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Abstract. By reviewing the primal-dual hybrid gradient algorithm (PDHG) pro-
posed by He, You and Yuan (SIAM J. Image Sci., 7(4) (2014), pp. 2526–2537),
in this paper we introduce four improved schemes for solving a class of saddle-point
problems. Convergence properties of the proposed algorithms are ensured based on
weak assumptions, where none of the objective functions are assumed to be strongly
convex but the step-sizes in the primal-dual updates are more flexible than the pre-
vious. By making use of variational analysis, the global convergence and sublinear
convergence rate in the ergodic/nonergodic sense are established, and the numer-
ical efficiency of our algorithms is verified by testing an image deblurring problem
compared with several existing algorithms.
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1. Introduction

Let R be the set of real numbers, Rm×n be the space of m × n dimensional real
matrices, and Rn be the space of n dimensional real column vectors equipped with
inner product 〈·, ·〉 and Euclidean norm ‖z‖2 =

√
〈z, z〉 for any z ∈ Rn. Consider the

following general saddle-point problem

min
xi∈Xi

max
yj∈Yj

F (x, y) :=

p∑
i=1

fi(xi)−
p∑
i=1

p∑
j=1

〈yj , Aixi〉 −
p∑
j=1

gj(yj), (1.1)
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where x = (xT1 , x
T
2 , · · · , xTp )T, y = (yT1 , y

T
2 , · · · , yTp )T are grouped variables; p ≥ 1

is any positive integer; Xi ⊂ Rmi , Yj ⊂ Rn are structured and closed convex sets;
fi(xi) : Rmi → R, gj(yj) : Rn → R are proper closed convex functions but possibly
nonsmooth; and all Ai ∈ Rn×mi are given matrices. Throughout the discussions, the
solution set of the problem (1.1) is assumed to be nonempty.

Minimization problems in the form of (1.1) arises in many possible applications,
such as the 2D image denoising [12] and machine learning [3, Problem (2)]. In the
past several years, a number of first-order algorithms had been developed for solving
the problem (1.1) with case p = 1. For instance, Zhu and Chan [13] firstly proposed the
primal-dual hybrid gradient algorithm (PDHG), whose iteration alternates between the
primal and dual formulations, for solving total variation (TV) minimizations with ap-
plications in 2D image processing. Later, this PDHG was extended by Esser et al. [6] to
solve a broader class of convex optimization models, and the modified version of PDHG
was analyzed to have a similarly good empirical convergence rate for TV minimization
problems. In 2011, Chambolle and Pock [4] showed an accelerated version of PDHG
for non-smooth convex optimization problems with known saddle-point structure. In
particular, their algorithm had O(1/t) convergence rate for non-smooth problems, and
O(1/t2) convergence rate for problems where either the primal or dual objective is
uniformly convex. Here t denotes the iteration number. To better understand how to
choose the step-sizes of the primal-dual updates, He et al. [9] revisited convergence of
PDHG by an extremely simple example that it is not necessarily convergent when the
step-sizes are fixed as tiny constants. The modified PDHG in [9], that is,

xk+1 = arg min
x∈X

{
F (x, yk) +

r

2

∥∥x− xk∥∥2

2

}
,

yk+1 = arg max
y∈Y

{
F (xk+1, y)− s

2

∥∥y − yk∥∥2

2

}
,

(1.2)

is indeed globally convergent under the following conditions:

• (A1) f(x) is strongly convex with the modulus τ > 0, i.e., there exists a positive
constant τ such that for any ξ ∈ ∂f(x), it holds

f(x̃)− f(x) ≥ 〈x̃− x, ξ〉+
τ

2
‖x̃− x‖22 , ∀x, x̃ ∈ X ;

• (A2) For given matrix A and τ > 0, the parameter s in (1.2) satisfies s > ρ(ATA)
τ

where ρ(·) denotes the spectral radius of a matrix.

