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Abstract

The Barzilai-Borwein (BB) method is a popular and efficient tool for solving large-scale

unconstrained optimization problems. Its search direction is the same as for the steepest

descent (Cauchy) method, but its stepsize rule is different. Owing to this, it converges

much faster than the Cauchy method. A feature of the BB method is that it may generate

too long steps, which throw the iterates too far away from the solution. Moreover, it

may not converge, even when the objective function is strongly convex. In this paper, a

stabilization technique is introduced. It consists in bounding the distance between each

pair of successive iterates, which often allows for decreasing the number of BB iterations.

When the BB method does not converge, our simple modification of this method makes

it convergent. For strongly convex functions with Lipschits gradients, we prove its global

convergence, despite the fact that no line search is involved, and only gradient values are

used. Since the number of stabilization steps is proved to be finite, the stabilized version

inherits the fast local convergence of the BB method. The presented results of extensive

numerical experiments show that our stabilization technique often allows the BB method

to solve problems in a fewer iterations, or even to solve problems where the latter fails.

Mathematics subject classification: 65K05, 90C06, 90C30.

Key words: Unconstrained optimization, Spectral algorithms, Stabilization, Convergence

analysis.

1. Introduction

In this paper, we consider spectral gradient methods for solving the unconstrained optimiza-

tion problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R1 is a sufficiently smooth function. Its minimizer is denoted by x∗. Gradient-

type iterative methods used for solving problem (1.1) have the form

xk+1 = xk − αkgk, (1.2)
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where gk = ∇f(xk) and αk > 0 is a stepsize. Methods of this type differ in the stepsize rules

which they follow.

We focus here on the two choices of αk proposed in 1988 by Barzilai and Borwein [1],

usually refereed to as the BB method. The rationale behind these choices is related to viewing

the gradient-type methods as quasi-Newton methods, where αk in (1.2) is replaced by the

matrix Dk = αkI. This matrix is served as an approximation of the inverse Hessian matrix.

Following the quasi-Newton approach, the stepsize is calculated by forcing either D−1
k (BB1

method) or Dk (BB2 method) to satisfy the secant equation in the least squares sense. The

corresponding two problems are formulated as

min
D=αI

‖D−1sk−1 − yk−1‖ and min
D=αI

‖sk−1 −Dyk−1‖, (1.3)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. The solutions to these problems are

αBB1
k =

sTk−1sk−1

sTk−1yk−1
and αBB2

k =
sTk−1yk−1

yTk−1yk−1
, (1.4)

respectively. Here and in what follows, ‖ · ‖ denotes the Euclidean vector norm and the induced

matrix norm. Other norms used in this paper will be denoted in a different way.

Barzilai and Borwein [1] proved that their method converges R-superlinearly for two-dimen-

sional strictly convex quadratics. Dai and Fletcher [7] analyzed the asymptotic behavior of

BB-like methods, and they obtained R-superlinear convergence of the BB method for the

three-dimensional case. Global convergence of the BB method for the n-dimensional case was

established by Raydan [20] and further refined by Dai and Liao [10] for obtaining the R-linear

rate. For nonquadratic functions, local convergence proof of the BB method with R-linear rate

was, first, sketched in some detail by Liu and Dai [19], and then it was later rigorously proved

by Dai et al. [9]. Extensive numerical experiments show that the two BB stepsize rules signifi-

cantly improve the performance of gradient methods (see, e.g., [14,21]), both in quadratic and

nonquadratic cases.

A variety of modifications and extensions have been developed, such as gradient methods

with retards [15], alternate BB method [8], cyclic BB method [9], limited memory gradient

method [4] etc. Several approaches were proposed for dealing with nonconvex objective func-

tions, in which case the BB stepsize (1.4) may become negative. In our numerical experiments,

we use the one proposed in [6]. The BB method has been extended to solving symmetric

and nonsymmetric linear equations [6, 11]. Furthermore, by incorporating the nonmontone

line search by Grippo et al. [17], Raydan [21] and Grippo et al. [18] developed the global BB

method for general unconstrained optimization problems. Later, Birgin et al. [2] proposed the

so-called spectral projected gradient method which extends Raydan’s method to smooth convex

constrained problems. For more works on BB-like methods, see [3,14,23] and references therein.

As it was observed by many authors, the BB method may generate too long steps, which

throw the iterates too far away from the solution. In practice, it may not converge even

for strongly convex functions (see, e.g., [14]). The purpose of this paper is to introduce a

simple stabilization technique and to justify its efficiency both theoretically and practically.

Our stabilization does not assume any objective function evaluations. It consists in uniformly

bounding ‖sk‖, the distance between each pair of successive iterates. It should be emphasized

that, if the BB method safely converges for a given function, then there is no necessity in

stabilizing it. In such cases, the stabilization may increase the number of iterations. In other
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cases, as it will be demonstrated by results of our numerical experiments, the stabilization may

allow for decreasing the number of iterations or even to make the BB method convergent.

Although we focus here on stabilizing the conventional BB method, our approach can di-

rectly be combined with the existing modifications of the BB method, where a nonmonotone

line search is used.

The paper is organized as follows. In the next section, we present an example of a strictly

convex function and show that the BB method does not converge in this case. This contributes

to a motivation for stabilizing this method. In the same section, its stabilized version is intro-

duced. In Section 3, a global convergence of our stabilized BB algorithm as well as its R-linear

rate of convergence are proved under suitable assumptions. Results of numerical experiments

are reported and discussed in Section 4. Finally, some conclusions are included in the last

section of the paper.

2. Stabilized Algorithm

Before formulating our stabilized algorithm, we wish to begin with a motivation based on

presenting an example of a strongly convex function for which we theoretically prove that

neither of the BB methods converge. To the best of our knowledge, no theoretical evidence of

BB methods being divergent is available in the literature.

In the review paper by Fletcher [14], it is claimed that the BB method diverges in practice

for certain initial points in the test problem referred to as Strictly Convex 2 by Raydan [21], in

which

f(x) =

n∑
i=1

i(exi − xi)/10. (2.1)

This strongly convex function will be used in Section 4 for illustrating the efficiency of the

stabilized algorithm. Our numerical experiments show that, in this specific case, the failure of

the BB method is related to the underflow and overflow effects in the computer arithmetic. We

are not acquainted with any theoretical justification of the divergence of the BB method for

this or any other functions.

We will present now an instance of a function for which the BB method does not converge

in the exact arithmetic. For this purpose, the notation

a =
√

5− 1, b =
√

5 + 3, c1 =
3
√

5 + 8

4
, c2 = −5

√
5 + 11

32
, f(a) =

c1a
2

2
+
c2a

4

4

will be used. Consider the univariate function

f(x) =



1

4
(x+ a)2 − (

√
5 + 1)(x+ a) + f(a), x < −a,

c1
2
x2 +

c2
4
x4, −a ≤ x ≤ a,

1

4
(x− a)2 + (

√
5 + 1)(x− a) + f(a), x > a.

(2.2)

Its first derivative

g(x) =



1

2
(x+ a)−

√
5− 1, x < −a,

c1x+ c2x
3, −a ≤ x ≤ a,

1

2
(x− a) +

√
5 + 1, x > a
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is continuously differentiable, and g(x) is an odd monotonically increasing function (see Fig.

