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Abstract. R-function is a widely used tool when considering objects obtained
through the Boolean operations start from simple base primitives. However, there is
square root operation in the representation. Considering that the use of splines will
facilitate the calculations within the CAD system, in this paper, we propose a system
of R-functions represented in spline form called Spline R-function (SR). After trans-
forming the function ranges of two base primitives to a new coordinate system, a
series of sign constraints following a specific Boolean operation are derived and the
spline R-function can be formulated as a piecewise function. Representation of SR
in both Bézier form and B-spline form have been given. Among which the Bézier
ordinates are determined with the help of the B-net method through setting up a
series of relations according to the sign constraints and properties of R-functions.
The construction processes for both Boolean intersection and union operations with
different smoothness are discussed in detail. Numerical experiments are conducted
to show the potential of the proposed spline R-function.
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1. Introduction

Recent years have witnessed a rapid development of 3D printing together with the
related studies derived in topics such as modeling and analysis [1–7]. Due to the several
modeling requirements of 3D printing, implicit representation forms an ideal choice
for such technology. Implicit representation possesses a natural point classification
(i.e., inside/outside the geometry) and enables various topologies, which is convenient
to describe the slicing structures of different objects [8, 9]. These properties among
others have increased the attention for using the implicit form to model geometries
for 3D printing [10–12]. In the context of implicit solids and function representation,
Constructive Solid Geometry (CSG) is adopted in the modeling process for objects with
complex structures (e.g., [13,14]).
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CSG is a technique used to get complex solid objects starting from simple primitives
by a series of Boolean operations (union, intersection and difference) [15]. Sophisti-
cated objects are produced by combining a relatively small number of primitives such
as spheres, cones and cuboids. The primary tool used when dealing with Boolean
operations in the literature is the R-function, which is employed to produce the final
algebraic representation [16,17].

V. L. Rvachev, originally introduced R-functions, or Rvachev functions, in the 1960s
by combining logic, geometry and analysis under a unified framework [17, 18]. The
method gives an algebraic representation for shapes obtained from the combinations
of simple shapes through set-theoretic operations. Since then, the related theory, as
well as the applications, have been extensively explored [19–22]. R-functions are ap-
plied in many areas including computer graphics, engineering design, analysis and
optimization [23–26]. In geometric modeling, R-functions are used when construct-
ing objects with complex structures (e.g., in [13, 16]). Moreover, these functions are
adopted to define the geometry when solving boundary-value problems in computa-
tional physics [18,27,28].

Among different systems of R-functions, R0-function is the most popular one re-
garding applications [17, 18]. In [19], higher smoothness of R-functions has been
attained by developing a generalized Rm0 system. However, there are square root op-
erations in such representations. Furthermore, addition and multiplication are not
enough to construct R-function systems of polynomials that are sufficiently complete.
According to [19], a sufficiently complete system do not need to use the root opera-
tion and R-functions can be constructed from piecewise polynomials without the need
for the root operation. This leads to a good direction to present systems that includes
complete Boolean operations and avoids the square root operations at the same time.

In the Computer-Aided Design (CAD) system, the dominant geometrical represen-
tation uses spline functions [29]. The growing interest in splines is due to their simple
implementation and nice properties. Different types of splines have been introduced
in the recent years with various studies for their proprties [30–33]. In this paper, a
R-function system represented in spline form is proposed. The starting point is based
on the definition of R-function, where specific Boolean operations have fixed signs that
depend on the signs of their base primitives. Afterward, a straightforward procedure
to map such fixed signs into a new coordinate system is conducted. One of the motiva-
tions for this work is to adopt such simple mapping in order to represent the R-function
by splines. Moreover, the composition operation with splines is also convenient and
can be handled well by the de Boor algorithm [29]. A detailed construction of spline
R-function is presented for both Boolean intersection and union operations. In each
case, different smoothness are illustrated to indicate the simplicity and practicality of
the new mechanism. Results show that this new system of R-functions satisfies the
requirements of the original R-functions. Additionally, the proposed spline R-functions
prevent the ambiguity zeros inside the interior of the domain since no singularities
appear in the representation.

The remainder of the paper is organized as follows. Section 2 presents the pre-
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liminary information, including R-functions, the B-net method, B-splines and a brief
introduction of WEB-Spline FEM. Section 3 is dedicated to the construction of spline
R-function. Experimental results and comparisons are presented in Section 4. Finally,
Section 5 concludes the paper and suggests possible future topics.

2. Preliminaries

In this section, we review the definition of R-functions with some properties as
mentioned in [17, 18]. Also, we briefly review the core ideas related to B-net method,
B-splines and the finite element solution structure for WEB-splines due to their re-
lationship with the topic presented in this work. The interested reader is referred
to [25,29,30,34,35] and references therein for more details on such topics.

2.1. R-function

In this subsection, we recall the definition of the R-function and some accompanying
properties as mentioned in [18]. A standard R-function can be defined as follows:

Definition 2.1 ([18]). A function y = f(x1, · · · , xn) is called an R-function if in the
specification of a group, the signs of its arguments completely determine the function sign,
i.e., if there exists a Boolean function Y = F (X1, · · · , Xn) that determines the dependence
of the sign of function f(x1, · · · , xn) on the group of the signs of its arguments. Namely, if

S2(x) =

{
0, x < 0,
1, x > 0,

then

F (S2(x1), S2(x2), · · · , S2(xn)) = S2(f(x1, x2, · · · , xn)).

F is called an accompanying function for f .

Following the definition, the sign of the real-valued function will stay unchanged
unless the arguments change signs.

Now, given two base primitives x and y represented by inequalities of implicit func-
tions, it should be clear that the R-function is not unique and exhibits a rich variety
of differential properties. Several systems of R-functions constructed by the founder
of the theory are used in various applications, such as the work in [13, 16, 18–20, 36].
There exists a system of R-functions that is defined as follows:

Rα :
1

1 + α
(x+ y ±

√
x2 + y2 − 2αxy),

where α = α(x, y) is an arbitrary continuous function satisfying −1 < α(x, y) ≤ 1 and
(±) indicates the formulation for the Boolean intersection (−) and union case (+),
respectively.
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By setting different values for α, we get different systems of Rα-functions. Among
them, the R0 and R1 functions are the most widely used ones in applications. The two
functions are defined respectively such that:

R0 : x+ y ±
√
x2 + y2,

R1 : x+ y ± |x− y|, (i.e., min(x, y),max(x, y)).