Clearly, (A1)-(A2) are strong and not always satisfied for some cases in real appli-
cations. For example, the TV regularized linear inversion problem, widely used as a
model of salt-pepper noisy image deblurring [12], is of the following form

min
x∈X

{
1

2
‖Kx− b‖1 + λ‖Ax‖2,1

}
.
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Here K ∈ Rm×n, x ∈ Rn, b ∈ Rm denote respectively the given structured ma-
trix, reconstructed image and observed image; λ, ‖Ax‖2,1 =

∑
i
‖Aix‖2 are re-

spectively the penalty parameter and discrete form of TV semi-norm; and X =
{x ∈ Rn : l∗ ≤ xi ≤ u∗, i = 1, · · · , n} is given with bound constants l∗ and u∗. Notice
that this problem can be transformed into a two-block case of (1.1):

min
x∈X

max
y∈Y

{
1

2
‖Kx− b‖1 + λ〈Ax, y〉

}
,

where Y =
{
y ∈ R2n|‖yi‖2 ≤ 1, yi ∈ R2

}
. In such case f(x) := 1

2‖Kx − b‖1 is con-
vex but not strongly convex. Hence, the condition (A1) does not hold, which implies
divergence of PDHG (1.2) for such image deblurring problem. The counter example
considered in [9] can also explain why (1.2) is not convergent (since there exists no
constant τ > 0, i.e., the function f(x) := x is not strongly convex). Besides, we can
observe that it depends largely on the modulus of f(x) and ρ(ATA) for choosing the
parameter s, even though f(x) := 1

2‖Kx− b‖
2
2 is strongly convex in the case that a full

column rank matrix K is considered for image deblurring problem [5,12,14].
Motivated by the above discussions, we focus on developing several improved

PDHG procedures for tackling the general model (1.1), whose assumptions are much
weaker than the conditions (A1)-(A2) but global convergence still holds. In fact, we
originally focus on the traditional saddle-point problem (p = 1) in order to weaken
convergence conditions of the algorithm in [9]. Surprisingly, we find that our obtained
convergence conditions and results hold also for the multi-block structured saddle point
problem (p > 1). For the sake of conciseness, we first present two basic modified algo-
rithms described in Algorithms 1.1-1.2, where 1/r and 1/s are called the step-sizes of
the primal and dual updates, respectively. ‖ATA‖ denotes the spectral norm of matrix
ATA, i.e., the square root of its largest eigenvalue. The difference between Algorithm
1.1 and Algorithm 1.2 lies in the updating of the yj-subproblem and the choice of the
parameters (r, s).

Algorithm 1.1. (IPDHA1).

Step 1. Initialize the starting points (x0, y0) and parameters

(r, s) ∈ K :=

{
r > ti, s ≥ max

i
{1/ti} |∀ti ∈ R+, i = 1, · · · , p

}
. (1.3)

Step 2. For k = 0, 1, · · · do

For i = 1, · · · , p,
xk+1
i = arg min

xi∈Xi

{
F (xk1, · · · , xi, · · · , xkp, yk) +

r

2

∥∥xi − xki ∥∥2

2

}
,

For j = 1, · · · , p,

yk+1
j = arg max

yj∈Yj

{
F (xk+1, yk1 , · · · , yj , · · · , ykq )− s

2

p∑
i=1

∥∥∥ATi (yj − ykj )
∥∥∥2

2

}
.

(1.4)

end
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Algorithm 1.2. (IPDHA2).

Step 1. Initialize the starting points (x0, y0) and parameters (r, s) such that rs >
‖ATA‖.

Step 2. For k = 0, 1, · · · do



For i = 1, · · · , p,
xk+1
i = arg min

xi∈Xi

{
F (xk1, · · · , xi, · · · , xkp, yk) +

r

2

∥∥xi − xki ∥∥2

2

}
,

For j = 1, · · · , p,

yk+1
j = arg max

yj∈Yj

{
F (2xk+1 − xk, yk1 , · · · , yj , · · · , ykq )− s

2

∥∥∥yj − ykj ∥∥∥2

2

}
.