2.1). It can be easily verified that the function f(x) is twice continuously differentiable with

1/2 ≤ f ′′(x) ≤ c1, ∀x ∈ R1.

This means that this function is strongly convex, and its first derivative is Lipschitz-continuous.

y=g(x)

a

!a!b

b0

y

x

Fig. 2.1. Cyclic iterates generated by the BB method for function (2.2).

For any univariate objective function, there is no difference between BB1 and BB2 versions,

and they are equivalent to the secant method applied to the first derivative. For function (2.2),

if to initiate the BB method with x0 = −b and x1 = −a, then the subsequent iterates are

x2 = x1 −
x1 − x0

g(x1)− g(x0)
g(x1) = b,

x3 = x2 −
x2 − x1

g(x2)− g(x1)
g(x2) = a,

x4 = x3 −
x3 − x2

g(x3)− g(x2)
g(x3) = −b = x0,

x5 = x4 −
x4 − x3

g(x4)− g(x3)
g(x4) = −a = x1.

This clearly shows that the BB method cycles between four points (see Figure 2.1). The

presented counter-example can be easily extended to n-dimensional case. As an example, one

can consider a separable objective function equal to the sum of any number of functions of the

form (2.2), where no variable appears in more than one of these functions.

After motivating the necessity of stabilizing the BB method, we can now proceed to pre-

senting the basic idea of our stabilized BB algorithm, where ∆ > 0 is a parameter. It consists

in choosing the stepsize in (1.2) in the way that ‖xk+1−xk‖ = ∆, whenever ‖αBBk gk‖ > ∆, i.e.

αBBk > ∆/‖gk‖. In other cases, we choose αk = αBBk , which results in ‖xk+1−xk‖ ≤ ∆. Thus,

denoting

αstabk =
∆

‖gk‖
,
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we propose to choose

αk = min{αBBk , αstabk }. (2.3)

Here αBBk = αBB1
k or αBBk = αBB2

k , depending on the specific BB method in (1.4). A formal

description of our stabilized BB algorithm follows.

Algorithm 2.1. BBstab.

Given: initial points x0, x1 ∈ Rn such that x0 6= x1, and scalar ∆ > 0.

Evaluate g0 and g1.

for k = 1, 2, . . . do

if gk = 0 then stop.

Set sk−1 ← xk − xk−1 and yk−1 ← gk − gk−1.

Compute αk by formula (2.3).

Set xk+1 ← xk − αkgk and evaluate gk+1.

end (for)

This algorithm will be refereed to as BB1stab or BB2stab depending on the corresponding

choice of αBBk in (1.4). Note that, for ∆ = +∞, it reduces to the underlying standard BB

algorithm.

3. Convergence Analysis

In this section, global convergence of the BBstab algorithm will be proved. Whenever

iterates {xk} are mentioned, they are assumed to be generated by BBstab, where it is required

that x0 6= x1.

Throughout this section, the objective function is assumed to comply with the following

requirement.

A1. The function f : Rn → R1 is twice continuously differentiable, and there exist positive

constants Λ1 ≤ Λ2 such that

Λ1‖v‖2 ≤ vT∇2f(x)v ≤ Λ2‖v‖2, ∀x, v ∈ Rn. (3.1)

This assumption implies that

Λ1‖x− x∗‖ ≤ ‖g(x)‖ ≤ Λ2‖x− x∗‖, ∀x ∈ Rn. (3.2)

Extra assumptions are introduced below in proper places.

We shall use the following notation:

Ω1 = {x ∈ Rn : ‖g(x)‖ ≤ Λ1∆},
Ω2 = {x ∈ Rn : Λ1∆ < ‖g(x)‖ ≤ Λ2∆},
Ω3 = {x ∈ Rn : Λ2∆ < ‖g(x)‖},
Ω3′ = {x ∈ Rn : Λ2∆ < ‖g(x)‖ ≤ κΛ2∆},

which will be motivated later. Here

κ =
Λ2

Λ1
.
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Obviously, Ω3′ ⊂ Ω3, and Ω1,2,3 = Rn, where Ω1,2,3 = Ω1 ∪ Ω2 ∪ Ω3. We shall use similar

notation for other unions of sets Ωi.

Inequalities (3.1) ensure that

1

Λ2
≤ αBBk ≤ 1

Λ1
, ∀k ≥ 1, (3.3)

which in turn means that

αk ≤ min

{
∆

‖gk‖
,

1

Λ1

}
, ∀k ≥ 1, (3.4)

1

κΛ2
≤ αk ≤

1

Λ1
, ∀xk ∈ Ω1,2,3′ . (3.5)

These bounds justify the implications

xk ∈ Ω1 ⇒ αk = αBBk ,

xk ∈ Ω2 ⇒ αk = min{αBBk , αstabk },
xk ∈ Ω3 ⇒ αk = αstabk .

(3.6)

We can now prove the following result.

Lemma 3.1. Let x0, x1 ∈ Rn be arbitrary starting points. Then for any ∆ > 0, the iterates

{xk} have the property that

‖gk+1‖ ≤
{
qk‖gk‖, if xk ∈ Ω3,

κ‖gk‖, otherwise,
∀k ≥ 1, (3.7)

where

qk = 1− Λ1∆

‖gk‖
.

Proof. Using Assumption A1, we get

gk+1 = gk − αkHkgk,

where the matrix Hk =
∫ 1

0
∇2f(xk + tsk)dt is symmetric, and it fulfills the relations

Λ1I � Hk � Λ2I.

Clearly,

‖gk+1‖ ≤ ‖I − αkHk‖‖gk‖. (3.8)

Consider, first, the case when xk ∈ Ω3. Using the inequality Λ2∆ < ‖g(x)‖ and relations

(3.6), we can derive for (3.8) the following upper bound

‖I − αstabk Hk‖ = max
‖v‖=1

∣∣1− αstabk vTHkv
∣∣ = 1− αstabk min

‖v‖=1
vTHkv ≤ 1− Λ1∆

‖gk‖
.

This proves the upper inequality in (3.7).

Suppose now that xk ∈ Ω1,2, i.e., ‖gk‖ ≤ Λ2∆. Then, using (3.4), we get the bounds

Λ−1
2 ≤ αk ≤ Λ−1

1 , which together with the inequalities Λ1 ≤ ‖Hk‖ ≤ Λ2 yield

‖I − αkHk‖ ≤ max{1− κ−1,κ − 1} = κ − 1 < κ.
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Fig. 3.1. Graphs of ‖gk‖ for BB1stab and BB2stab with ∆ = 2 for Raydan function (2.1).

By combining this estimate with (3.8), we finally prove the lower inequality in (3.7). �

Lemma 3.1 implies that the stabilization steps have the following properties

qk ∈ (0, 1), ∀xk ∈ Ω3, (3.9)

qk+1 < qk, ∀xk, xk+1 ∈ Ω3. (3.10)

Next, we prove that, after a finite number of iterations, all iterates belong to the bounded

set Ω1,2,3′ .

