〉Σ for Σ= ∂K denotes the L2-inner product on complex-valued L2(K) and
L2(Σ) spaces, respectively. Denote (·,·) :=(·,·)Ω and 〈·,·〉 := 〈·,·〉Γ. For simplicity, denote
‖·‖j :=‖·‖H j(Ω) and |·|j := |·|H j(Ω).

Let Th be a triangulation of Ω (cf. [21–23]). Let Eh be the set of all edges of Th. For any
K∈Th, hK denotes its diameter and |K| denotes its area. Similarly, for each edge e∈Eh,
define he :=diam(e). Let h=maxK∈Th

hK. Assume that hKhh. We denote all the boundary
edges by EB

h :={e∈Eh : e⊂Γ} and the interior edges by E I
h :=Eh\EB

h .

Let K̂ denote the reference elements, and let FK denote the element maps from K̂ to
K∈Th. Let Pr(K̂) and Pr(ê) be the set of all polynomials with degrees ≤r on K̂ and ê⊂∂K̂,
respectively. Also, let Pr(K) and Pr(e) be the set of functions vh satisfying vh◦FK ∈Pp(K̂)
and Pr(ê), respectively. Note that the partition Th consisting of polygons or polyhedrons
introduced in [24,31] is not applied because of the analytic boundary of Ω. The theoretical
results of this paper also hold for finite element discretizations on curvilinear Cartesian
meshes or isoparametric finite element approximations [5]..
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Now we give the definitions of the weak derivative operator and its discrete form [31].
For any K∈Th, the local weak function space S(K) is defined by

S(K)=
{

v={v0,vb} : v0∈L2(K), vb∈L2(∂K)
}

.

Then let the weak function space V be the set:

V={v={v0,vb} : v|K ∈S(K)}.

For any v∈V and K∈Th, the discrete weak gradient ∇w,r,Kv on K is defined by

(∇w,r,Kv,q)K =−(v0,∇·q)K+〈vb,q·n〉∂K ∀q∈ [Pr(K)]d,

where r is a nonnegative integer.
Next, we introduce the discrete forms of the spaces S(K) and V. The definition of the

discrete space S(r,K) of S(K) is broken into two cases. In the first case, the local weak
finite element space S1(r,K) is defined as

S1(r,K)={v={v0,vb} : v0 ∈Pr(K), vb|e ∈Pr−1(e) ∀e⊂∂K}.

In the second case, S2(r,K) is defined as

S2(r,K)={v={v0,vb} : v0∈Pr(K), vb|e ∈Pr(e) ∀e⊂∂K}.

We also define the approximation space of the weak finite element methods in two cases.
In the first case, let V1

h be the discrete form of V, that is,

V1
h :=

{
v={v0,vb} : v|K ∈S1(p,K), vb|K1∩e=vb|K2∩e

∀K,K1,K2∈Th, ∀e∈E I
h

}
. (2.1)

In the second case, the discrete space V2
h is defined as

V2
h :=

{
v={v0,vb} : v|K ∈S2(p,K), vb|K1∩e=vb|K2∩e

∀K,K1,K2∈Th, ∀e∈E I
h

}
. (2.2)

We show some L2 projections [24] which will be used often in the forthcoming sub-
section. For any K∈Th, Q0 is a L2 projection from L2(K) to Pp(K) and Qb is a L2 projection
from L2(e) to Pp−1(e) or Pp(e) in the two cases for any e⊂ ∂K, respectively. Then the L2

projection Qh of weak FEM in Vh is defined by

Qhv|K :={Q0v,Qbv} ∀v∈V,K∈Th. (2.3)
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Furthermore, Qh : [L2(Th)]
d → [Pp−1(Th)]

d is a L2 projection defined by:

(Qhq,ph)K =(q,ph)K ∀q∈ [L2(K)]d,ph∈ [Pp−1(K)]d,

for any K∈Th.
The following identity holds(cf. [24]):

∇w,p−1,K(Qhv)=Qh(∇v) ∀v∈H1(K). (2.4)

For simplicity of presentation, the sesquilinear form a(·,·) on V×V is defined as follows:

a(u,v) := ∑
K∈Th

(∇w,p−1,Ku,∇w,p−1,Kv)K+s(u,v), (2.5)

s(u,v) :=ρ ∑
K∈Th

h−1
K 〈Qbu0−ub,Qbv0−vb〉∂K , (2.6)

where ρ is a positive real number.
Then the weak Galerkin finite element methods are defined as such: find uh={u0,ub}∈

V1
h or V2

h such that

a(uh,vh)−k2(u0,v0)+ik〈ub,vb〉=( f ,v0)+〈g,vb〉, (2.7)

holds for any vh ={v0,vb}∈V1
h or V2

h , respectively.
The following norms are useful later:

‖vh‖1,h :=

(

∑
K∈Th

‖v0‖2
L2(K)+h−1

K ‖Qbv0−vb‖2
L(∂K)

)1/2

,

‖|vh|‖ :=
(
|a(vh,vh)|+k‖vb‖2

L2(Γ)

)1/2
∀vh ={v0,vb}∈Vh.

3 Preliminary lemmas

In this section, we recall some preliminary lemmas about stability estimates of the con-
tinuous problem and the approximation estimates of the discrete space Vh.

The following lemma (cf. [22, Theorem 4.10]) states that the solution u to the continu-
ous problem (1.1)-(1.2) can be decomposed into the sum of an elliptic part and an analytic
part u=uE+uA, where uE is usually nonsmooth but the H2-bound of uE is independent
of k and uA is oscillatory but the H j-bound of uA is available for any integer j≥0.