(1.5)

end

Contributions of this paper are summarized as the following aspects. Firstly, we de-
velop two improved PDHG schemes to tackle the general saddle-point problem (1.1),
where the global convergence and the worst-case O(1/t) convergence rate in the er-
godic sense are analyzed. Secondly, based on Algorithms 1.1-1.2 two modified updates
with a relaxation step are introduced in Section 3 to accelerate the convergence of our
basic algorithms, whose global convergence and worst-case convergence rate in the
ergodic/nonergodic sense are also established. Thirdly, the convergence conditions of
four algorithms are much weaker than before in terms of the objective functions, since
there is no assumption on strong convexity of fi(xi) or gj(yj). Especially, Algorithm 1.1
and its relaxation Algorithm 3.1 are more flexible than (1.2) on choosing the parame-
ters (r, s). For instance, the choice of s in Algorithm 1.1 doesn’t depend on the spectral
radius of any matrix, which is different from the condition (A2), and the parameter s
can be arbitrarily small and close to zero. In addition, preliminary numerical examples
on solving the TV image deblurring problem are tested to show the efficiency of our
proposed algorithms by comparing with several state-of-the-art algorithms.

Notations 1.1. Throughout this paper, denoted by R+ be the set of positive number
and T be the transpose of a matrix or vector. The symbols I,0 stand respectively for
the identity matrix and zero matrix/vector with proper dimensions. For an extended
real-valued function h : Rn → [−∞,∞], its conjugate function h∗ : Rn → [−∞,∞] is
defined by h∗(y) = supx∈Rn{〈x, y〉 − f(x)}. For convenience of analysis, we introduce
the following notations

x = (xT1 , x
T
2 , · · · , xTp )T, y = (yT1 , y

T
2 , · · · , yTp )T, (1.6a)

Ω = X1 ×X2 × · · · × Xp × Y1 × Y2 × · · · × Yp, (1.6b)

φ(w) =

p∑
i=1

fi(xi)−
p∑
j=1

gj(yj), w =

(
x
y

)
, wk =

(
xk

yk

)
. (1.6c)
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For any ξi ∈ ∂fi(xi), ηj ∈ ∂gj(yj), where ∂fi(xi) is the subdifferential of fi(xi), let

J (w) =



ξ1 −AT
1

p∑
j=1

yj

...

ξp −AT
p

p∑
j=1

yj

η1 +
p∑
i=1

Aixi

...

ηp +
p∑
i=1

Aixi


, J (wk) =



ξ1 −AT
1

p∑
j=1

ykj

...

ξp −AT
p

p∑
j=1

ykj

η1 +
p∑
i=1

Aix
k
i

...

ηp +
p∑
i=1

Aix
k
i


, (1.7)

and

A =


A1 A2 · · · Ap
A1 A2 · · · Ap
...

...
. . .

...
A1 A2 · · · Ap

 ∈ R
np×

p∑
i=1

mi

. (1.8)

2. Convergence analysis of IPDHA

In this section, our concerns are devoted to analyzing the global convergence of
Algorithms 1.1-1.2 and their worst-case convergence rate in the ergodic sense.

For any point (x, y) ∈ Ω, we have from (1.1) that

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗),

where (x∗, y∗) =: w∗ ∈ X ×Y denotes the solution pair of the problem (1.1). Note that
the above saddle-point inequalities can be equivalently expressed as

For i = 1, · · · , p,

x∗i ∈ Xi, fi(xi)− fi(x∗i ) +

〈
xi − x∗i ,−AT

i

p∑
j=1

y∗j

〉
≥ 0, ∀xi ∈ Xi,

For j = 1, · · · , p,

y∗j ∈ Yj , gj(yj)− gj(y∗j ) +

〈
yj − y∗j ,

p∑
i=1

Aix
∗
i

〉
≥ 0, ∀yj ∈ Yj ,

which is further rewritten as a compact variational inequality (VI)

VI(φ,M,Ω) : φ(w)− φ(w∗) + 〈w − w∗,Mw∗〉 ≥ 0, ∀w ∈ Ω. (2.1)

Here φ,w are defined in (1.6), and

M =

[
0 −AT

A 0

]
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is a skew-symmetric matrix and has the property (see also [1, Eq. (11)])〈
wk+1 − w,Mwk+1

〉
=
〈
wk+1 − w,Mw

〉
, ∀w,wk+1 ∈ Ω. (2.2)

We next show convergence of Algorithm 1.1, and an analogous way will be adopted
to analyze the second algorithm. We begin to characterize the optimality conditions of
the subproblems in (1.4) by the aid of an equivalent variational inequality.