Lemma 3.2. For any x0, x1 ∈ Rn and ∆ > 0, there exists an integer K ≥ 1 such that the

inequality

‖gk‖ ≤ κΛ2∆ (3.11)

holds, that is xk ∈ Ω1,2,3′ , for all k ≥ K. Moreover, K is the iteration number corresponding

to the first iterate xK that belongs to Ω1,2,3′ .

Proof. Notice that (3.11) is satisfied if and only if xk ∈ Ω1,2,3′ . We first show that if

xk ∈ Ω1,2,3′ , then so does the next iterate. Indeed, in view of (3.7) and (3.9), if xk ∈ Ω3′ , then

xk+1 ∈ Ω1,2,3′ . On the other hand, if xk ∈ Ω1,2, i.e. ‖gk‖ ≤ Λ2∆, then, by Lemma 3.1, we have

‖gk+1‖ ≤ κΛ2∆.

Suppose now that x1 ∈ Ω3 \ Ω3′ . Then it immediately follows from relations (3.9) and

(3.10), that there exists K > 1 such that xK ∈ Ω1,2,3′ . As it was shown above, this means that

xk ∈ Ω1,2,3′ for all k ≥ K. �

It follows from (3.9) that, when iterates belong to the set Ω3, the value ‖gk‖ monotonically

decreases as indicated by (3.7). Furthermore, the actual decrease may speed-up in accordance

with (3.10). When the iterates reach Ω1,2, the decrease is naturally expected to slow down,

and this is followed by a non-monotonic behavior of ‖gk‖, which is a typical feature of the BB

steps. One can observe all these stages in the behavior of BBstab in Figure 3.1. It presents

changes of ‖gk‖ with k in the process of minimizing Raydan function (2.1). Details of these
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runs are discussed in Section 4. Note that both BB1 and BB2 fail to solve this problem starting

from the same points. The figure illustrates the role of stabilization in providing convergence

of BBstab. One can clearly recognize the first stage of the process when the stabilization steps

ensure a monotonic decrease of ‖gk‖. For the BB1stab and BB2stab, the iteration when the

standard BB step was used for the first time is 228 and 226, respectively. For them, the last

stabilization step was used in iteration 379 and 353, respectively. Observe that the spikes of

‖gk‖ produced by BB1 is much larger than those for BB2.

Lemma 3.2 allows us to deduce an interesting property of the BB method, namely, that if

it generates bounded steps, it cannot generate unbounded iterates because one can choose a

sufficiently large ∆, which is not binding. The same lemma indicates that a proper choice of ∆

allows for BBstab to reach any neighborhood of x∗. We use the notation

Bδ(x
∗) = {x ∈ Rn : ‖x− x∗‖ ≤ δ}.

in the following formulation of this useful feature of BBstab.

Lemma 3.3. Let x0, x1 ∈ Rn be any starting points. Then for any δ > 0 and positive ∆ ≤ δ
κ2 ,

there exists K(∆) ≥ 1 such that the iterates {xk} satisfy the condition

xk ∈ Bδ(x∗), ∀k ≥ K(∆).

Proof. Combining (3.2) and Lemma 3.2, we get the relations

‖xk − x∗‖ ≤
‖gk‖
Λ1
≤ κ2∆ ≤ δ,

which are satisfied for all sufficiently large k. This completes the proof. �

We shall make use of Lemma 3.2 for proving global convergence result for BBstab. We show

also that its local rate of convergence is R-linear, which means that there exist positive γ and

c ∈ (0, 1) such that

‖xk+1 − x∗‖ ≤ γck‖x1 − x∗‖. (3.12)

These convergence results are based on our convergence analysis presented in the next sub-

section for convex quadratic functions.

3.1. Convergence in Quadratic Case

In this sub-section, we focus on minimizing convex quadratic functions of the form

f(x) =
1

2
xTAx− bTx, (3.13)

where the matrix A ∈ Rn×n is positive definite, and b ∈ Rn. For these functions, we derive the

convergence with R-linear rate. To this end, we will make use of the following property which

is the same as Property A in [5].

Definition 3.1. We say that the choice of the stepsize in (1.2) has property P if there exist

an integer m and positive constants M1 and M2 such that, for all k ≥ 1,

(i) Λ1 ≤ α−1
k ≤M1;

(ii) for any integer ` ∈ [1, n− 1] and real number ε > 0, if R(k− j, `) ≤ ε and (g
(`+1)
k−j )2 ≥M2ε

hold for j ∈ [0, min{k, m} − 1], then α−1
k ≥

2
3λ`+1.
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Theorem 3.1. Let x0, x1 ∈ Rn be arbitrary starting points. Then for any ∆ > 0, the sequence

{xk} converges to x∗ with R-linear rate. Moreover, there exists a positive integer j̄, such that,

for any ∆ > 0, x0 ∈ Rn and x1 ∈ Ω1,2,3′ , the inequality

‖gk+j̄‖ ≤
1

2
‖gk‖

holds for all k ≥ 1.

Proof. It is well known that the BB method is invariant under orthogonal transformation of

the variables and, as it can be easily seen, so does its stabilized version. Hence, we can assume

without loss of generality that the matrix A is of the form

A = diag(λ1, . . . , λn), (3.14)

where 0 < Λ1 = λ1 < λ2 < . . . < λn = Λ2. Here, like it is often done for the gradient

methods (see, e.g., [20]), it is assumed without loss of generality that the matrix A has distinct

eigenvalues. Then denoting the i-th component of gk by g
(i)
k , we have

g
(i)
k+1 = (1− αkλi)g(i)

k , i = 1, . . . , n. (3.15)

We will also make use of the following notation:

R(k, `) =
∑̀
i=1

(g
(i)
k )2.

Firstly, we prove that the step size αk has property P. Lemma 3.2 ensures that xk ∈ Ω1,2,3′

for all k ≥ 1. Then the bounds (3.5) show that αk has property P(i) with M1 = κΛ2.

Next, we will show, for any integer ` ∈ [1, n− 1] and real number ε > 0, that the inequality

α−1
k ≥ 2

3λ`+1 is satisfied, whenever R(k − 1, `) ≤ ε and (g
(`+1)
k−1 )2 ≥ 2ε. This will be done

separately for BB1- and BB2-based iterates.

For the BB1 case, we have

α−1
k ≥

gTk−1Agk−1

‖gk−1‖2
=

n∑
i=1

λi(g
(i)
k−1)2

R(k − 1, n)
≥

λ`+1

n∑
i=`+1

(g
(i)
k−1)2

R(k − 1, `) +
n∑

i=`+1

(g
(i)
k−1)2

≥
λ`+1

n∑
i=`+1

(g
(i)
k−1)2

ε+
n∑

i=`+1

(g
(i)
k−1)2

≥ 2λ`+1ε

ε+ 2ε
=

2

3
λ`+1.