In both cases, the existence of derivative is not always guaranteed. For example, while
R1 has the simplest form, yet it is not differentiable along the line x = y. Likewise,
R0 is not differentiable when x = y = 0. R0 is more usable in practice because of its
higher smoothness than R1.

In [37], a modified R0 function is proposed and to overcome the differentiation
weakness of the original R0 and increases the smoothness. The differentiation prop-
erties of the function is discussed further in [20]. Rm0 is m-times differentiable every-
where and can be defined as

Rm0 : (x+ y ±
√
x2 + y2)(x2 + y2)

m
2 , m is any even positive integer.

Another type of generalized R-functions discussed in [20] and references therein. Rp
can be written as:

Rp : x+ y ± (xp + yp)
1
p , p is an even positive integer.

The several types of R-functions are used in many areas of applications due to
their mathematical properties and the natural ability to represent complex geometri-
cal models. Partial differential equations are a crucial part of engineering problems
where R-functions can serve as a tool to model sophisticated geometries before solving
the related Dirichlet boundary problems. For example, the R-function Method (RFM)
introduced in [21,22] proposes a solution structure to satisfy the exact boundary con-
dition. Also, in the Weighted Extended B-spline Method (WEB) [25, 35], R-function
is adopted as the weight function when concerning problems over complex domains.
Moreover, in artificial intelligence, R-functions can be used in pattern recognition [26]
to handle design specifications. Additional details of R-function and its applications
can be found in [17,19] and the references therein.

2.2. B-net method

When considering multivariate splines, the B-net method is considered one of the
most important approaches especially after G. Farin [29] established the relationship
between smoothness conditions and the Bézier coordinates. In this subsection, we
briefly describe the B-net method. For a more detailed discussion, the interested reader
can turn to [38].

Let f1(x, y) and f2(x, y) be two functions with bidegree (m,n), defined over two
adjacent domainsD1 andD2, respectively, whereD1 = [x0, x1]×[y0, y1], D2 = [x1, x2]×
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Figure 1: The Bézier ordinates of two biquadratic polynomials.

[y0, y1]. Then they can be represented in the Bernstein-Bézier form as [39]:

fl(x, y) =
m∑
i=0

n∑
j=0

blijB
m
i

(
x− xk−1

xl − xl−1

)
Bn
j

(
y − y0

y1 − y0

)
, (2.1)

where Bm
i (t) and Bn

j (t) are the Bernstein polynomials, {bli,j , l = 1, 2} are called the
Bézier ordinates of f1(x, y) and f2(x, y), respectively.

It is well known that f1(x, y) and f2(x, y) are r-time differentiable across their com-
mon boundary if and only if

1

(x1 − x0)i
∆i,0b1m−i,j =

1

(x2 − x1)i
∆i,0b20,j , (2.2)

where j = 0, · · · , n, i = 0, · · · , r,∆i,0bj,k = ∆i−1,0bj+1,k−∆i−1,0bj,k with ∆0,0bj,k = bj,k.
Fig. 1 shows an example to illustrate the geometric meaning. Two biquadratic

Bézier functions are defined over adjacent domains, which are shown with markers
of blue circle and green square, respectively. Following the Eq. (2.2), if f1(x, y) and
f2(x, y) are C1 continuous across their common boundary, then the 2nd column of the
circular ordinates should be coincide with the 0th square ordinates and the 1st square
ordinates are determined by the 1st and 2nd ordinates of the circular ordinates.

2.3. B-splines

Definition 2.2 (B-spline Basis Function). Let T = {t0, · · · , tn+k} be a nondecreasing
sequence of real numbers, i.e., ti ≤ ti+1, i = 0, · · · , n+ k − 1. The ti are called knots and
T is the knot vector. The ith B-spline basis function of order k (of degree k − 1) defined
recursively using the Cox-de Boor recursion formula [30] is as follows :

N1
i (t) =

{
1, for ti ≤ t < ti+1,
0, otherwise,

(2.3)

for k = 1 and

Nk
i (t) =

t− ti
ti+k−1 − ti

Nk−1
i (t) +

ti+k − t
ti+k − ti+1

Nk−1
i+1 (t), (2.4)

for k > 1 and i = 0, 1, 2, · · · , n.
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Several basic properties of B-spline basis function [30] related are listed below:

(a) Local support: Nk
i (t) ≡ 0, t /∈ [ti, ti+k).

(b) Nonnegativity: Nk
i ≥ 0, ∀t, i, k.

(c) Partition of unity:
n∑
i=0

Nk
i (t) ≡ 1, t ∈ [tk−1, tn+1].

(d) Smoothness: Nk
i (t) is Ck−mj−1 at t = tj , where mj is the multiplicity of tj in the

knot vector.

Definition 2.3 (B-Spline Functions). A B-spline function is made up of the linear combi-
nations of the products of B-spline basis functions and control points as follows:

F (t, s) =
m∑
i=0

n∑
j=0

dijN
k1
i (t)Nk2

j (s) , (2.5)

where k1 and k2 are the orders of B-spline basis in two directions and the knot vectors are
T = {t0, t1, · · · , tm+k1+1}, and S = {s0, s1, · · · , sn+k2+1}, respectively.

Notice that the control points of B-splines have a close relation with the Bézier
ordinates: If one extract Bézier patches from a given B-spline surface, then the obtained
coefficients are just the corresponding Bezier ordinates on that patch.

2.4. WEB-Spline FEM

The WEB method was proposed in 2001 by K. Höllig and coworkers [35] to over-
come the mesh generation difficulty in standard FEM. The WEB method introduces a
new weighted extended finite element space. The basis functions used in the analysis
part are weighted extended B-splines (WEB-splines) that work on a tensor product grid
enclosing the domain of interest and attain all basic properties required by finite ele-
ment formulations [40]. Many considerable advantages are presented in WEB method
such as the accurate approximations with relatively smaller number of elements, the
arbitrary smoothness that is related to the order of B-splines chosen, the simplicity of
the uniform grid and most importantly is omitting the time consuming mesh genera-
tion. The utilization of a regular grid eliminates the need for a prepossessing step and
allows an efficient employment of the related algorithms [25].