Lemma 2.1. The sequence {wk} generated by Algorithm 1.1 satisfies

φ(w)− φ(wk+1) +
〈
w − wk+1,Mwk+1

〉
≥
〈
w − wk+1, Q(wk − wk+1)

〉
, ∀w ∈ Ω, (2.3)

where

Q =

 rI AT

0 s
p∑
i=1

AiA
T
i

 . (2.4)

Proof. For i = 1, · · · , p, the xi-subproblem clearly amounts to

xk+1
i = arg min

xi∈Xi

fi(xi)−
p∑
j=1

〈
ykj , Aixi

〉
+
r

2

∥∥∥xi − xki ∥∥∥2

2

 ,

whose optimality condition is xk+1
i ∈ Xi and

fi(xi)− fi(xk+1
i ) +

〈
xi − xk+1

i ,−AT
i

p∑
j=1

yk+1
j

+AT
i

p∑
j=1

(yk+1
j − ykj ) + r(xk+1

i − xki )

〉
≥ 0, ∀xi ∈ Xi. (2.5)

Similarly, the yj-subproblem is equivalent to

yk+1
j = arg min

yj∈Yj

{
gj(yj) +

p∑
i=1

〈
yj , Aix

k+1
i

〉
+
s

2

p∑
i=1

∥∥∥AT
i (yj − ykj )

∥∥∥2

2

}
, ∀j = 1, · · · , p,

whose optimality condition is

yk+1
j ∈ Yj , gj(yj)− gj(yk+1

j )

+

〈
yj − yk+1

j ,

p∑
i=1

Aix
k+1
i + s

p∑
i=1

AiA
T
i (yk+1

j − ykj )

〉
≥ 0, ∀yj ∈ Yj .
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Rewriting the above optimality conditions as a unified variational inequality, we achieve

wk+1 ∈ Ω,

φ(w)− φ(wk+1) +
〈
w − wk+1,Mwk+1 +Q(wk+1 − wk)

〉
≥ 0, ∀w ∈ Ω.

This completes the whole proof. �

Lemma 2.2. For any ti > 0 (i = 1, · · · , p), the sequence {wk} generated by Algorithm
1.1 satisfies〈

wk+1 − w,G(wk − wk+1)
〉

≥
〈
wk+1 − w,J (w)

〉
− 1

2

p∑
i=1

ti ∥∥∥xk+1
i − xki

∥∥∥2

2
+

1

ti

p∑
j=1

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2

 , (2.6)

where

G =

 rI 0

0 s
p∑
i=1

AiA
T
i

 . (2.7)

Proof. By the convexity of the functions fi(xi) and gj(yj), we have fi(x
k+1
i )− fi(xi) ≥

〈
xk+1
i − xi, ξi

〉
, ∀ξi ∈ ∂fi(xi), i = 1, · · · , p,

gj(y
k+1
j )− gj(yj) ≥

〈
yk+1
j − yj , ηj

〉
, ∀ηj ∈ ∂gj(yj), j = 1, · · · , p,

which, by summing themselves over i, j = 1, · · · , p, gives

φ(wk+1)− φ(w) ≥
〈
wk+1 − w,

(
ξT1 , · · · , ξTp , ηT1 , · · · , ηTp

)T〉
.