Lemma 3.1. Assume that Ω is a strictly star-shaped domain with an analytic boundary. Suppose
f ∈ L2(Ω) and g ∈ H1/2(Γ). Then the solution u to the problem (1.1)-(1.2) can be written as
u=uE+uA and satisfies

|uE |j.kj−2C f ,g, j=0,1,2, (3.1)

|uA|j.kj−1C f ,g ∀j∈N0. (3.2)

Here C f ,g :=‖ f‖0+‖g‖H1/2(Γ).
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The following lemma shows the regularity of u in norms of high order [11].

Lemma 3.2. Suppose s ≥ 2 and f ∈ Hs−2(Ω) and g ∈ Hs−3/2(Γ). Then the solution u to the
problem (1.1)-(1.2) satisfies the following stability estimate:

‖u‖s.ks−1Cs−2, f ,g, (3.3)

where Cs−2, f ,g :=‖ f‖0+‖g‖L2(Γ)+∑
s−2
j=0 k−(j+1)

(
‖ f‖j+‖g‖H j+1/2(Γ)

)
.

Since the partition Th is a curvilinear triangulation, the following estimates can be
easily obtained for the L2-projections. We omit the details of proof and refer the reader
to [5].

Lemma 3.3. Let 1≤ s≤ p+1. Then we have:

‖∇u−Qh(∇u)‖0+h

(
∑

K∈Th

|∇u−Qh(∇u)|2H1(K)

)1/2

.hs−1 |u|s ,

‖u−Q0u‖0+h

(
∑

K∈Th

|u−Q0u|2H1(K)

)1/2

.hs |u|s ,

for u∈Hs(Ω), and

‖u−Qbu‖L2(Γ).hs−1‖u‖Hs−1(Γ) ,

for u∈Hs−1(Γ) and Qbu|e ∈Pp−1(e) ∀e∈Eh.

If u is the exact solution satisfying the decomposition u= uE+uA as in Lemma 3.1,
then we may approximate u and ∇u by Qhu=QhuE+QhuA and Qh(∇u)=Qh(∇uE )+
Qh(∇uA) to show the following estimate (cf. [21, 22]).

Lemma 3.4. Let u be the solution to the problem (1.1)-(1.2). Suppose f∈L2(Ω) and g∈H1/2(Γ).
We have

(
∑

K∈Th

hK‖∇u−Qh(∇u)‖2
∂K

)1/2

. (h+(kh)p)C f ,g, (3.4)

(

∑
K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2

. (h+(kh)p)C f ,g. (3.5)

Lemma 3.5 can be easily obtained by some arguments similar to those in Lemma 3.1
in [24].

Lemma 3.5. Assume that u is the solution to the Helmholtz problem (1.1)-(1.2) and uh is the
WG-FEM solution in V1

h or V2
h . Denote by eh={e0,eb} :=Qhu−uh={Q0u−u0,Qbu−ub}, We

have the following error equality:

a(eh,vh)−k2(e0,v0)+ik〈eb,vb〉= lu(vh)+s(Qhu,vh) ∀vh∈Vh, (3.6)

where lw(vh) :=∑K∈Th
〈(∇w−Qh∇w)·n,v0−vb〉∂K.



Y. Du and Z. Zhang / Commun. Comput. Phys., 22 (2017), pp. 133-156 139

Before showing the error analysis for the Helmholtz problem (1.1)-(1.2), we introduce
two kinds of elliptic projections similar to those in [33, 34]. For any u∈V, we define its
elliptic projections u+

h =
{

u+
0 ,u+

b

}
, u−

h =
{

u−
0 ,u−

b

}
∈ V1

h or V2
h as the WG finite element

approximations to the following Poisson problem:

−∆u=F in Ω,

∂u

∂n
±iku=G on Γ,

for some functions F and G which are determined by u, i.e. the following equalities hold
for any vh ={v0,vb}∈V1

h or V2
h

a(u+
h ,vh)+ik

〈
u+

b ,vb

〉
=(F,v0)+〈G,vb〉, (3.7)

a(vh,u−
h )+ik

〈
vb,u−

b

〉
=(v0,F)+〈vb,G〉, (3.8)

respectively.

We establish approximation properties of these elliptic projections in the following
lemma.

Lemma 3.6. Let u be any function in H2(Ω) and u±
h be its elliptic projections defined by (3.7)

and (3.8), respectively. Then we have the following estimates:

(i) for u±
h ∈V1

h with p=1,

∥∥∣∣Qhu−u±
h

∣∣∥∥.E(u),

∥∥Q0u−u±
0

∥∥
0
.h

(
E(u)+

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
;

(ii) for u±
h ∈V1

h with p≥2 or u±
h ∈V2

h ,

∥∥∣∣Qhu−u±
h

∣∣∥∥+h−1
∥∥Q0u−u±

0

∥∥
0
.E(u).

Here

E(u)=

(
∑

K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2

+

(
∑

K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2

.

Proof. We only give the details of proof for the elliptic projection u+
h of u. The proof of u−

h
can be completed by similar arguments.