For BB2, we obtain

(αk)−1 ≥
gTk−1A

2gk−1

gTk−1Agk−1
≥

λ`+1

n∑
i=`+1

λi(g
(i)
k−1)2

λ`+1R(k − 1, `) +
n∑

i=`+1

λi(g
(i)
k−1)2

≥
λ2
`+1(g

(`+1)
k−1 )2

λ`+1R(k − 1, `) + λ`+1(g
(`+1)
k−1 )2

≥ 2λ`+1ε

ε+ 2ε
=

2

3
λ`+1.
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Thus, P(ii) holds for m = 2 and M2 = 2. This implies that BBstab stepsize αk satisfies

P. Then we can skip the rest of the proof because it is similar to the proof of Theorem 4.1

in [5]. �

It should be emphasized that, in this lemma, the value of j̄ depends only on Λ1 and Λ2.

3.2. Convergence in General Case

For nonquadratic functions, we shall first prove local R-linear convergence of BBstab. This

result will then be used for showing that it converges from any starting point.

Throughout this sub-section, we need to additionally assume that the Hessian matrix∇2f(x)

is Lipschitz-continuous at x∗. In what follows, we use the notation H = ∇2f(x∗).

A2. There exist a radius ρ > 0 and a Lipschitz constant L ≥ 0 such that

‖∇2f(x)−H‖ ≤ L‖x− x∗‖, ∀x ∈ Bρ(x∗).

This assumption implies that

‖g(x)−H(x− x∗)‖ ≤ L

2
‖x− x∗‖2, ∀x ∈ Bρ(x∗). (3.16)

The second-order Taylor approximation to f around x∗ is given by the quadratic function

f̂(x) = f(x∗) +
1

2
(x− x∗)TH(x− x∗). (3.17)

Define new iterates x̂k,j associated with f̂ as follows:{
x̂k,0 = xk,

x̂k,j+1 = x̂k,j − α̂k,j ĝk,j , j ≥ 0,
(3.18)

where

α̂k,j =

{
αk, if j = 0,

min{α̂BBk,j , α̂stabk,j }, otherwise.

Here α̂BBk,j = α̂BB1
k,j or α̂BBk,j = α̂BB2

k,j and α̂stabk,j = ∆
‖ĝk,j‖ with

α̂BB1
k,j =

ŝTk+j−1ŝk+j−1

ŝTk+j−1ŷk+j−1
, α̂BB2

k,j =
ŝTk+j−1ŷk+j−1

ŷTk+j−1ŷk+j−1
,

ŝk+j−1 = x̂k,j − x̂k,j−1, ĝk,j = H(x̂k,j − x∗) and ŷk+j−1 = ĝk,j − ĝk,j−1. In what follows,

whenever we mention x̂k,j and α̂k,j , they are assumed to be generated as defined above.

The next result follows immediately from Theorem 3.1.

Lemma 3.4. Let ∆ > 0 be any scalar, such that Ω1,2,3′ ⊆ Bρ(x∗). Then there exists a positive

integer j̄, dependent only on Λ1 and Λ2, such that, for any xk−1 ∈ Rn and xk ∈ Ω1,2,3′ , the

inequality holds

‖ĝk,j̄‖ ≤
1

2
‖ĝk,0‖.
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It can be easily seen that if xk ∈ Ω1,2,3′ , then all corresponding x̂k,j ∈ Ω1,2,3′ . In this case,

BBstab stepsize αk satisfies the bounds (3.5), and similarly for α̂k,j , we have the bounds

1

κΛ2
≤ α̂k,j ≤

1

Λ1
, ∀j ≥ 0. (3.19)

The following result will be used for proving local R-linear convergence.

Lemma 3.5. Let integer j̄ ≥ 1 be arbitrary. Then there exist positive scalars ∆̄ and γ with the

following property: for any ∆ ∈ ( 0, ∆̄ ], xk−1 ∈ Rn, xk ∈ Ω1,2,3′ ⊂ Bρ(x
∗) and m ∈ [0, j̄], for

which

‖ĝk,j‖ ≥
1

2
‖ĝk,0‖, ∀j ∈ [0,max{0,m− 1}], (3.20)

we have the inequality

‖xk+j − x̂k,j‖ ≤ γ‖xk − x∗‖2 (3.21)

satisfied for all j ∈ [0,m].

Proof. Throughout the proof, let c denote a generic positive constant, which may depend

on some of fixed constants, such as ∆̄, j̄, Λ1, Λ2 or L, but not on the choice of ∆ or xk ∈
Ω1,2,3′ ⊂ Bρ(x

∗). For brevity, we will use the same notation in all inequalities, even though

every specific value of c depends on the one, where it is used. What is important is that the

number of these inequalities is finite.

We first notice that, by Lemma 3.2, the relation xk+j ∈ Ω1,2,3′ ⊆ Bρ(x∗) holds for all j ≥ 0.

The process of proving (3.21) will be combined with showing that the inequalities

‖g(xk+j)− ĝ(x̂k,j)‖ ≤ c‖xk − x∗‖2, (3.22)

‖sk+j‖ ≤ c‖xk − x∗‖, (3.23)

|αk+j − α̂k,j | ≤ c‖xk − x∗‖, (3.24)

are satisfied for all j ∈ [0, m].

The proof of (3.21)-(3.24) is by induction on m. For m = 0, noticing that x̂k,0 = xk,

α̂k,0 = αk and sk = −αkgk, by (3.2), (3.5) and (3.16), we can immediately get (3.21)-(3.24)

satisfied for j = 0.

Suppose that there exist M ∈ [1, j̄) and ∆̄ > 0 with the property that if (3.20) holds for

any m ∈ [0, M − 1], then (3.21)-(3.24) are satisfied for all j ∈ [0, m]. Next, we shall show that

for a smaller choice of ∆̄ > 0, we can replace M by M + 1. Hence, we suppose that (3.20)

holds for all j ∈ [0, M ]. Since (3.20) holds for all j ∈ [0, M − 1], it follows from the induction

hypothesis and (3.23) that

‖xk+M+1 − x∗‖ ≤ ‖xk − x∗‖+

M∑
i=0

‖sk+i‖ ≤ c‖xk − x∗‖. (3.25)

By analogy with the proof of Lemma 2.2 in [9], we derive from (3.2), (3.5), (3.16), (3.19), (3.25)

and the induction hypothesis that (3.21)-(3.23) hold for j = M + 1. Then we just need to show

that

|αk+M+1 − α̂k,M+1| ≤ c‖xk − x∗‖. (3.26)

It follows from (3.2) that

‖xk − x∗‖ ≤
‖gk‖
Λ1
≤ κ2∆ ≤ κ2∆̄.
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Then by choosing any ∆̄ < 1/(2γκ3), using relations (3.1), (3.5), (3.19)-(3.21), (3.23) and the

same reasoning as in the proof of Lemma 2.2 in [9], we obtain

|αBBk+M+1 − α̂BBk,M+1| ≤ c‖xk − x∗‖. (3.27)

In the following, the proof of (3.26) will be done by separately considering four different cases.

Case I: αBBk+M+1 ≤ αstabk+M+1 and α̂BBk,M+1 ≤ α̂stabk,M+1. Then (3.27) directly leads to

|αk+M+1 − α̂k,M+1| = |αBBk+M+1 − α̂BBk,M+1| ≤ c‖xk − x∗‖.