Adding Eq. (2.2) to both sides of the above inequality, we get

φ(wk+1)− φ(w) +
〈
wk+1 − w,Mwk+1

〉
≥
〈
wk+1 − w,J (w)

〉
. (2.8)

Then, substituting (2.8) into (2.3) it holds〈
wk+1 − w,Q(wk − wk+1)

〉
≥
〈
wk+1 − w,J (w)

〉
, (2.9)

which is equivalent to〈
wk+1 − w,G(wk − wk+1)

〉
≥
〈
wk+1 − w,J (w)

〉
−

p∑
i=1

〈
xk+1
i − xi, AT

i

p∑
j=1

(ykj − yk+1
j )

〉
. (2.10)
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Now, by the Cauchy-Schwartz inequality, for any ti > 0 (i = 1, 2, · · · , p) it follows that〈
xk+1
i − xi, AT

i (ykj − yk+1
j )

〉
≤ ti

2

∥∥∥xk+1
i − xi

∥∥∥2

2
+

1

2ti

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2
, ∀xi ∈ Xi. (2.11)

Combining the inequalities (2.10) and (2.11), the result is confirmed. �

Based on Lemmas 2.1-2.2, we next prove the contraction of the sequence {wk−w∗}
under a weighted norm, where the solution set Ω∗ of VI(φ,M,Ω) is convex and could
be characterized as

Ω∗ =
⋂
w∈Ω

{w̃| 〈w − w̃, J (w)〉 ≥ 0} . (2.12)

Note from (2.7) that the matrices rI and s
∑p

i=1AiA
T
i are respectively strictly positive

definite and positive semi-definite for any (r, s) ∈ K, so we define the weightedG-norm
‖w‖G =

√
wTGw, and it holds ‖w‖G > 0 for a nonzero w. In the following, we also

have ‖w‖P =
√
wTPw > 0 for the similar reasons.

Theorem 2.1. For any (r, s) ∈ K, let α =
p

max
i=1
{1/ti}. Then, the sequence {wk} generated

by Algorithm 1.1 satisfies∥∥∥wk+1 − w∗
∥∥∥2

G
≤
∥∥∥wk − w∗∥∥∥2

G
−
∥∥∥wk − wk+1

∥∥∥2

P
, ∀w∗ ∈ Ω∗,

where

P =


(r − t1)I · · · 0

...
. . .

... 0
0 · · · (r − tp)I

0 (s− α)
p∑
i=1

AiA
T
i

 . (2.13)

Proof. Setting a = w − wk, b = w − wk+1 into the identity

〈b,G(b− a)〉 =
1

2

(
‖b‖2G − ‖a‖2G + ‖a− b‖2G

)
,

we have

〈w − wk+1, G(wk − wk+1)〉

=
1

2

(∥∥∥w − wk+1
∥∥∥2

G
−
∥∥∥w − wk∥∥∥2

G
+
∥∥∥wk − wk+1

∥∥∥2

G

)
. (2.14)

Then, by substituting (2.14) into (2.6) it follows that

1

2

(∥∥∥w − wk∥∥∥2

G
−
∥∥∥w − wk+1

∥∥∥2

G

)
≥
〈
wk+1 − w,J (w)

〉
+

1

2
Rxy, (2.15)
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where

Rxy =
∥∥∥wk − wk+1

∥∥∥2

G
−

p∑
i=1

ti ∥∥∥xk+1
i − xki

∥∥∥2

2
+

1

ti

p∑
j=1

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2


=r

p∑
i=1

∥∥∥xk+1
i − xki

∥∥∥2

2
−

p∑
i=1

ti

∥∥∥xk+1
i − xki

∥∥∥2

2

+

p∑
j=1

(
s

p∑
i=1

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2
−

p∑
i=1

1

ti

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2

)

≥
p∑
i=1

(r − ti)
∥∥∥xk+1

i − xki
∥∥∥2

2
+ (s− α)

p∑
j=1

p∑
i=1

∥∥∥AT
i (ykj − yk+1

j )
∥∥∥2

2

=
∥∥∥wk+1 − wk

∥∥∥2

P
, (2.16)

in which we take

α = max
1≤i≤p

{
1

ti

}
and P is defined in (2.13). Now, letting w = w∗ in the above inequality (2.15) and
using (2.12), the proof is completed. �

The above Theorem 2.1 implies the contractive property of the sequence {wk−w∗}
under G-norm. In the following, we prove the global convergence of Algorithm 1.1 and
its sublinear convergence rate.