Define η={η0,ηb} :=Qhu−u+
h . By some arguments used in Lemma 3.5, we have

a(η,vh)+ik〈ηb,vb〉= lu(vh)+s(Qhu,vh) ∀vh ={v0,vb}∈Vh, (3.9)
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where lu(vh) is defined in Lemma 3.5. Take vh =η, we have

‖|η|‖2=ℜ
(

a(η,η)+ik〈ηb,ηb〉
)
+ℑ

(
a(η,η)+ik〈ηb,ηb〉

)

. |lu(η)|+|s(Qhu,η)|

.‖|η|‖
[(

∑
K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2

+
(

∑
K∈Th

h−1
K ‖QbQ0u−Qbu‖2

L2(∂K)

)1/2
]

, (3.10)

where the inequality given in [30]

|lu(vh)|.
(

∑
K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2 ·‖|vh|‖ ∀vh ∈V1
h ∪V2

h (3.11)

is used. By the fact that

‖QbQ0u−Qbu‖2
L2(∂K)= ∑

e∈Eh,e⊂∂K

〈Qb(Q0u−u),QbQ0u−Qbu〉e

= ∑
e∈Eh,e⊂∂K

〈Q0u−u,QbQ0u−Qbu〉e

≤‖Q0u−u‖L2(∂K)‖QbQ0u−Qbu‖L2(∂K) , (3.12)

we get

‖|η|‖.E(u). (3.13)

Next, we estimate the L2-norm of η0 in Ω. Consider the following auxiliary problem:

−∆Ψ=η0 in Ω, (3.14)

∂Ψ

∂n
−ikΨ=0 on Γ. (3.15)

It is known that ‖Ψ‖2.‖η0‖0 (cf. [34]).
Testing the conjugated (3.14) by η0, by (2.4) and (3.9) we have

‖η‖2
0=−(η0,∆Ψ)= ∑

K∈Th

(∇η0,∇Ψ)K− ∑
K∈Th

〈
η0,

∂Ψ

∂ne

〉

∂K

= ∑
K∈Th

(∇η0,Qh∇Ψ)K− ∑
K∈Th

〈
η0−ηb,

∂Ψ

∂ne

〉

∂K

− ∑
e∈E B

h

〈
ηb,

∂Ψ

∂ne

〉

e

= ∑
K∈Th

(∇w,p−1,Kη,Qh∇Ψ)−lΨ(η)+ik〈ηb,QbΨ〉

= a(η,QhΨ)+ik〈η,QbΨ〉−lΨ(η)−s(η,QhΨ)

= lu(QhΨ)+s(Qhu,QhΨ)−lΨ(η)−s(η,QhΨ). (3.16)



Y. Du and Z. Zhang / Commun. Comput. Phys., 22 (2017), pp. 133-156 141

We estimate each term in the right hand side of (3.16). We first estimate lu(QhΨ) in
two cases, respectively. In the first case where uh ∈V1

h , the fact that Qbv∈Pp−1(e), ∀v∈
L2(e), e∈Eh implies

|lu(QhΨ)|≤
∣∣∣∣∣ ∑
K∈Th

〈(u−Qhu)·ne,Q0Ψ−Ψ〉∂K

∣∣∣∣∣

+

∣∣∣∣∣ ∑
K∈Th

〈(u−Qhu)·ne,Ψ−QbΨ〉∂K

∣∣∣∣∣

≤
(

∑
K∈Th

h−1
K ‖Ψ−Q0Ψ‖2

L2(∂K)

)1/2

·
(

∑
K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2

+

∣∣∣∣∣∣
∑

e∈E B
h

〈
∂u

∂n
,Ψ−QbΨ

〉

e

∣∣∣∣∣∣

.h‖Ψ‖2 E(u)+

∣∣∣∣∣∣ ∑
e∈E B

h

〈
∂u

∂n
−Qb

∂u

∂n
,Ψ−QbΨ

〉

e

∣∣∣∣∣∣
. (3.17)

If p=1, QbΨ∈P0(e) implies that

∣∣∣∣∣∣
∑

e∈E B
h

〈
∂u

∂n
−Qb

∂u

∂n
,Ψ−QbΨ

〉

e

∣∣∣∣∣∣
.h‖Ψ‖H1(Γ)

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

.

If p≥2, QbΨ∈P1(e) implies that

∣∣∣∣∣∣ ∑
e∈E B

h

〈
∂u

∂n
−Qb

∂u

∂n
,Ψ−QbΨ

〉

e

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
e∈E B

h

〈(∇u−Qh∇u)·n,Ψ−QbΨ〉e

∣∣∣∣∣∣

.h‖Ψ‖2

(
∑

e∈E B
h

he‖∇u−Qh∇u‖2
L2(e)

)1/2

.

Therefore, in the first case we have

|lu(QhΨ)|.h‖η0‖0

(
E(u)+

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)

for p=1, and

|lu(QhΨ)|.h‖η0‖0 E(u)

for p≥2.
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In the second case where u+
h ∈V2

h ,

|lu(QhΨ)|=
∣∣∣∣∣ ∑
K∈Th

〈(∇u−Qh∇u)·n,Qb(Q0Ψ−Ψ)〉∂K

∣∣∣∣∣

≤
(

∑
K∈Th

h−1
K ‖Q0Ψ−Ψ‖2

L2(∂K)

)1/2(
∑

K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2

.h‖η0‖0 E(u).

For |s(Qhu,QhΨ)|, the following estimate holds for both u+
h ∈V1

h and V2
h

|s(Qhu,QhΨ)|≤ ∑
K∈Th

h−1
K ‖Qb(Q0u−u)‖∂K‖Qb(Q0Ψ−Ψ)‖∂K

.