To overcome the imposition of the Dirichlet boundary conditions that usually occur
when solving problems on regular grids, the WEB method proposes a weight function
to model the homogeneous boundaries and to strongly impose the boundary condi-
tions. For complex domains, R-functions are used to model the computational domain.
The use of R-functions have proven to be very successful for representing sophisticated
geometries for analysis in the framework of WEB method. At the same time, the WEB
method revealed the powerful properties of R-functions when representing sophisti-
cated geometries for problems solved by the finite element method.
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In this subsection, we briefly recall the related basis functions for analysis in the
WEB method [25, 35]. Let us consider the following Poisson’s problem with Dirichlet
boundary conditions as a model problem:{

−∆u(x) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(2.6)

where Ω ⊂ Rd is a bounded domain defined by w(x) :

Ω := {x|w(x) ≥ 0, x ∈ Rd}, d = 2, 3.

The weak form of problem (2.6) is: find u ∈ H1(Ω), u|∂Ω = 0, such that, for all v ∈
H1

0 (Ω),
a(u, v) = f(v),

where a(u, v) =
´

Ω∇u · ∇vdΩ and f(v) =
´

Ω fvdΩ.

The numerical solution in WEB is uh =
∑
i
aiBi, where the weighted extended B-

spline basis has the form

Bi =
w

w(xi)

[
bi +

∑
j∈J(i)

ei,jbj

]
, i ∈ I, j ∈ J,

where I and J are the sets saving the inner and outer basis index, respectively. w is
the weight function, bi and bj are inner and boundary splines, respectively and ei,j
represents the extension coefficients.

Fig. 2 gives a two-dimensional example, where the domain Ω is highlighted and its
boundary is defined by w(x) = 0. Higher dimensional cases are direct generalization
of the two dimensional case. The B-spline bases are constructed over a rectangular
domain enclosing the domain, where uniformly distributed knots are selected in two
directions (repeated knots are used at the ends of knots). Within the knots in two
directions, the rectangular domain has been partitioned into small grids, as the dashed
lines depicts in Fig. 2. The overall grid is called the background grid and the smallest
grid is a cell. The grid cells can be partitioned into three types: interior, boundary and
exterior cells. The cells fully inside (outside) the domain are interior (exterior) cells,
while the cells partly inside the domain are called boundary cells.

In WEB method, only B-spline basis whose support intersects the domain is con-
sidered. The relevant B-spline bases will be classified into inter B-splines and outer
B-splines. The rule to clarify the type of a B-spline basis, is to count the numbers of
interior cells in the support of the basis. If there is at least one interior cell inside the
support of the B-spline basis, then it is an inner B-spline basis; or else, it is an outer B-
spline basis. As shown in Fig. 2, the relevant B-spline bases are marked with small dots
at the lower-left corner of their corresponding supports. Different colors of dot marks
indicate the classification of the biquadratic B-spline bases: the inter B-splines in black
and the outer B-splines in white. Specially, bi and bj are inter and outer B-spline bases,
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supp bi

supp bj

Figure 2: Classification of biquadratic B-splines in WEB method.

respectively. The supports of the two bases are highlighted, from which the types are
obtained directly from the numbers of interior cells in each basis’s support.

For smooth solutions, the authors have given the theoretical error estimate for WEB
spaces and can be found in [25].

For the WEB method, the weight function is a smooth function that depicts the
domain. That is, the function value is positive inside the domain, negative outside
the domain and vanishes on the boundary ∂Ω. Moreover, it also plays the role of the
weight function in the numerical solution to exactly satisfy the boundary conditions.
R0 function has been used to describe complex domains composed by simple base
primitives.

In this paper, we use the proposed spline R-function to represent complex domains
for partial differential equations solved under the WEB method framework. The spline
R-function is consistent with CAD representations and provides a new connection be-
tween the geometry and analysis parts in the finite element scheme. In addition to
the geometrical advantages,the spline R-function serves as a mediator to an automatic
transfer from the CAD geometry to an immediate finite element analysis.

3. Method

In this section, we discuss in detail the construction process for the spline R-function.
To start, recall the problem of constructing a shape using the Boolean operations for
2D objects as follows:

Let u = {(x, y)|f1(x, y) ≥ 0} and v = {(x, y)|f2(x, y) ≥ 0} be two base primitives.
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Now our task is to get the representation for the shape after taking the Boolean opera-
tion (intersection ∩ or union ∪) over the two primitives. That is, to derive an implicit
function J(x, y) for the shape of u ∩ v or u ∪ v, such that, the set {(x, y)|J(x, y) ≥ 0}
exactly depicts the shape.

In contrast to the classical R0 system, the real function J(x, y) in our construction
is represented in a composed spline form as shown in Section 3.1.1. For convenience,
we use SR as the abbreviation for the constructed spline R-function. Note that since
both primitives are defined by implicit functions, the difference operation can be ob-
tained easily through the Boolean intersection operation. For example, considering two
primitives A and B defined by implicit functions, the object produced by the difference
A − B can also be produced by the intersection of A and the complement of B in the
domain. Therefore, only intersection and union operations are considered here.

3.1. SR construction process

Before we proceed to consider the specific Boolean operation, let us first go over
the main assumption for the construction of SR. Spline R-function for both Boolean
intersection and union operations will commit to the same function range selection
below.

We assume that the function for both primitives are inside [−1, 1]. If this is not the
case, a simple scaling process is applied. This does not affect the result since an implicit
form is used and thus, w = 0 and cw = 0, c > 0 ∈ R lead to the same contour curve.
The domain is preserved to be the same after the scaling operation.