Case II: αBBk+M+1 ≤ αstabk+M+1 and α̂BBk,M+1 > α̂stabk,M+1. If α̂stabk,M+1 ≥ αBBk+M+1, then (3.27)

implies

|αk+M+1 − α̂k,M+1| = α̂stabk,M+1 − αBBk+M+1 < α̂BBk,M+1 − αBBk+M+1 ≤ c‖xk − x∗‖.

Suppose now that α̂stabk,M+1 < αBBk+M+1. Then we have

|αk+M+1 − α̂k,M+1| = αBBk+M+1 − α̂stabk,M+1 ≤ αstabk+M+1 − α̂stabk,M+1. (3.28)

It follows from (3.5) and (3.19) that

‖ĝk,M+1‖ =
∆

α̂stabk,M+1

>
∆

α̂BBk,M+1

≥ ∆Λ1. (3.29)

By (3.2) and (3.16), we get

‖gk+M+1 − ĝk,M+1‖ ≤
L

2
‖xk+M+1 − x∗‖2 ≤

L

2Λ2
1

‖gk+M+1‖2 ≤
1

2
κ4∆2L.

This along with (3.29) leads to

‖gk+M+1‖ ≥ ‖ĝk,M+1‖ − ‖gk+M+1 − ĝk,M+1‖ ≥ ∆
(

Λ1 −
1

2
κ4∆L

)
≥ ∆C(∆̄),

where C(∆̄) = Λ1 − κ4∆̄L/2 > 0 whenever ∆̄ < 2Λ1/(κ4L). Then we obtain

|αstabk+M+1 − α̂stabk,M+1| =
∣∣∣∣ ∆

‖gk+M+1‖
− ∆

‖ĝk,M+1‖

∣∣∣∣ = ∆
|‖ĝk,M+1‖ − ‖gk+M+1‖|
‖gk+M+1‖‖ĝk,M+1‖

≤ ∆
‖ĝk,M+1 − gk+M+1‖
‖gk+M+1‖‖ĝk,M+1‖

≤ c‖xk − x∗‖2

∆Λ1C(∆̄)
≤ c‖gk‖‖xk − x∗‖

∆Λ2
1C(∆̄)

≤ cκΛ2∆‖xk − x∗‖
∆Λ2

1C(∆̄)
=

cκ2

Λ1C(∆̄)
‖xk − x∗‖.

This together with (3.28) shows that (3.26) holds.

Case III: αBBk+M+1 > αstabk+M+1 and α̂BBk,M+1 ≤ α̂stabk,M+1. If αstabk+M+1 ≥ α̂BBk,M+1, then by (3.27),

we have

|αk+M+1 − α̂k,M+1| = αstabk+M+1 − α̂BBk,M+1 ≤ αBBk+M+1 − α̂BBk,M+1 ≤ c‖xk − x∗‖.

Suppose now that αstabk+M+1 < α̂BBk,M+1. Then we get

|αk+M+1 − α̂k,M+1| = α̂BBk,M+1 − αstabk+M+1 ≤ α̂stabk,M+1 − αstabk+M+1.
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To use the same reasoning as in Case II, we need to have lower bounds for ‖gk+M+1‖ and

‖ĝk,M+1‖. To this end, applying (3.5) and (3.19), we obtain

‖gk+M+1‖ =
∆

αstabk+M+1

>
∆

αBBk+M+1

≥ ∆Λ1. (3.30)

Furthermore, (3.2), (3.16) and (3.30) yield

‖ĝk,M+1‖ ≥ ‖gk+M+1‖ − ‖gk+M+1 − ĝk,M+1‖ ≥ ∆C(∆̄).

This lower bound is positive whenever ∆̄ < 2Λ1/(κ4L). The two lower bounds allows us to

conclude, by analogy with Case II, that (3.26) holds.

Case IV: αBBk+M+1 > αstabk+M+1 and α̂BBk,M+1 > α̂stabk,M+1. It follows from (3.2), (3.22), (3.29)

and (3.30) that

|αk+M+1 − α̂k,M+1|

≤∆
‖ĝk,M+1 − gk+M+1‖
‖gk+M+1‖‖ĝk,M+1‖

≤ ∆
c‖xk − x∗‖2

∆2Λ2
1

≤ c‖gk‖‖xk − x∗‖
∆Λ3

1

≤cκΛ2∆‖xk − x∗‖
∆Λ3

1

≤ cκΛ2

Λ3
1

‖xk − x∗‖.

Collecting the results in the considered four cases, one can see that (3.26) is satisfied for any

∆ < min

{
1

2γκ3
,

2Λ1

κ4L

}
.

This completes the induction and finally proves that inequalities (3.21)-(3.24) hold for all j ∈
[0, m]. �

Next we will establish the local convergence property of BBstab for nonquadratic functions.

Theorem 3.2. There exists positive ∆̄ such that, for any positive ∆ ≤ ∆̄ and any starting

points x0, x1 ∈ Ω1,2,3′ , the sequence {xk} converges to x∗ with R-linear rate.

Lemma 3.5 allows us to skip the proof of this theorem because the reasoning is similar to

the proof of Theorem 2.3 in [9].

We complete the analysis by presenting the following global convergence result.

Theorem 3.3. There exists positive ∆̄ such that, for any positive ∆ ≤ ∆̄ and any starting

points x0, x1 ∈ Rn, the sequence {xk} converges to x∗ with R-linear rate.

Proof. Let ∆̄ > 0 be given by Theorem 3.2, which ensures local convergence to x∗. According

to Lemma 3.2, after a finite number of BBstab iterations, all iterates will belong to Ω1,2,3′ . This

finally proves global convergence with R-linear rate. �

4. Numerical Results

Our algorithms were implemented in MATLAB. The algorithms are terminated when either

the number of iterations exceeds 105, or

‖gk‖ ≤ 10−6 · ‖g0‖.
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In the next two subsections, results of numerical experiments are presented separately for

quadratic and nonquadratic test functions.

A successful value of ∆ is obviously problem dependent. In our implementation, we try to

estimate its order of magnitude by setting ∆ = +∞ for the first few iterations and making

use of ‖sk‖ produced at these iterations by the standard BB algorithm. At the subsequent

iterations, the constant value

∆ = c ·min{‖s1‖, ‖s2‖, ‖s3‖}, (4.1)

is applied, where c > 0 is a parameter. It turns out that this adaptive choice of ∆ is less

problem dependent.

Table 4.1: Numerical results for linear systems from the SuiteSparse Matrix Collection, Part I.