(
∑

K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2(
∑

K∈Th

h−1
K ‖Q0Ψ−Ψ‖2

∂K

)1/2

.h‖η0‖0 E(u). (3.18)

From (3.11) and (3.13) it is easy to see that for both u+
h ∈V1

h and V2
h

|lΨ(η)|+|s(η,QhΨ)|.h‖Ψ‖2‖|η|‖.h‖η0‖0 E(u). (3.19)

Combining (3.16)-(3.19), we have

(i) for u+
h ∈V1

h with p=1,

‖η‖0.h

(∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

+
(

∑
K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2
+‖|η|‖

)
. (3.20)

(ii) for u+
h ∈V1

h with p≥2 or u+
h ∈V2

h ,

‖η‖0.h

((
∑

K∈Th

hK‖∇u−Qh∇u‖2
L2(∂K)

)1/2

+
(

∑
K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2
+‖|η|‖

)
. (3.21)

Finally, by combining (3.13) we complete the proof.

4 Pre-asymptotic error estimates

The duality argument (or Aubin-Nitsche trick) (cf. [2, 10, 19, 21, 22, 26]), that is estimating
the L2-error of the finite element solution by its H1-error, is one crucial step in asymptotic
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error analyses of FEM for scattering problems. Based on the standard duality argument,
the stability of Melenk and Sauter [21, 22] (cf. Lemma 3.1) leads to pollution-free esti-
mates under the condition that kp+1hp is sufficiently small instead. In [34], Zhu and Wu
develop a modified duality argument which uses some specially designed elliptic pro-
jections in the duality-argument step so that we can bound the L2-error of the discrete
solution by using the errors of the elliptic projections of the exact solution u and obtain
the first preasymptotic error estimates for the FEM in higher dimensions under the con-
dition that kp+2hp+1 is sufficiently small. We use this kind of modified duality argument
to obtain the error estimate for the WG-FEM.

Theorem 4.1. Assume that u is the solution to (1.1)-(1.2) with f ∈ L2(Ω), g ∈ H1/2(Γ) and
uh ={u0,ub} be the WG-FEM solution. There exists a constant C0 independent of k and h, such
that

(i) for uh∈V1
h with p=1, if k7/2h2≤C0,

‖Q0u−u0‖0. (h+kh)

(
E(u)+k−1/2

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
,

‖|Qhu−uh|‖. (1+k2h)E(u)+k3/2h

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

;

(ii) for uh∈V1
h with p≥2, if (kh)2+k(kh)p+1 ≤C0,

‖Q0u−u0‖0.
(
h+(kh)p

)
E(u)+

(
h3/2+k−1/2(kh)p

)∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

,

‖|Qhu−uh|‖.
(
1+k(kh)p

)
E(u)+

(
h1/2(kh)+k1/2(kh)p

)∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

;

(iii) for uh∈V2
h , if (kh)2+k(kh)p+1 ≤C0,

‖Q0u−u0‖0.
(
h+(kh)p

)
E(u),

‖|Qhu−uh|‖.
(
1+k(kh)p

)
E(u),

where E(u) is defined in Lemma 3.6.

Proof. Let eh ={e0,eb} :=Qhu−uh and u+
h be the elliptic projections of u defined by (3.7).

Consider the dual problem:

−∆φ−k2φ= e0 in Ω,

∂φ

∂n
−ikφ=0 on Γ.

Let φ−
h be the elliptic projection of φ defined by (3.8). By Lemma 3.1, Lemma 3.3 and

Lemma 3.6, we show the error estimates between φ and φ−
h :
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(i) for φ−
h ∈V1

h with p=1,

∥∥∣∣Qhφ−φ−
h

∣∣∥∥. (h+kh)‖e0‖0 , (4.1)
∥∥Qhφ−φ−

h

∥∥
0
.h2k3/2‖e0‖0 ; (4.2)

(ii) for φ−
h ∈V1

h with p≥2 or φ−
h ∈V2

h ,

∥∥∣∣Qhφ−φ−
h

∣∣∥∥. (h+(kh)p)‖e0‖0 , (4.3)∥∥Qhφ−φ−
h

∥∥
0
.h(h+(kh)p)‖e0‖0 . (4.4)

Note that we have used the boundary condition
∂φ
∂n = ikφ to estimate (4.2).

Testing the conjugated dual problem by e0 and by arguments similar to (3.16), we get

‖e0‖2
0= a(eh,Qhφ)−k2(e0,Q0φ)+ik〈eb,Qbφ〉−lφ(eh)−s(eh,Qhφ). (4.5)

From Lemma 3.5, (3.9) and (4.5), we have

‖e0‖2
0= a(eh,Qhφ−φ−

h )−k2(e0,Q0φ−φ−
0 )+ik

〈
eb,Qbφ−φ−

b

〉

+lu(φ
−
h )+s(Qhu,φ−

h )−lφ(eh)−s(eh,Qhφ)

= a(Qhu−u+
h ,Qhφ−φ−

h )+ik
〈

Qbu−u+
b ,Qbφ−φ−

b

〉
−k2(e0,Q0φ−φ−

0 )

+lφ(u
+
h −uh)+s(Qhφ,u+

h −uh)+lu(φ
−
h )+s(Qhu,φ−

h )

−lφ(eh)−s(eh,Qhφ). (4.6)