3.1.1. Function representation

Let t := f1(x, y) and s := f2(x, y), a new two-dimensional Cartesian system is con-
structed, by setting t as the horizontal axis, s as the vertical axis and the intersection
of s = 0 and t = 0 as the origin O. According to the definition of R-function, it can
be found that the sign constraints of J(x, y) are consistent with the correct signs of
F (t, s) in the new coordinate system. Hence, we can define J(x, y) with the following
formula:

J(x, y) := F (t, s) = F (f1(x, y), f2(x, y)). (3.1)

To clarify the correspondance of sign constraints, we take the Boolean intersection
operation as an example. Let the two primitives u and v defined implicitly above be
two circles, respectively. As shown in Fig. 3, the circles are intersected and the domain
is partitioned into four regions I–IV. Our goal is to get an implicit representation J(x, y)
for the intersection of the circles.

By definition, J(x, y) shall be zero along the boundary of the region I, be posi-
tive inside and negative outside. Notice that for the region I, we have f1(x, y) ≥ 0,
f2(x, y) ≥ 0 and J(x, y) ≥ 0. If we consider the above relations in the newly con-
structed tOs plane, then the region I corresponds to the first quadrant, where J(x, y) ≥
0. In other words, in the first quadrant, there is F (f1(x, y), f2(x, y)) = F (t, s) > 0.



Spline R-Function and Applications in FEM 159

u

v
I II

III

IV

i

Figure 3: An example for composite view of sign constraints for Boolean operations.

O 1

1

−1

−1

F (t, s) > 0F (t, s) < 0

F (t, s) < 0 F (t, s) < 0

t

s

1

Figure 4: Sign constraints for ∩ in composite view.

O 1

1

−1

−1

F (t, s) > 0F (t, s) > 0

F (t, s) < 0 F (t, s) > 0

t

s

1

Figure 5: Sign constraints for ∪ in composite view.

Similarly, The region II–IV correspond to the quadrants II–IV, separately. The sign con-
straints for union operation can be set following the same fashion. In this way, the
original SR problem can be solved by constructing functions with sign assignments on
the composed tOs plane.

Fig. 4 and Fig. 5 highlight the sign constraints for the Boolean intersection and
union operations, respectively. The function composition is considered as a special case
of a binary relations. Consequently, SR is formulated by spline functions following the
corresponding sign constraints. The specific construction procedure is discussed with
more details in Section 3.1.2.

Representation of SR in both Bézier form and B-splines will be considered. For
SR represented in Bézier form, the B-net method is utilized on tOs plane. Although
the SR-function can be applied to any arbitrary bidegree, we restrict our discussion to
SR with bidegrees (n, n), n = 1, 2, 3. The Bézier ordinates at each quadrant can be
determined by applying the convex-hull property and the end-interpolation property
of the Bézier function. For SR represented in B-spline form, we use tensor-product B-
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spline function on tOs plane. Since both the Bézier form and the B-spline form yield
the same representation of SR, for B-spline case we just give an overall description. In
general, the main difference between the Bézier and B-spline approach is the way the
continuity constraints enforced.

3.1.2. SR Criteria setting

Let us first consider the criteria for SR represented in Bézier form. Following the related
constraints of classical R-function, a group of criteria for constructing SR are obtained.
To facilitate the later descriptions, these criteria are summed up and listed below:

(a) Sign assignments: including both axes and quadrants.

(b) Commutation: F (t, s) = F (s, t).

(c) The continuity between the four Bézier segments.

Criterion (a) is natural following the definition of R-function. As mentioned before,
the constructed SR should have correct signs both at different axes and quadrants for
both intersection and union operations. Take the constraints for the Boolean intersec-
tion operation in Fig. 4 as an example, F (t, s) has positive sign in the first quadrant
in the new coordinate system and negative in the other three. To conserve the exact
boundary after the Boolean operation, F (t, s) shall be zero at the positive half axes
while be strictly negative at the negative half axes.

Criterion (b) is required because SR should not be affected by the input sequence
of the two primitives. Take the bicubic SR in Fig. 6 as an example, where there are

O 1

1

−1

−1

t

s

b10,0b20,0

b30,0 b40,0

b11,0b21,0

b31,0 b41,0

b12,0b22,0

b32,0 b42,0

b13,0b23,0

b33,0 b43,0

b10,1b20,1

b30,1 b40,1

b11,1b21,1

b31,1 b41,1

b12,1b22,1

b32,1 b42,1

b13,1b23,1

b33,1 b43,1

b10,2b20,2

b30,2 b40,2

b11,2b21,2

b31,2 b41,2

b12,2b22,2

b32,2 b42,2

b13,2b23,2

b33,2 b43,2

b10,3b20,3

b30,3 b40,3

b11,3b21,3

b31,3 b41,3

b12,3b22,3

b32,3 b42,3

b13,3b23,3

b33,3 b43,3

1

Figure 6: The Bézier ordinates at different quadrants on tOs plane (the bicubic case).
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(3 + 1)2 = 16 Bézier ordinates in each quadrant. As the dashed left diagonal shows,
it partitions the Bézier ordinates into two groups according to this criterion. Thus, the
unknown ordinates will be mostly reduced by a half.

Criterion (c) originates from the function continuity of SR. For SR with bidegree
(m,n), the smoothness along the common axis between every pair of the adjacent
quadrants are Cm−1,n−1. In Fig. 6, the bicubic SR is constructed and a C2,2 smoothness
is satisfied along the common axes between different quadrants. With Eq. (2.2), the
related constraints can be attained to determine the Bézier ordinates in each quadrant.

Given the surface degree, not all the exact values of the coefficients can be deter-
mined following the above criteria. Those remaining coefficients are to be determined
with some freedom. To describe the details clearly, SR in Bézier form for both the
Boolean intersection and union operations are discussed in the remainder of this Sec-
tions 3.2–3.3.

In general, the same construction mechanism can be adopted to express the SR-
function using B-splines. Criterion (c) will be automatically satisfied by the continuity
of the B-spline functions, so only Criteria (a) and (b) need to be considered. Repre-
sentation using B-splines will lead to a representation with the same numbers of free
variables as representation in Bézier form and will represent the same SR. The process
of constructing SR in B-spline form is given at Section 3.4.