PROBLEM BB1 BB1stab PROBLEM BB1 BB1stab

name n it it c name n it it c

1138 bus 1 138 35 202 21 384 0.3 ex33 1 733 1 303 958 0.2

2cubes sphere 101 492 5 576 4 662 0.3 Flan 1565 1 564 794 13 781 16 537 0.25

af 0 k101 503 625 4 433 2 634 0.2 fv3 9 801 449 449 0.2

af 1 k101 503 625 2 473 2 766 0.25 G2 circuit 150 102 1 139 1 139 0.25

af 2 k101 503 625 4 034 2 499 0.25 G3 circuit 1 585 478 2 177 2 177 0.2

af 3 k101 503 625 3 627 2 378 0.2 Geo 1438 1 437 960 32 134 29 095 0.3

af 4 k101 503 625 3 047 5 368 0.3 gyro 17 361 10 611 11 925 0.3

af 5 k101 503 625 2 397 2 753 0.2 gyro m 17 361 3 325 2 225 0.25

af shell3 504 855 1 956 4 565 0.3 hood 220 542 4 073 4 308 0.25

af shell7 504 855 2 495 5 515 0.3 Hook 1498 1 498 023 7 839 7 358 0.25

apache1 80 800 18 017 9 143 0.2 inline 1 503 712 20 490 16 833 0.3

apache2 715 176 17 807 17 807 0.2 jnlbrng1 40 000 124 108 0.2

audikw 1 943 695 92 730 65 818 0.2 Kuu 7 102 1 733 949 0.3

bcsstk08 1 074 4 627 5 113 0.3 ldoor 952 203 9 133 9 281 0.3

bcsstk09 1 083 747 713 0.3 LF10000 19 998 48 867 38 250 0.2

bcsstk10 1 086 3 416 2 383 0.25 LFAT5000 19 994 22 358 22 358 0.25

bcsstk11 1 473 2 204 1 699 0.2 m t1 97 578 1 826 1 826 0.2

bcsstk13 2 003 6 848 8 171 0.3 mhd3200b 3 200 2 065 2 065 0.2

bcsstk14 1 806 3 577 2 682 0.25 mhd4800b 4 800 2 466 2 466 0.2

bcsstk15 3 948 7 006 4 872 0.25 msc01050 1 050 15 187 11 529 0.25

bcsstk16 4 884 401 401 0.25 msc01440 1 440 807 807 0.2

bcsstk17 10 974 27 014 14 841 0.25 msc04515 4 515 8 066 6 889 0.2

bcsstk18 11 948 5 895 4 332 0.3 msc10848 10 848 3 356 3 356 0.2

bcsstk21 3 600 1 455 1 594 0.25 msc23052 23 052 19 088 7 340 0.2

bcsstk23 3 134 8 182 5 619 0.2 msdoor 415 863 8 113 6 655 0.25

bcsstk24 3 562 2 383 1 537 0.3 nasa1824 1 824 9 520 6 515 0.3

bcsstk25 15 439 8 369 8 971 0.25 nasa2146 2 146 355 355 0.2

bcsstk26 1 922 12 624 8 761 0.2 nasa2910 2 910 19 574 13 683 0.3

bcsstk27 1 224 863 887 0.3 nasa4704 4 704 43 448 32 961 0.2

bcsstk36 23 052 15 466 12 001 0.25 nasasrb 54 870 10 302 10 223 0.3

bcsstk38 8 032 1 584 1 584 0.25 nd3k 9 000 67 509 86 986 0.25

bcsstm08 1 074 4 183 4 183 0.2 nd6k 18 000 92 468 41 133 0.2

bcsstm11 1 473 623 287 0.3 nd24k 72000 84 165 73 216 0.3

bcsstm12 1 473 2 838 2 375 0.3 offshore 259 789 3 826 3 949 0.3

bcsstm23 3 134 2 143 1 857 0.25 oilpan 73 752 4 647 3 899 0.3

bcsstm24 3 562 2 102 1 611 0.25 olafu 16 146 69 575 80 804 0.3
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It is necessary to emphasize that the stabilization was designed not to speed-up the BB

method when it safely converges. In such cases, it may increase the number of iterations, which

is a negative outcome. The main purpose of the stabilization is to prevent the BB method from

making too long steps. This serves for decreasing the number of BB iterations in case of its poor

convergence or even making the method convergent when it fails, which is a positive outcome.

Outcomes of all these aforementioned types were observed in our numerical experiments with

stabilizing the BB method. One can easily recognize them in the tables presented below.

We focus here on demonstrating the potentials of improving convergence for the BB method.

Therefore, our stabilized version is not checked here against another optimization algorithms.

Since the computational cost of one iteration for the BB algorithms are practically the same

as for their stabilized versions, only the number of iterations are compared. Notice that the

Table 4.2: Numerical results for linear systems from the SuiteSparse Matrix Collection, Part II.

PROBLEM BB1 BB1stab PROBLEM BB1 BB1stab

name n it it c name n it it c

bcsstm25 15 439 2 266 2 119 0.2 parabolic fem 525 825 5 451 2 989 0.2

bcsstm26 1 922 1 614 1 239 0.2 plat1919 1 919 3 297 2 804 0.2

bcsstm39 46 772 575 575 0.2 plbuckle 1 282 5 601 3 726 0.3

BenElechi1 245 874 3 137 3121 0.3 Pres Poisson 14 822 17 291 13 461 0.25

bloweybq 10 001 107 107 0.2 pwtk 21 7918 26 060 21 798 0.25

bmw7st 1 141 347 2 463 2 463 0.2 s1rmq4m1 5 489 9 043 6 890 0.2

bmwcra 1 148 770 86 966 123 528 0.25 s1rmt3m1 5 489 10 092 11 576 0.25

bodyy4 17 546 154 154 0.25 s2rmq4m1 5 489 5 371 8 958 0.2

bodyy5 18 589 405 405 0.3 s2rmt3m1 5 489 7 850 6 039 0.25

bodyy6 19 366 809 853 0.3 s3dkq4m2 90 449 16 169 16 169 0.2

bone010 986 703 55 659 55 659 0.25 s3dkt3m2 90 449 18 654 10 739 0.2

boneS01 127 224 7 688 5 669 0.2 s3rmq4m1 5 489 8 413 7 848 0.25

boneS10 914 898 28 584 24 899 0.2 s3rmt3m1 5 489 16 901 19 625 0.3

bundle1 10 581 244 244 0.2 s3rmt3m3 5 357 15 586 6 737 0.25

cant 62 451 19 609 22 895 0.2 Serena 1 391 349 47 765 23 155 0.25

cbuckle 13 681 6 963 10 770 0.25 ship 001 34 920 17 575 17 499 0.2

cfd1 70 656 4 475 3 555 0.2 ship 003 121 728 64 349 69 948 0.3

cfd2 123 440 5 515 8 145 0.25 shipsec1 140 874 8 730 6 681 0.2

Chem97ZtZ 2 541 125 114 0.25 shipsec5 179 860 2 565 3 113 0.3

consph 83 334 15 034 11 232 0.25 shipsec8 114 919 3 900 5 827 0.3

crankseg 1 52 804 4 012 4 012 0.2 smt 25 710 38 442 24 695 0.25

crankseg 2 63 838 4 914 3 614 0.3 sts4098 4 098 8 262 12 042 0.2

crystm01 4 875 100 100 0.2 t2dah e 11 445 2 557 1 612 0.3

crystm02 13 965 114 114 0.2 t2dal e 4 257 1 585 1 171 0.25

ct20stif 52 329 6 482 6 482 0.25 t3dl e 20 360 503 361 0.2

cvxbqp1 50 000 383 383 0.2 thermal1 82 654 5 812 5 812 0.2

Dubcova1 16 129 181 181 0.2 thermal2 1 228 045 22 201 7 170 0.25

Dubcova2 65 025 372 348 0.3 tmt sym 726 713 40 335 40 335 0.25

Dubcova3 146 689 520 429 0.2 Trefethen 2000 2 000 258 258 0.2

ex3 1 821 508 387 0.2 Trefethen 20000 20 000 358 358 0.2

ex9 3 363 1 202 1 202 0.3 Trefethen 20000b 19 999 404 404 0.2

ex10 2 410 3 038 2 023 0.25 vanbody 47 072 19 354 19 133 0.2

ex10hs 2 548 2 412 1 628 0.2 wathen100 30 401 238 238 0.25

ex13 2 568 2 972 2 972 0.2 wathen120 36 441 308 308 0.2

ex15 6 867 3 022 3 298 0.3 — — — — —
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number of iterations is the same as the number of gradient evaluations.