Combining the equation above and the fact that

lφ(u
+
h −uh)−lφ(eh)= lφ(u

+
h −uh−eh)= lφ(u

+
h −Qhu),

s(Qhφ,u+
h −uh)−s(eh,Qhφ)= s(u+

h −Qhu,Qhφ),

we have

‖e0‖2
0≤
∥∥∣∣Qhu−u+

h

∣∣∥∥∥∥∣∣Qhφ−φ−
h

∣∣∥∥+k2‖e0‖0

∥∥Q0φ−φ−
0

∥∥
0

+
∣∣lφ(u

+
h −Qhu)

∣∣+
∣∣s(u+

h −Qhu,Qhφ)
∣∣+
∣∣lu(φ

−
h )
∣∣+
∣∣s(Qhu,φ−

h )
∣∣. (4.7)

Now we estimate the terms in the right hand side of the inequality above. From (3.11)
and Lemma 3.6, it is easy to obtain the following inequalities in both cases uh ∈V1

h and
uh∈V2

h :

∣∣lφ(u
+
h −Qhu)

∣∣.E(φ)
∥∥∣∣u+

h −Qhu
∣∣∥∥

.
(
h+(kh)p

)
‖e0‖0 E(u), (4.8)
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∣∣s(u+
h −Qhu,Qhφ)

∣∣.E(φ)
∥∥∣∣u+

h −Qhu
∣∣∥∥

.
(
h+(kh)p

)
‖e0‖0 E(u), (4.9)

and
∣∣s(Qhu,φ−

h )
∣∣≤
∣∣s(Qhu,Qhφ−φ−

h )
∣∣+|s(Qhu,Qhφ)|

.

(
∑

K∈Th

h−1
K ‖Q0u−u‖2

∂K

)1/2(∥∥∣∣Qhφ−φ−
h

∣∣∥∥+E(φ)

)

.
(
h+(kh)p

)
‖e0‖0 E(u). (4.10)

Then we estimate lu(φ
−
h ) in two cases uh∈V1

h and uh∈V2
h , respectively. First, it follows

from (3.11), (4.1) and (4.3) that
∣∣lu(φ

−
h )
∣∣≤
∣∣lu(φ

−
h −Qhφ)

∣∣+|lu(Qhφ)|

.

(
∑

K∈Th

hK‖∇u−Qh∇u‖L2(∂K)

)1/2

·
∥∥∣∣φ−

h −Qhφ
∣∣∥∥+|lu(Qhφ)|

.
(
h+(kh)p

)
‖e0‖0 E(u)+|lu(Qhφ)|. (4.11)

So we only need to estimate lu(Qhφ) to complete the inequality above. By a argument
similar to (3.17) we get

|lu(Qhφ)|.E(u)E(φ)+

∣∣∣∣∣∣
∑

e∈E B
h

〈
∂u

∂n
−Qb

∂u

∂n
,φ−Qbφ

〉

e

∣∣∣∣∣∣

.
(
h+(kh)p

)
‖e0‖0 E(u)+

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

‖φ−Qbφ‖L2(Γ) . (4.12)

In the first case that Qbφ∈Pp−1(e), that is ub∈V1
h . From Lemma 3.1, we know that the

solution φ to the dual problem also can be written as φ=φA+φE satisfying

|φE |.kj−2‖e0‖0 , j=0,1,2,

|φA|.kj−1‖e0‖0 ∀j∈N0.

If p=1, we have

‖φ−Qbφ‖L2(Γ).h‖φE‖H1(Γ)+h‖φE‖H1(Γ)

.k−1/2(h+kh)‖e0‖0 ,

which implies

|lu(Qhφ)|. (h+kh)

(
E(u)+k−1/2

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
‖e0‖0 . (4.13)
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If p≥2, we know that QbφE is at least in P1(e) for any e∈EB
h and get

‖φ−Qbφ‖L2(Γ).h3/2‖φE‖2+hp‖φA‖Hp(Γ)

. (h3/2+hpkp−1/2)‖e0‖0 ,

which implies

|lu(Qhφ)|.
((

h+(kh)p
)
E(u)+

(
h3/2+hpkp−1/2

)∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
‖e0‖0 . (4.14)

In the second case that Qbφ∈Pp(e), that is uh∈V2
h . The fact that

‖φ−Qbφ‖L2(Γ).‖φ−Q0φ‖L2(Γ) ,∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

.‖∇u−Qh∇u‖L2(Γ) ,

implies that

|lu(Qhφ)|.
(
h+(kh)p

)
E(u)+k2‖e0‖0 . (4.15)

By combining (4.7)-(4.15) and Lemma 3.6, we obtain:

(i) for uh∈V1
h with p=1,

‖e0‖2
0. (h+kh)

(
E(u)+k−1/2

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
‖e0‖0

+k2+3/2h2‖e0‖2
0 ,

which implies that there exists a constant C0 independent of k and h, such that if
k7/2h2≤C0,

‖e0‖0. (h+kh)

(
E(u)+k−1/2

∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
; (4.16)

(ii) for uh∈V1
h with ≥2,

‖e0‖2
0.

((
h+(kh)p

)
E(u)+

(
h3/2+hpkp−1/2

)∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
‖e0‖0

+((kh)2+k(kh)p+1)‖e0‖0 ,

which implies that there exists a constant C0 independent of k and h, such that if
(kh)2+k(kh)p+1 ≤C0,

‖e0‖0.