3.2. SR in Bézier form for Boolean intersection operation

This subsection considers the construction of SR for shapes derived from the Boolean
intersection (w = u∩ v). To simplify the illustration, we use separated notations to de-
note the Bézier functions at each quadrant on tOs plane. Following the notation of the
B-net method (2.1), the SR is defined as follows:

F (t, s) =



I1(t, s) =
m∑
i

n∑
j

b1ijB
m
i (t)Bn

j (s) , if (t, s) ∈ [0, 1]× [0, 1],

I2(t, s) =
m∑
i

n∑
j

b2ijB
m
i (t+ 1)Bn

j (s) , if (t, s) ∈ [−1, 0)× [0, 1],

I3(t, s) =
m∑
i

n∑
j

b3ijB
m
i (t+ 1)Bn

j (s+ 1) , if (t, s) ∈ [−1, 0)× [−1, 0),

I4(t, s) =
m∑
i

n∑
j

b4ijB
m
i (t)Bn

j (s+ 1) , if (t, s) ∈ [0, 1]× [−1, 0).

(3.2)

Depending on Criterion (a), the function values of F (t, s) for the Boolean intersection
operation is positive in the first quadrant and negative in other three quadrants as
discussed in Subsection 3.1.1. The corresponding sign constraints in the four quadrants
are shown below in Expressions (3.3a) and (3.3b)

I1(t, s) > 0, I2(t, s) < 0, (3.3a)

I3(t, s) < 0, I4(t, s) < 0. (3.3b)

As to the sign constraints on the axes, two cases exist. On one hand, since the boundary
of u∩v should be exactly preserved, the values at the points along the positive half axes
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should be zero. On the other hand, function values should have strictly negative signs
along the negative half axes. Expressions (3.4a)–(3.4d) show the function relations on
the four half axes:

I(t, 0) = 0, t ∈ [0, 1], (3.4a)

I(0, s) = 0, s ∈ [0, 1], (3.4b)

I(t, 0) < 0, t ∈ [−1, 0), (3.4c)

I(0, s) < 0, s ∈ [−1, 0). (3.4d)

Criterion (b) requires that F (t, s) = F (s, t). Depending on this stipulation, Expressions
(3.5a)–(3.5c) show the corresponding relations. Notice that when (t, s) is in the second
quadrant, the corresponding function of I2(t, s) is I4(s, t)

I1(t, s) = I1(s, t), t > 0, s > 0, (3.5a)

I2(t, s) = I4(s, t), t < 0, s > 0, (3.5b)

I3(t, s) = I3(s, t), t < 0, s < 0. (3.5c)

Given the surface degree, Criterion (c) is considered in a case by case manner. The
specific SR required is then derived after employing all the criteria.

3.2.1. Bilinear case

According to the B-net method, there are four Bézier ordinates at each quadrant for
the bilinear SR. Criterion (c) indicates C0,0 smoothness along the positive axes. Ac-
cording to Formula (2.1) of the B-net method, relations between the Bézier ordinates
in different quadrants are derived. That is,

b21,j = b10,j , j = 0, 1, b4j,1 = b1j,0, j = 0, 1, (3.6a)

b3j,1 = b2j,0, j = 0, 1, b31,j = b40,j , j = 0, 1. (3.6b)

For Expressions (3.5a)–(3.5c), half of the Bézier ordinates need to be determined. From
Expressions (3.4a), (3.4b) and (3.6a), it can be obtained that all the Bézier ordinates
appear in (3.6a) are valued zero. Furthermore, concerning (3.6b), only b11,1, b41,0, b40,0
and b30,0 are left to be assigned. These free variables can be set following the correct
signs according to (3.3a), (3.3b), (3.4c), (3.4d). In this way, we get the bilinear SR for
the Boolean intersection operation.

3.2.2. Biquadratic case

For biquadratic SR, we have C1,1 smoothness along four half axes. Following Formula
(2.1), the relations considering the C1,1 smoothness are listed below:

b21,j = b10,j , j = 0, 1, 2, b4j,1 = b1j,0, j = 0, 1, 2, (3.7a)
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b3j,1 = b2j,0, j = 0, 1, 2, b31,j = b40,j , j = 0, 1, 2, (3.7b)

2b3j,2 = b3j,1 + b2j,1, j = 0, 1, 2, 2b32,j = b31,j + b41,j , j = 0, 1, 2, (3.7c)

2b22,j = b21,j + b11,j , j = 0, 1, 2, 2b4j,2 = b4j,1 + b1j,1, j = 0, 1, 2. (3.7d)

Combining all the relations of Expressions (3.3a)–(3.5c) and (3.7a)–(3.7d), some Bézier
ordinates are determined to have values zero. In addition, it can be found that the
Bézier ordinate b11,1 in the first quadrant has the same value as b31,1 at the third quad-
rant. However, it conflicts with the relations obtained from Expressions (3.3a) and
(3.3b). Since they should have the opposite signs because of the sign constraints.
Thus, b11,1 = b31,1 = 0. Expressions (3.7a) and (3.7d) indicate that the Bézier ordinates
are valued zero. The final free ordinates to be determined are b12,2, b12,1, b40,0, b41,0, b42,0
and b30,0. Correct sign assignments will lead to a sample of biquadratic SR. Moreover, it
is guaranteed that the final representation preserves the inner region.

3.2.3. Bicubic case

When concerning the bicubic SR for Boolean intersection operation, the relations for
C2,2 continuity can be derived analogously. However, we do not list the lengthy rela-
tions here.

After applying relations (3.3a)–(3.5c) to the definition of SR in (3.2), several ex-
act values and ranges of some coefficients are derived. During the solving process
and similar to the biquadratic case, there exists some difficulty during the process for
determining other Bézier ordinates of the bicubic SR. In some cases, there are rela-
tions indicating an ordinate with the opposite signs in the same quadrant. In order to
overcome this problem, we set that ordinate to be zero. In this way, the numbers of
unknown Bézier ordinates can be further reduced.

To get the final representation, additional information about the remained free
Bézier ordinates shall be imposed. This can be achieved by simply assigning the correct
sign for each parameter. Although no unique values for those Bézier ordinates, the
correct signs of coefficients guarantee that the SR is well-defined.