Theorem 2.2. Let the parameters (r, s) ∈ K and the sequence {wk} be generated by
Algorithm 1.1. Then, there exists a w∞ ∈ Ω∗ such that

lim
k→∞

wk+1 = w∞.

Moreover, for any integer t > 0 and

wt =
1

t+ 1

t∑
k=0

wk+1,

we have

〈wt − w,J (w)〉 ≤ 1

2(t+ 1)
‖w − w0‖2G, ∀w ∈ Ω.

Proof. We have by Theorem 2.1 that {wk} is bounded and

∞∑
k=0

∥∥∥wk − wk+1
∥∥∥2

P
≤
∥∥w0 − w∗

∥∥2

G
<∞ =⇒ lim

k→∞
(wk − wk+1) = 0,
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since the fact ‖w‖P > 0 for any nonzero w ∈ Ω and ‖w‖P = 0 if and only if w = 0.
Let w∞ be any accumulation point of {wk}. Then, by taking a subsequence of {wk}

in (2.3) if necessary, we can deduce (since fi, gj are proper) that

φ(w)− φ(w∞) + 〈w − w∞,Mw∞〉 ≥ 0, ∀w ∈ Ω,

which implies w∞ ∈ Ω∗ comparing to (2.1). Using the result in Theorem 2.1 again, we
have ∥∥∥wk − w∞∥∥∥

G
≤
∥∥wj − w∞∥∥

G
for any k ≥ j.

Therefore, the first assertion
lim
k→∞

wk+1 = w∞

holds. Now, combining (2.16) and (2.15) it holds〈
wk+1 − w,J (w)

〉
≤1

2

(∥∥∥w − wk∥∥∥2

G
−
∥∥∥w − wk+1

∥∥∥2

G

)
− 1

2

∥∥∥wk+1 − w
∥∥∥2

P

≤1

2

(∥∥∥w − wk∥∥∥2

G
−
∥∥∥w − wk+1

∥∥∥2

G

)
,

which, by summing up itself over k = 0, 1, · · · , t, gives〈
t∑

k=0

wk+1 − (1 + t)w,J (w)

〉
≤ 1

2

∥∥w − w0
∥∥2

G
.

The above inequality can be clearly rewritten as the second assertion. �

From the proof of Theorem 2.2 and related work in the literature of the alternat-
ing direction method of multipliers, the proximal point algorithm, PDHG and so on
(convergence of these first-order algorithms can be analyzed by a unified variational
framework analogous to (2.3)), the global convergence and sublinear convergence rate
of a similar first-order algorithm can be showed if the extra weighted norm of wk−wk+1

is positive or if its lower bound can be estimated with respect to the iterative error and
the constraint error.

Remark 2.1. The global sublinear convergence of Algorithm 1.2 can be proved in a
similar way as that of Algorithm 1.1. Here we give a simple analysis. Regardless of the
same xi-update for i = 1, · · · , p, the optimality condition of yj-subproblem in (1.5) is

yk+1
j ∈ Yj , gj(yj)− gj(yk+1

j )

+

〈
yj − yk+1

j ,

p∑
i=1

Ai(2x
k+1
i − xki ) + s(yk+1

j − ykj )

〉
≥ 0, ∀yj ∈ Yj .
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Combining the above inequality and (2.5), we have a similar VI as (2.3):

φ(w)− φ(wk+1) +
〈
w − wk+1,Mwk+1

〉
≥
〈
w − wk+1,Q(wk − wk+1)

〉
, (2.17)

where

Q =

[
rI AT

A sI

]
.