((
h+(kh)p

)
E(u)+

(
h3/2+kp−1/2hp

)∥∥∥∥
∂u

∂n
−Qb

∂u

∂n

∥∥∥∥
L2(Γ)

)
; (4.17)
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(iii) for uh∈V2
h ,

‖e0‖2
0. (h+(kh)p)E(u)‖e0‖0+((kh)2+k(kh)p+1)‖e0‖2

0 ,

which implies that there exists a constant C0 independent of k and h, such that if
(kh)2+k(kh)p+1 ≤C0,

‖e0‖0. (h+(kh)p)E(u). (4.18)

From (4.16)-(4.18), we complete the proof for ‖e0‖0.

Finally, the estimate of ‖|eh|‖ can be easily obtained by its definition and Lemma 3.5,

‖|eh|‖2=ℜ
(

a(eh,eh)+ik〈eb,eb〉
)
+ℑ

(
a(eh,eh)+ik〈eb,eb〉

)

=ℜ
(

a(eh,eh)−k2(e0,e0)+ik〈eb,eb〉
)
+k2(e0,e0)

+ℑ
(

a(eh,eh)−k2(e0,e0)+ik〈eb,eb〉
)

=ℜ
(
lu(eh)+s(Qhu,eh)

)
+ℑ

(
lu(eh)+s(Qhu,eh)

)
+k2‖e0‖2

0

.E(u)‖|eh|‖+k2‖e0‖2
0 . (4.19)

By combining (4.16)-(4.19), we complete the proof for ‖|eh|‖.

Remark 4.1. (a) The mesh condition k7/2h2≤C0 and (kh)2+k(kh)p+1≤C0 in Theorem 4.1
and Corollary 4.1-4.2 may not be “optimal”. For the CIP-FEM (including the classic FEM)
and the high order IP-DG, the pre-asymptotic error estimates under a mesh condition
k(kh)2p ≤C0 have been established [11, 12].

(b) From the details of proof, it is easy to see that the same error estimates also can be
obtained for uh∈V2

h by using fewer degree of freedoms if V2
h (2.2) is redefined as

V2
h :=

{
v={v0,vb} : v|K ∈S2(p,K) and vb|e ∈Pp−1(e) ∀K∈Th,e∈E I

h

}
.

By combining Lemma 3.2, with the approximating properties of the L2 projections Qh

and Qh and Theorem 4.1, we have the following corollary, which gives pre-asymptotic
estimates for Hp+2-regular solutions.

Corollary 4.1. Let u be the solution to (1.1)-(1.2) and let uh be the weak FEM solution. Assume
that u is in Hp+2(Ω) for uh ∈V1

h and in Hp+1(Ω) for uh ∈V2
h . There exist constants C0,C1 and

C2 independent of k and h such that the following estimates hold:

(i) for uh∈V1
h with p=1, if k7/2h2≤C0,

‖Q0u−u0‖0. (kh)2C1, f ,g,

‖|Qhu−uh|‖.
(
kh+k(kh)2

)
C1, f ,g;
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(ii) for uh∈V1
h with p≥2, if (kh)2+k(kh)p+1 ≤C0,

‖Q0u−u0‖0.
(
h(kh)p+(kh)2p

)
Cp, f ,g,

‖|Qhu−uh|‖.
(
(kh)p+k(kh)2p

)
Cp, f ,g;

(iii) for uh∈V2
h , if (kh)2+k(kh)p+1 ≤C0,

‖Q0u−u0‖0.
(
h(kh)p+(kh)2p

)
Cp−1, f ,g,

‖|Qhu−uh|‖.
(
(kh)p+k(kh)2p

)
Cp−1, f ,g.

Remark 4.2. (a) By dispersion analysis, an important tool to understand numerical be-
haviors in short wave computations, it has been found that error between the wave num-
ber k of the continuous problem and some discrete number ω [1,9,16,18,19,28,29] for the
FEM is

k−ω=O
(
k2p+1h2p

)
if kh≪1,

which coincides with our estimates.
(b) Corollary 4.1 shows that u∈Hp+2(Ω) is needed for uh∈V1

h rather than u∈Hp+1(Ω)
for uh ∈ V2

h . Whether the estimates are sharp with respect to the regularity of u needs
further verification in the future work.

By combining Lemmas 3.1 and Theorem 4.1 we have the following stability estimates
for the WG-FEM.

Corollary 4.2. Suppose the solution u∈H2(Ω). Under the mesh conditions of Theorem 4.1, the
following estimate holds:

‖|uh|‖+k‖uh‖0.C1, f ,g ∀uh∈V1
h ,

‖|uh|‖+k‖uh‖0.C f ,g ∀uh∈V2
h .

This Corollary shows that the WG-FEM is well-posed under the mesh condition in
Theorem 4.1.

5 Numerical examples

In this section, we will simulate the following two-dimensional Helmholtz problem:

−∆u−k2u= f :=
sin(kr)

r
in Ω, (5.1)

∂u

∂n
+iku= g on Γ. (5.2)
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Here Ω is the unit regular hexagon with center (1,
√

3/2) and g is so chosen that the exact
solution is

u=
cos(kr)

r
− cosk+isink

k
(

J0(k)+iJ1(k)
) J0(kr) (5.3)

in polar coordinates, where Jν(z) are Bessel functions of the first kind.

We shall use the uniform triangulation consisting of congruent and equilateral trian-
gles of size h in the following numerical tests. Let uh={u0,ub} be the numerical solution
to (5.1)-(5.2).

We refer the reader to [11, 12, 14, 33] for this problem computed by other numeri-
cal methods on both triangular meshes and rectangular meshes, such as the continuous
interior penalty finite element method and the interior penalty discontinuous Galerkin
method.