3.3. SR in Bézier form for Boolean union operation

The above subsection illustrates the process of constructing SR with different
smoothness for the Boolean intersection operation. Now let us consider the case of
SR for Boolean union u ∪ v. Considering the same group of symbols, the construc-
tion process is completely analogous. That is, to find the relations between the Bézier
ordinates, according to the criteria (a)–(c).

Considering Criterion (a), we know that F (t, s) should have negative sign if the
point (t, s) is in the third quadrant and have positive sign if (t, s) is in other three
quadrants. The sign constraints at each quadrant for the union case can be labeled in
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the following form:

I1(t, s) > 0, I2(t, s) > 0, (3.8a)

I3(t, s) < 0, I4(t, s) > 0. (3.8b)

Notice that the boundary curve of t ∪ s should still be zero, the function values on the
negative half axes are zero, while the values on the positive half axes shall have positive
signs. This leads to the following Expressions:

I(t, 0) > 0, t ∈ [0, 1], (3.9a)

I(0, s) > 0, s ∈ [0, 1], (3.9b)

I(t, 0) = 0, t ∈ [−1, 0), (3.9c)

I(0, s) = 0, s ∈ [−1, 0). (3.9d)

The relations following Criterion (b) is the same as the intersection case.
Subsequent to all the relations shown in Expressions (3.5a)–(3.5c) and (3.8a)–

(3.9d), several ordinates are determined uniquely under the same token. To determine
other Bézier ordinates, the main tool is the continuity of SR. If bilinear SR is considered,
C0,0 continuity is satisfied along the four half axes. Since in each quadrant there are
four Bézier ordinates, applying all the relations above, only b11,1, b11,0, b41,0 and b30,0 are
remained to be assigned. With simple sign assignment, we get the bilinear SR. For
biquadratic and bicubic SR, there are relations as in the Boolean intersection case,
where there exist ordinates that have signs that do not align with each other. This
will facilitate the determination of these free ordinates. As previously mentioned, the
corresponding coefficients can be determined by assigning the correct signs.

3.4. SR in B-spline form for Boolean operations

For SR represented in B-spline form, we construct tensor product B-spline function
F (t, s) on the composed tOs plane with specific degrees and the corresponding knot
vectors, where t and s are the same with that in the Bézier case. Let us assume that in
each direction, the order is k (degree + 1) and the associated knot vector is

T = {−1, · · · ,−1︸ ︷︷ ︸
k

, 0, 1, · · · , 1︸ ︷︷ ︸
k

},

then the function can be formulated as follows:

F (t, s) =
k∑
i=0

k∑
j=0

dijN
k
i (t)Nk

j (s) , (t, s) ∈ [−1, 1]× [−1, 1]. (3.10)

As an example, we construct SR in B-spline form for Boolean intersection operation.
Following Criterion (b), we obtain the symmetric relations between coefficients. Since
we use the same groups of knot vectors, the symmetry of the coefficients with axis
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t−s = 0 are observed from Expressions (3.5a)–(3.5c). Thus, just half of the coefficients
need to be determined. According to Criterion (a), we need to consider the constraints
on both axes and quadrants. Only conditions in Expressions (3.3a), (3.3b), (3.4a) and
(3.4d) need to be implemented. The corresponding relations are obtained by solving
the related equations and inequalities following the above criteria.

Now, let us set k = 2 and consider representation in the bilinear B-spline form.
The knot vectors in both t and s directions are set to be T = {−1,−1, 0, 1, 1}, so the
function becomes:

F (t, s) =

2∑
i=0

2∑
j=0

dijN
2
i (t)N2

j (s) , (t, s) ∈ [−1, 1]× [−1, 1]. (3.11)

After applying Criterion (b), Expressions (3.3a), (3.3b), (3.4a) and (3.4d) are con-
sidered. The relations between the coefficients are derived by solving the equations
and inequalities and the final free coefficients are: d0,0, d1,0, d2,0, d2,2, each with an
inequality constraint on the function sign.

For the formulation of SR for the Boolean union operation in B-spline form, in view
of the choice of knots and degrees in two directions, we get the function F (t, s) (3.10)
with symmetry in t and s. It can be observed that on the tOs plane, the required
sign constraints for the union case can be fulfilled by mirroring the coefficients in the
intersection case around the axis t + s = 0. The construction for SR with B-splines for
other degrees can be constructed in the same fashion.

It has been proved in [18, 19] that the system is complete once the companion
Boolean operations are complete. The completeness of the SR-function presented in
both Bézier form and B-spline form in this paper can be confirmed in the same way
by adopting the steps presented for both intersection and union operations to get the
resulting SR representation.

4. Numerical examples

In this section, we present several computational experiments to illustrate the use
of SR when solving partial differential equations. For demonstration purpose, we solve
the Poisson equation in (2.6) using the WEB method [25]. Considering the equivalence
between the two forms of SR, the Bézier form is tested.

The domain Ω ⊂ Rd in each example is a bounded domain defined by the SR-
function w(x),x ∈ Rd and compared to the case where the weight function is con-
structed using R0- function. Following the theory of the WEB method [25], the numer-
ical solution for the Poisson equation is uh =

∑
i
aiBi, where Bi is the WEB basis.

Four examples are presented on two-dimensional and three-dimensional domains.
For two-dimensional problems, SR are constructed for intersection, union and iterated
Boolean operations, respectively. To be more specific, a benchmark example of an
annular domain is tested in the first example. An interesting union example is then
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used to test the robustness of the SR, where the primitives have different topological
features. Afterwards, a complex shape is constructed to examine the practicability of
SR. For the three-dimensional problem, we examine the union operation to observe
the behavior of SR. The exact solutions are explicitly given for all examples in order to
assess the quality of the numerical solution produced in each example and to simplify
the weight function comparisons.