In our numerical experiments, the BB1 algorithm was generating too long steps more fre-

quently than the BB2 algorithm. This is often caused by relatively too small values of the

scalar product sTk−1yk−1 in the denominator of αBB1
k . This explains why the stabilization is, in

general, more important for the BB1 stepsize choice than for the BB2. Therefore, the numerical

results presented here refer mainly to the BB1.

4.1. Quadratic test functions

A part of the numerical experiments was related to minimizing convex quadratic functions

(3.13). This problem is equivalent to solving the system of linear equations

Ax = b.

The matrices in our set of test problems come from the SuiteSparse Matrix Collection [12,22].

For generating the vector b, we assumed that the solution x∗ = e, i.e., b = Ae, where e =

(1, 1, . . . , 1)T . The total number of problems in our test set is 141, where the problem size n

varies from thousands to millions.

For the adaptive selection of ∆ by formula (4.1), we tried just a few values of the parameter

c, namely, 0.2, 0.25 and 0.3. In Tables 4.1 and 4.2, the number of iterations are reported for

algorithms BB1 and BB1stab. For the latter, the best of the three results is presented along

with the corresponding value of c. If the reported result is the same as for the BB1 algorithm,

then it is obvious that the number of iterations remains the same for all values of c larger than

the indicated one. The number of iterations, which is not worse than for the BB1 algorithm,

are highlighted in this and other tables in this paper. One can see that, comparing with the

BB1, its stabilized version is faster in solving 74 problems, while it is slower in 30 problems.

Furthermore, the reduction in the number of iterations obtained by virtue of the stabilization

was often substantial. We also tested the BB2 and BB2stab algorithms for these same 141

problems. We tried c = 0.1, 0.2, 0.25 and 0.3 in the adaptive selection of ∆ by formula (4.1).

Comparing with the BB2, BB2stab is faster in solving 58 problems, while for the given values

of c, the stabilization is unable to decrease the number of BB2 iterations in 58 problems.

4.2. Nonquadratic test functions

For general functions, it is more difficult than for quadratic ones to avoid the cases, when

x1 is chosen too close to x0 or too far away of it. In order to avoid such poor choices of these

two points, our BBstab algorithms are initialized with only one point, namely, x0. The point

x1 is produced in the algorithms by checking if the inequality f(x0 + s0) < f(x0) is satisfied for

s0 = −α0g0, where α0 = 1/‖g0‖∞. Otherwise, a number, typically few, of backtracking steps

are performed by dividing the current vector s0 by 4, while the required inequality is violated.

We begin here by comparing the performance of the BB algorithms and their stabilized

versions on the strongly convex Raydan function (2.1) for n = 1000. The point x0 = −10 · e
was used for starting the algorithms. The standard BB1 algorithm failed to solve the problem.

After two iterations, an overflow in computing sTk yk was reported. If to introduce the bounds

[10−30, 1030] for αBB1, like it is often done in practice, then it also fails, although after a larger

number of iterations. Namely, at iteration 123 and all subsequent iterations, an underflow was

observed in calculating xk+1 for ‖sk‖ < 10−26. In these two cases, the standard BB2 also

failed. However, the same test problem for the same x0 was successfully solved by BB1stab
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Fig. 4.1. Graphs of ‖sk‖ for BB1stab and BB2stab with ∆ = 2 for Raydan function (2.1).

and BB2stab with ∆ = 2 in 418 and 416 iterations, respectively. No bounds, like [10−30, 1030],

are used in our implementation of the BB algorithms and their stabilized versions. Fig. 4.1

illustrates the stabilization effect. One can see that the BB1 was generating too long steps more

frequently than the BB2. This observation is in general agreement with the other numerical

experiments that we performed and also with the theory, which says that αBB1
k ≥ αBB2

k .

The performance of our algorithms was compared also for unconstrained minimization prob-

lems from the CUTEst collection [16], which provides a standard starting point x0 for each of

them. We excluded from our comparison quadratic problems and those, in which the BB1/BB2

algorithm converged in less than 20 iterations. The results reported here concern only the
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Fig. 4.2. Performance profiles of the BB1 and BB2 algorithms adapted to solving nonconvex uncon-

strained minimization problems (based on solving problems from the CUTEst collection).
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problems, where at least one of the compared algorithms converged, and also those, where the

both algorithms converged to the same point.

Table 4.3: Numerical results for unconstrained minimization problems from the CUTEst collection,

adaptive selection of ∆.