5.1 Linear WG-FEM

We consider the first case that uh ∈V1
h with p=1. From (2.4), Lemma 3.1 and Lemma 3.3,

we can easily get

(
∑

K∈Th

‖∇w,0,KQhu−∇u‖2
L2(K)

)1/2

.h+kh.

By combining the inequality above and Corollary 4.1, the error of the WG finite element
solution in the broken H1-seminorm is bounded by

(
∑

K∈Th

‖∇w,0,Kuh−∇u‖2
L2(K)

)1/2

≤C1kh+C2k(kh)2 (5.4)

for some constants C1 and C2 independent of k and h if k7/2h2 ≤C0.

The second term on the right-hand side of (5.4) is the so-called pollution error. We
now verify the error bounds by numerical results.

We first show the relative errors and convergence rates of linear WG-FEM solutions
and linear interpolations for k=10,50,200 in Tables 1, 2 and 3. When k=10, the relative
errors of WG-FEM solutions are almost equal to those of interpolations. However, when
k = 50 and 200, the relative errors of WG-FEM solutions are larger than those of inter-
polations although all the relative errors are almost equal when h is sufficiently small,
which implies the existence of the pollution errors. We remark that the numerical tests
for the pollution phenomenon of the finite element method have been done largely in the
literature and the reader is referred to [11] and the references therein for more details.

We verify more precisely the pollution term in (5.4). To do so, we introduce the defi-
nition of the critical mesh size with respect to a given relative tolerance [11, 32].
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Table 1: The relative errors of linear WG-FEM solution uh and linear interpolation uI with k = 10 where

|u−uh|1,w =
(

∑K∈Th
‖∇w,0,Kuh−∇u‖2

L2(K)

)1/2
.

h |u−uh|1,w /|u|1 order |u−uI |1 /|u|1 order
1
4 1.0645 0.5712
1
8 0.3501 1.6044 0.3007 0.9257
1

16 0.1583 1.1447 0.1523 0.9815
1

32 0.0771 1.0374 0.0764 0.9954
1

64 0.0383 1.0094 0.0382 0.9988
1

128 0.0191 1.0024 0.0191 0.9997
1

256 0.0096 1.0006 0.0096 0.9999
1

512 0.0048 1.0001 0.0048 1.0000
1

1024 0.0024 1.0000 0.0024 1.0000

Table 2: The relative errors of linear WG-FEM solution uh and linear interpolation uI with k=50.

h |u−uh|1,w /|u|1 order |u−uI |1 /|u|1 order
1
4 0.9999 1.0098
1
8 0.9942 0.0083 1.0274 -0.0249
1
16 1.1363 -0.1927 0.6994 0.5549
1
32 1.1803 -0.0548 0.3788 0.8846
1
64 0.3821 1.6272 0.1933 0.9710
1

128 0.1276 1.5825 0.0971 0.9927
1

256 0.0528 1.2719 0.0486 0.9982
1

512 0.0249 1.0875 0.0243 0.9995
1

1024 0.0122 1.0236 0.0122 0.9999

Table 3: The relative errors of linear WG-FEM solution uh and linear interpolation uI with k=200.

h |u−uh|1,w /|u|1 order |u−uI |1 /|u|1 order
1
4 1.0001 1.0008
1
8 0.9998 0.0004 0.9982 0.0038
1
16 1.0000 -0.0002 1.0093 -0.0159
1
32 0.9986 0.0021 1.0260 -0.0237
1
64 1.1552 -0.2102 0.7006 0.5503
1

128 1.3238 -0.1966 0.3798 0.8834
1

256 1.1095 0.2548 0.1938 0.9708
1

512 0.3419 1.6985 0.0974 0.9927
1

1024 0.0964 1.8261 0.0488 0.9982
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Definition 5.1. Given a relative tolerance ε and a wave number k, the critical mesh size
h(k,ε) with respect to the relative tolerance ε is defined by the maximum mesh size such
that the relative error of the WG finite element solution in the H1-seminorm is less than
or equal to ε

Clearly, if the pollution terms (5.4) are of order k3h2, then h(k,ε) should be propor-
tional to k−3/2 for k sufficiently large. This is verified by Table 4.

Table 4: h(k,0.5) and h(k,0.1) for linear WG-FEM solutions.

k h(k,0.5) order k h(k,0.1) order

6 0.2500 6 0.0625

50 0.0182 -1.2362 30 0.0120 -1.0229

94 0.0073 -1.4457 54 0.0059 -1.2097

138 0.0041 -1.4710 78 0.0037 -1.2942

182 0.0028 -1.4800 102 0.0026 -1.3528

226 0.0020 -1.4880 126 0.0019 -1.3765

270 0.0015 -1.4809 150 0.0015 -1.3949

314 0.0012 -1.4862 174 0.0012 -1.4160

358 0.0010 -1.4893 198 0.0010 -1.4220

In this example, we set ρ = 20 because of the assumption that ρ is positive for sim-
plicity of proof. When ρ is non-negative, it is easy to see that the sesquilinear form a(·,·)
is at least a semi-positive definite operator, which is essential for the elliptic problems.
However, because of the highly indefinite nature of the Helmholtz problem for large k,
the WG finite element method may perform better with negative ρ. For comparison, we
show the relative errors of the WG method solution with ρ=−4.6 and the FEM solution in
Tables 5-7. By comparing with Tables 1-3, it is easy to see that the WG-FEM with ρ=−4.6
performs much better than the one with ρ=20 and the classical FEM.