Example 4.1. In this example, we examine the SR for the Boolean intersection op-
eration. We consider an annular domain with circles of the same center but dif-
ferent radii. As illustrated in Fig. 7(a), the positive part of the cubic SR is high-
lighted to show the computational domain. Here d = 2, set x = (x, y) ∈ R2. Let
t = 0.42 − (x− 0.5)2 − (y − 0.5)2 and s = 0.12 − (x− 0.5)2 − (y − 0.5)2 be the implicit
representations of the two circles, respectively. Then the domain can be obtained by
the Boolean intersection operation of t and −s, where the corresponding cubic SR is
constructed directly following Section 3. The right-hand side f in the model problem
(2.6) is constructed so that the exact solution is

u(x) = sin(t(x) · s(x)).

Let 2l be the grid partition of the background grid in each direction, k be the degree
of basis function for each variable, the relative L2 errors with l = 8, k = 3 for the
numerical solution where the weight function uses SR are shown in Fig. 7(b). From the
results, we note that the larger errors exist near the boundary, which is consistent with
the theoretical predictions for WEB method. Many factors lead to the larger error near
the boundaries for approaches solving partial differential equations on structured grids,
including the basis functions with small support inside the computational domain and
the numerical integration related. For more details, the interested reader is referred
to [25,41] for a detailed discussion on this topic.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Annular domain (b) Local error for the numerical solution

Figure 7: Domain and solution local errors using SR in the 2D annular domain in Example 4.1.
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(a) Relative L2 errors of annular domain
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(b) Convergence rates for annular domain

Figure 8: The relative L2 errors (left) and convergence rates (right) for two-dimentional annular domain
with weight function constructed by SR. Lines in different colors correspond to B-spline degrees k = 1, 2, 3,
respectively. The grid width h = 2−l, l = 1, · · · , 8.

Fig. 8(a) depicts the relative L2 errors under different degrees and different grid
sizes. It can be observed that the decrease of error complies with the theoretical pre-
dictions, i.e., the convergence rate is degree + 1. As illustrated in Fig. 8(b), the con-
vergence rate for each bidegree is consistent with the analysis presented in [25,35] for
L2 norm as the grid width h becomes smaller. Depending on the results, we conclude
that the constructed SR satisfies the basic conditions required by R-functions and can
be applied successfully to this type of problem.

Example 4.2. The domain Ω for this example is produced by the union of two primi-
tives with different topologies. Fig. 9(a) and 9(b) show the two primitives defined by
implicit functions, respectively. The union domain Ω is depicted in Fig. 9(c) and the
constructed SR is shown in Fig. 9(d). Let the weight function constructed by SR and
R0 be w1(x) and w2(x), respectively. The right-hand side f in this example is given so
that the exact solution is u = sin(w1(x) · w2(x)).

In order to check the validity of the proposed SR in this example, we compare
the results with those produced by using R0-function. The relative L2 errors and the
convergence rates of the numerical solution for a weight function constructed by R0

and SR are presented in Table 1, where n is the bidegree of the solution space, while l
indicates the partitions of the background grid: h = 1/2l, l = 1, 2, · · · , 8.

Looking at Table 1, we note that both SR and R0 lead to the correct trends of
convergence rates. In particular, the relative L2 error of using SR is one decimal smaller
than R0 for cases when k = 2, 3 and l = 7, 8. The results indicate that SR leads to more
accurate results than R0 for the union shape for higher number of partitions and higher
degree of solution space. The reason may be caused by the square root operation in
R0. In fact, from the mathematical expression of R0 for this union shape, the square
root operation is calculated approximately not exactly.

To verify the efficiency of the proposed criteria for SR and observe the behavior of
SR with different Bézier ordinates, different groups of free Bézier ordinates need to
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(a) Primitive A (b) Primitive B

(c) Union domain (d) SR for union

Figure 9: The domain for the two-dimensional union test in Example 4.2: base primitive A, base primitive
B, the corresponding domain obtained by union operation and the constructed SR.

be tested. Table 2 lists six different groups of the Bézier ordinates in the construction
for the bicubic SR. These free Bézier ordinates are picked freely with the correct signs
following the Criteria (a)–(c).

The solution errors for three groups of Bézier ordinates (No. 1, 5, 6 in Table 2) that
used to construct the bicubic SR weight function are compared and plotted. Fig. 10
shows the relative L2 errors of the numerical solution on the union shape. Particularly,
the relative errors for solution space with bidegrees (k, k), k = 1, 2, 3 are illustrated in
Figs. 10(a)–10(c), respectively. It can be found that different selections of free ordi-
nates have different errors at the beginning, but lead to the same trend of convergence
rates.

Example 4.3. We now consider the Poisson equation over a complex domain obtained
using both the Boolean intersection and union operations. The computational domain
is shown in Fig. 11. Fig. 11(a) and Fig. 11(b) show two base primitives, Fig. 11(c)
highlights the shape of A∩C and Fig. 11(d) shows the final domain constructed by SR.
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Table 1: The relative L2 errors and the convergence rates for the solution with weight functions constructed
by SR and R0 in the two dimentions for Example 4.2. R indicates the method (R0 and SR, respectively),
every two columns illustrate the results separately for solution degree k = 1, 2, 3. l indicates the grid widths
h = 2−l, l = 1, · · · , 8.

R l
k = 1 k = 2 k = 3

L2 error Rate L2 error Rate L2 error Rate

R0

1 1.84E-01 — 9.43E-02 — 7.45E-02 —
2 1.34E-01 0.46 4.35E-02 1.12 1.75E-02 2.09
3 4.02E-02 1.74 6.87E-03 2.66 1.47E-03 3.57
4 1.06E-02 1.93 7.61E-04 3.17 1.03E-04 3.84
5 2.68E-03 1.98 8.93E-05 3.09 6.79E-06 3.92
6 6.74E-04 1.99 1.09E-05 3.03 4.23E-07 4.00
7 1.69E-04 2.00 1.36E-06 3.01 2.67E-08 3.99
8 4.23E-05 2.00 1.69E-07 3.00 1.65E-09 4.01

SR

1 1.38E+00 — 3.54E-01 — 1.64E-01 —
2 3.12E-01 2.14 1.11E-01 1.67 7.78E-02 1.08
3 3.27E-02 3.25 7.12E-03 3.96 4.39E-04 7.47
4 9.56E-03 1.77 1.61E-04 5.47 3.40E-05 3.69
5 2.75E-03 1.80 1.94E-05 3.05 2.25E-06 3.92
6 7.43E-04 1.89 2.33E-06 3.06 1.07E-07 4.39
7 1.93E-04 1.95 2.88E-07 3.02 7.18E-09 3.90
8 4.91E-05 1.97 3.59E-08 3.00 4.25E-10 4.08

Table 2: Different groups of Bézier ordinates of the bicubic SR for the domain in Example 4.2. No. 1· · · 6
illustrate six groups of parameters, with each line showing one group of parameters.