PROBLEM BB1 BB1stab PROBLEM BB1 BB1stab

name n it it c name n it it c

ALLINITU 4 21 21 0.1 EXTROSNB 1 000 23 23 0.5

ARGTRIGLS 200 626 626 0.5 FLETCBV2 5 000 30 225 98 735 1

BA-L1LS 57 34 33 1 FLETCHCR 1 000 1 892 1 964 1

BA-L16LS 66 462 64 66 0.5 FREUROTH 5 000 52 52 0.5

BA-L21LS 34 134 197 179 1 HEART8LS 8 44 44 0.5

BA-L49LS 23 769 65 60 1 HYDC20LS 99 35 35 1

BA-L52LS 192 627 280 277 0.1 LUKSAN11LS 100 31 32 1

BA-L73LS 33 753 65 69 0.5 LUKSAN12LS 98 40 38 0.5

BDQRTIC 5000 41 41 0.5 LUKSAN17LS 100 230 187 0.1

BROWNBS 2 4 110 961 0.1 LUKSAN21LS 100 6 284 28 255 1

BROYDN3DLS 5 000 21 21 0.1 LUKSAN22LS 100 64 51 0.1

BROYDN7D 5 000 29 29 0.1 MOREBV 5 000 54 926 > 105 1

BROYDNBDLS 5 000 58 58 1 MSQRTALS 1 024 71 56 0.5

CHAINWOO 4 000 96 42 1 MSQRTBLS 1 024 56 59 0.5

CHNROSNB 50 133 133 0.5 NCB20 5 010 23 22 0.1

CHNRSNBM 50 93 93 0.1 NONDQUAR 5 000 40 401 89 179 1

CRAGGLVY 5 000 56 50 1 NONMSQRT 4 900 54 54 0.1

CUBE 2 > 105 61 1 OSCIGRAD 100 000 81 81 1

CURLY10 10 000 64 56 0.1 OSCIPATH 10 30 30 0.1

CURLY20 10 000 56 56 0.5 PENALTY2 200 730 1 909 1

CURLY30 10 000 57 57 0.5 PENALTY3 200 21 21 0.5

DENSCHNF 2 122 31 0.5 POWELLSG 5 000 65 47 1

DIXMAANE 3 000 24 23 0.1 ROSENBR 2 > 105 332 1

DIXMAANF 3 000 24 23 0.1 ROSENBRTU 2 > 105 85 1

DIXMAANI 3 000 22 22 1 SCURLY30 10 000 252 234 0.1

DIXMAANJ 3 000 23 23 1 SPMSRTLS 4 999 335 268 0.1

DIXMAANM 3 000 773 515 1 SROSENBR 5 000 > 105 55 0.5

DIXMAANN 3 000 711 502 0.5 SSBRYBND 5 000 4 247 11 005 1

DIXMAANO 3 000 589 417 1 SSCOSINE 5 000 3 882 10 414 1

DIXMAANP 3 000 310 305 0.1 TOINTGOR 50 40 44 0.5

EDENSCH 2 000 48 36 1 TOINTGSS 5 000 5 006 5 004 1

EIGENALS 2 550 41 41 0.1 VAREIGVL 50 415 323 0.5

EIGENCLS 2 652 145 170 0.5 VESUVIALS 8 235 > 105 1

ERRINROS 50 2 920 746 1 VESUVIOULS 8 256 > 105 1

ERRINRSM 50 25 807 7 366 0.1 WATSON 12 120 217 0.1

Recall that the BB method was originally designed for solving convex problems in which case

it is guaranteed that αBBk is nonnegative. Since the most of the unconstrained minimization test

problems in the CUTEst collection are nonconvex, we had to adapt the BB method to solving

this kind of problems. In our implementation of the BB method and its stabilized version, we

follow paper [6] in setting

αBBk ← ‖sk‖
‖yk‖

, (4.2)
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whenever αBBk ≤ 0. This makes our algorithms much more robust. Fig. 4.2 presents results

of solving 74 problems from the CUTEst collection. The BB1 and BB2 algorithms failed in 4

and 3 cases, respectively. The plots of the performance profiles introduced in [13] indicate that

the BB2 algorithm is more robust than the BB1. Furthermore, the former algorithm required,

on average, fewer iterations for solving problems. The main reason is that the BB1 algorithm

generates too long steps more frequently. In what follows, we focus on presenting here results

of stabilizing the BB1 algorithm, because it gains more from the stabilization than the BB2

algorithm.

Table 4.3 presents results of solving 70 nonquadratic test problems from the CUTEst col-

lection. We tried only three values of the parameter c in the adaptive choice of ∆ using (4.1),

namely, 0.1, 0.5 and 1.0. The BB1 and BB1stab algorithms were not able to solve problems

during 105 iterations in 4 and 3 cases, respectively. The BB1stab requires fewer number of

iterations in 32 cases, while the BB1 performs better only in 17 cases. In 21 cases, the BB1stab

with the indicated values of c requires the same number of iterations as the BB1.

We made experiments also with directly setting a certain value of ∆ in the BB1stab. The

trial values were 0.01, 0.1 and 1.0. For a few test problems, the results are better than for the

aforementioned adaptive choice with c = 0.1, 0.5 and 1.0. For 22 of 71 problems, the number

of iterations is smaller than in case of the BB1. These results are reported in Table 4.4. The

preselected values of ∆ allowed the BB1stab to solve five problems of those not solved by the

BB1, including problems MOREBV and TQUARTIC, in which the adaptive choice of ∆ failed.

In case of TQUARTIC, the BB1 terminated because of producing NaN (Not a Number) in

Matlab. The experiments with the preselected values of ∆ indicate that there is plenty of room

for improving the very simple adaptive strategy proposed in this paper.

Table 4.4: Numerical results for unconstrained minimization problems from the CUTEst collection,

preselected ∆.

PROBLEM BB1 BB1stab PROBLEM BB1 BB1stab

name n it it ∆ name n it it ∆

BROWNBS 2 4 110 80 1 LUKSAN11LS 100 31 23 1

CHNROSNB 50 133 50 1 LUKSAN17LS 100 230 166 1

CHNRSNBM 50 93 41 1 MOREBV 5 000 54 926 44 712 0.01

CUBE 2 > 105 94 0.1 MSQRTALS 1 024 71 66 0.1

DENSCHNF 2 122 31 1 NONMSQRT 4 900 54 51 1

DIXMAANM 3 000 773 715 1 OSCIPATH 10 30 27 1

DIXMAANO 3 000 589 514 1 ROSENBR 2 > 105 129 0.1

ERRINROS 50 2 920 923 1 ROSENBRTU 2 > 105 664 0.1

ERRINRSM 50 25 807 6 165 0.1 SPMSRTLS 4 999 335 294 1

FLETCBV2 5 000 30 225 25 325 1 SROSENBR 5 000 > 105 206 1

FLETCHCR 1 000 1 892 572 1 TQUARTIC 5 000 F 5 325 0.1

For the BB2stab algorithm, we still tried the same three values of the parameter c in the

adaptive choice of ∆ using (4.1) as for BB1stab. In 77 test problems, the BB2stab performs

better in 25 cases, while the BB2 performs better only in 15 cases. Table 4.5 presents results

for all the cases when the BB2stab requires fewer number of iterations.
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Table 4.5: Numerical results for unconstrained minimization problems from the CUTEst collection,

adaptive selection of ∆.

PROBLEM BB2 BB2stab PROBLEM BB2 BB2stab

name n it it c name n it it c

BA-L21LS 34134 191 187 1 EIGENALS 2550 44 39 0.5

BA-L52LS 192627 358 316 1 EIGENCLS 2652 201 177 0.1

BDQRTIC 5000 41 37 0.1 INDEFM 100000 23 21 1

BROWNBS 2 4110 961 0.1 LUKSAN17LS 100 198 183 0.1

CHNRSNBM 50 54 45 0.1 MSQRTALS 1024 77 72 0.5

DENSCHNF 2 29 28 1 MSQRTBLS 1024 59 58 0.5

DIXMAANE 3000 21 20 0.1 NONDIA 5000 - 10599 0.5

DIXMAANF 3000 24 22 0.1 OSCIPATH 10 26 25 0.1

DIXMAANI 3000 25 20 0.1 PENALTY3 200 22 21 0.1

DIXMAANJ 3000 24 22 0.1 POWELLSG 5000 44 38 0.5

DIXMAANM 3000 610 425 0.1 VAREIGVL 50 490 407 0.1

DIXMAANN 3000 611 448 0.1 WATSON 12 340 170 0.5

DIXMAANO 3000 464 414 0.1

5. Conclusions

In the present paper, it was proposed to stabilize the conventional BB method by virtue of

bounding the distance between sequential iterates. The purpose was to improve its convergence,

when it is affected by too long steps ‖αBBk gk‖, and also to make the BB method convergent,

when it fails to converge. Both a theoretical and numerical study of the stabilized version

was conducted. We have proved that the stabilization provides the BB method with a global

convergence without recourse to using any line search. The numerical results presented here are

highly encouraging. The proposed very simple adaptive selection of ∆ was able to successfully

trap a value which is appropriate for each specific problem. However, we hope that this paper

will stimulate development of more efficient algorithms for adaptive selection of ∆.
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