5.2 Quadratic WG-FEM

We consider the first case that uh ∈V1
h with p= 2 by setting ρ= 10. It is easy to get the

following inequality similar to (5.4)

(
∑

K∈Th

‖∇w,1,Kuh−∇u‖2
L2(K)

)1/2

≤C1(kh)2+C2k(kh)4, (5.5)

where C1 and C2 are constants independent of k and h under the mesh condition k(kh)3 .
Let uI be the quadratic interpolation of u and let

|u−uh|1,w=
(

∑
K∈Th

‖∇w,1,Kuh−∇u‖2
L2(K)

)1/2
.



152 Y. Du and Z. Zhang / Commun. Comput. Phys., 22 (2017), pp. 133-156

Table 5: The relative errors of linear WG-FEM solution uh and linear FEM solution uFEM
h with k=10.

h |u−uh|1,w /|u|1 order
∣∣u−uFEM

h

∣∣
1
/|u|1 order

1
4 0.6615 0.9189
1
8 0.3083 1.1011 0.4348 1.0797
1

16 0.1532 1.0090 0.1776 1.2915
1

32 0.0765 1.0019 0.0800 1.1507
1

64 0.0382 1.0005 0.0387 1.0478
1

128 0.0191 1.0001 0.0192 1.0128
1

256 0.0096 1.0000 0.0096 1.0032
1

512 0.0048 1.0000 0.0048 1.0008
1

1024 0.0024 1.0000 0.0024 1.0002

Table 6: The relative errors of linear WG-FEM solution uh and linear FEM solution uFEM
h with k=50.

h |u−uh|1,w /|u|1 order
∣∣u−uFEM

h

∣∣
1
/|u|1 order

1
4 1.0033 0 1.0000 0
1
8 1.5714 -0.6474 1.0045 -0.0064
1

16 1.4720 0.0943 1.2034 -0.2606
1

32 0.4010 1.8761 1.4144 -0.2331
1

64 0.1953 1.0379 0.7520 0.9114
1

128 0.0974 1.0043 0.2212 1.7655
1

256 0.0486 1.0010 0.0700 1.6600
1

512 0.0243 1.0002 0.0274 1.3531
1

1024 0.0122 1.0001 0.0126 1.1249

Table 7: The relative errors of linear WG-FEM solution uh and linear FEM solution uFEM
h with k=200.

h |u−uh|1,w /|u|1 order
∣∣u−uFEM

h

∣∣
1
/|u|1 order

1
4 0.9999 0 1.0000 0
1
8 1.0004 -0.0008 1.0002 -0.0003
1

16 1.0009 -0.0007 1.0000 0.0002
1

32 1.3017 -0.3792 1.0011 -0.0016
1

64 1.4432 -0.1488 1.1832 -0.2411
1

128 0.4843 1.5752 1.2744 -0.1071
1

256 0.1970 1.2982 1.4710 -0.2069
1

512 0.0977 1.0119 0.7813 0.9128
1

1024 0.0488 1.0013 0.2094 1.8998
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Table 8: The relative errors of quadratic WG-FEM solution uh and quadratic interpolation uI with k=50.

h |u−uh|1,w /|u|1 order |u−uI |1 /|u|1 order
1
4 1.4195 1.5032
1
8 1.5994 -0.1722 1.0228 -0.5555
1

16 3.8820e-01 2.0427 3.3834e-01 1.5960
1

32 7.8465e-02 2.3067 9.0585e-02 1.9011
1

64 1.9479e-02 2.0101 2.3034e-02 1.9755
1

128 4.8766e-03 1.9980 5.7831e-03 1.9939
1

256 1.2198e-03 1.9992 1.4473e-03 1.9985
1

512 3.0501e-04 1.9998 3.6192e-04 1.9996

Table 9: The relative errors of quadratic WG-FEM solution uh and quadratic interpolation uI with k=200.

h |u−uh|1,w /|u|1 order |u−uI |1 /|u|1 order
1
4 1.4118 1.4071
1
8 1.4114 4.1659e-04 1.4108 -3.8128e-03
1

16 1.4145 -3.2113e-03 1.4976 -8.6115e-02
1

32 1.5863 -1.6533e-01 1.0354 5.3236e-01
1

64 9.0907e-01 8.0316e-01 3.4036e-01 1.6051
1

128 9.6938e-02 3.2293 9.1115e-02 1.9013
1

256 1.9912e-02 2.2834 2.3171e-02 1.9754
1

512 4.9106e-03 2.0197 5.8174e-03 1.9939

Table 8 and Table 9 show the relative errors and convergence rates of quadratic WG-
FEM solutions and quadratic interpolations for k= 50 and k= 200. It is shown that the
relative errors of quadratic WG-FEM solutions fit those of the corresponding interpola-
tions very well even if k = 200 (cf. Table 9), which means that the WG-FEM is a very
efficient numerical methods for solving the Helmholtz problem with high wave number.
However, we emphasize that the pollution errors are reduced greatly, but not eliminated.
To illustrate this, we show the relative errors of both WG-FEM solutions and interpola-
tions with fixed kh=1 and kh=2 shown in Fig. 1.

Finally, We refer the reader to [38] for more numerical examples for various Helmholtz
problems solved by WG-FEMs.
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Figure 1: The relative errors of quadratic WG-FEM solutions and interpolations for kh= 1 (left) and kh= 2
(right).
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