No. b13,3 b13,2 b13,1 b13,0 b41,0 b42,0 b43,0 b30,0

1 1 1
10

1
10 1 1 1

10 1 −1

2 1 1
10

2
5 1 1 1
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1
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20

1
20

1
20 − 1

10

The exact solution is set as u(x, y) = sin(w(x, y)).

Fig. 12 shows the results using SR for solution space with k = 1, 2 and 3, respec-
tively. The relative L2 errors converge to machine precision as the grids become smaller,
especially for k = 2, 3. It can be concluded that weight function using SR lives up to
the theoretical predictions and thus SR is an acceptable choice to represent complex
domains under Boolean operations.

Example 4.4. In this example, we consider the Poisson problem (2.6) over a domain
produced by the union of two three-dimensional base primitives, as shown in Fig. 13.
Let sr(x, y, z) and r0(x, y, z) be the SR and R0, respectively. To compare the results
of weight function using SR with that using R0, the exact solution is set to be u =
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(c) k = 3

Figure 10: Results for weight function using SR with different parameters for Example 4.2. The relative L2

errors for the solution space with k = 1, 2, 3 are shown in Figs. 10(a), 10(b) and 10(c), respectively. Each
subfigure depicts errors using three different parameters (No. 1, 5 and 6) with specific k and the grid widths
h = 2−l, l = 1, · · · , 7.

sin(sr(x, y, z) × r0(x, y, z)), where we get the same accurate solution for both weight
functions.

Table 3 presents the error results for the numerical solution of the Poisson equation
where the weight functions uses SR and R0 function are adopted. The relative L2

errors and convergence rates under different degrees of the solution space and the
varied grid widths are listed. It can be observed that both methods lead to convergence
rates that are consistent with the theory in [25]. The results indicate that SR has
good potential when representing complex three-dimensional domains for problems
governed by partial differential equations.

The results of the numerical examples presented in this section indicate that the
Boolean union and intersection operations are successfully implemented using SR. The
convergence rates are compatible with those presented in the literature and provides a
good indication for the reliability of the theoretical approach.
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(a) Primitive C
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(b) Primitive D
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(c) E=A∩C
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(d) F=D∪E

Figure 11: Domain composed of 3 shapes using SR in two dimensions for Example 4.3: two primitives C,
D, the intersection of A and C by the Boolean intersection operation and the final domain after another
Boolean union operation.
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Figure 12: The relative L2 errors of the numerical solution in Example 4.3 with weight function using SR
are shown for k = 1, 2, 3 and h = 2−l, l = 1, · · · , 7.
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Figure 13: Domain of the 3D union test.

Table 3: The relative L2 errors and the convergence rates for the numerical solution of Example 4.4 with
weight functions using SR and R0 in three dimensions. R indicates the method (R0 and SR, respectively),
l indicates the grid widths h = 2−l, l = 1, · · · , 7 and every two columns tabulate the results for solution
degree k = 1, 2, 3, respectively.

R l
k = 1 k = 2 k = 3

L2 error Rate L2 error Rate L2 error Rate

R0

1 8.59E-01 — 3.61E-01 — 8.72E+01 —
2 2.12E-01 2.02 2.03E-01 0.83 2.01E-01 8.76
3 1.08E-01 0.97 1.51E-01 0.43 7.72E-02 1.38
4 6.23E-02 0.79 3.01E-02 2.33 8.01E-03 3.27
5 1.97E-02 1.66 2.65E-03 3.51 5.14E-04 3.96
6 5.13E-03 1.94 2.68E-04 3.31 3.07E-05 4.07
7 1.30E-03 1.98 3.14E-05 3.09 2.01E-06 3.93

SR

1 7.92E+01 — 1.67E+01 — 8.08E-01 —
2 1.01E+01 2.97 3.60E+00 2.22 1.62E-01 2.32
3 5.89E-01 4.10 1.21E+00 1.57 1.18E-02 3.79
4 3.67E-02 4.00 2.68E-03 8.82 4.08E-04 4.85
5 1.33E-02 1.47 2.68E-04 3.33 3.14E-05 3.70
6 4.18E-03 1.67 3.39E-05 2.98 2.62E-06 3.58
7 1.20E-03 1.80 4.28E-06 2.99 1.90E-07 3.79

5. Conclusions

A new formulation for Boolean operations over implicitly defined primitives is con-
sidered. Spline R-function (SR) is constructed in both Bézier form and B-spline form on
a new coordinate system following the criteria indicated by the definition of R-function.
For SR in Bézier form, the B-net method is adopted, where the requirements for a spe-
cific boolean operation have been converted into a series of constraints between the
Bézier ordinates. SR is then obtained by assigning these ordinates following the cor-
responding constraints. In the implementation part, it is shown that the proposed
SR-function is well-defined. Numerical results indicate that SR is robust and leads to
accurate results and thus is a good choice for complex domains composed by Boolean
operations when solving partial differential equations on such domains. In addition,
compared with R0 function, SR is easier to be integrated into CAD systems due to the
direct relation with CAD representations. In fact, since only algebraic operations are
used in SR, a repeated de Boor algorithm can be used to achieve the final SR, which
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facilitates the practical usage.
Several possibilities exist for further improving the usage of spline R-function. Ap-

plying SR into different areas served by traditional R0 function with appropriate mod-
ifications is a straightforward process. Since there are still Bézier ordinates in SR that
have not been fully understood yet, more properties of SR can be explored to get better
formulation for more practical purposes. Besides, the integration of SR into CAD seems
to be promising.
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