It easy to deduce from (2.17) by using the similar identity as (2.14) and the replace-
ment of w by w∗ that∥∥∥wk+1 − w∗

∥∥∥2

Q
≤
∥∥∥wk − w∗∥∥∥2

Q
−
∥∥∥wk − wk+1

∥∥∥2

Q
, ∀w∗ ∈ Ω∗,

which implies the contractive property of the sequence {wk − w∗} under the condition
rs > ‖ATA‖. So, Algorithm 1.2 converges globally with a sublinear convergence rate,
that is, there exists a w∞ ∈ Ω∗ such that the sequence {wk} generated by Algorithm
1.2 satisfies

lim
k→∞

wk+1 = w∞ and 〈wt − w,J (w)〉 ≤ 1

2(t+ 1)
‖w − w0‖2Q,

whose proof is also analogous to [2, Theorems 1-2] and thus omitted for the sake of
conciseness.

3. Acceleration of IPDHA

From now on, the output of IPDHA is denoted by w̄k = (x̄k, ȳk) with given iterate
wk = (xk, yk). According to the results in Section 2, we next provide two modified
IPDHA schemes with a relaxation step (see Algorithms 3.1-3.2) to accelerate conver-
gence of Algorithms 1.1-1.2. We still show their sublinear convergence rate but in the
ergodic and nonergodic sense.

Algorithm 3.1. (RPDHA1).

Step 1. Initialize the starting points (x0, y0) and parameters (r, s) ∈ K defined in
(1.3).

Step 2. For k = 0, 1, · · · do

For i = 1, · · · , p,

x̄ki = arg min
xi∈Xi

{
F (xk1, · · · , xi, · · · , xkp, yk) +

r

2

∥∥xi − xki ∥∥2

2

}
,

For j = 1, · · · , p,

ȳkj = arg max
yj∈Yj

{
F (x̄k, yk1 , · · · , yj , · · · , ykq )− s

2

p∑
i=1

∥∥∥ATi (yj − ykj )
∥∥∥2

2

}
.
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end

Step 3. Relaxation step: determine an inverse matrix D and ϑ ∈ R+, and then
update wk+1 by

wk+1 = wk − ϑD(wk − w̄k). (3.1)

Algorithm 3.2. (RPDHA2).

Step 1. Initialize the starting points (x0, y0) and parameters (r, s) such that rs >
‖ATA‖.

Step 2. For k = 0, 1, · · · , do

For i = 1, · · · , p,

x̄ki = arg min
xi∈Xi

{
F (xk1, · · · , xi, · · · , xkp, yk) +

r

2

∥∥xi − xki ∥∥2

2

}
,

For j = 1, · · · , p,

ȳkj = arg max
yj∈Yj

{
F (2x̄k − xk, yk1 , · · · , yj , · · · , ykq )− s

2

∥∥∥yj − ykj ∥∥∥2

2

}
.

end

Step 3. Relaxation step: determine an inverse matrix D and ϑ ∈ R+, and then
update wk+1 by

wk+1 = wk − ϑD(wk − w̄k).

Clearly, the first two steps in Algorithms 3.1-3.2 are the same as that in Algorithms
1.1-1.2 with small modifications, and the final relaxation step follows the same update.
However, their convergence conditions are different from IPDHA. In what follows, we
would take Algorithm 3.1 for an example to illustrate its convergence properties.

For the matrix Q given in (2.4) and D,ϑ involved in Algorithm 3.1, let

H̄ := QD−1, Ḡ := QT +Q− ϑDTH̄D. (3.2)

In fact, these two matrices are given by the proof of Lemma 3.1. We then use the nota-
tions ‖w‖2

H̄
= wTH̄w, ‖w‖2

Ḡ
= wTḠw, and the following assumption for the subsequent

convergence analysis.

Assumption 3.1. The matrices H̄ and Ḡ are symmetric positive definite.

Lemma 3.1. For the matrices H̄, Ḡ defined in (3.2), under Assumption 3.1 the sequence
{wk} generated by Algorithm 3.1 satisfies

φ(w)− φ(w̄k) +
〈
w − w̄k,Mw̄k

〉
≥ 1

2ϑ

(
‖w − wk+1‖2H̄ − ‖w − w

k‖2H̄
)

+
1

2
‖wk − w̄k‖2Ḡ. (3.3)
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Proof. By Lemma 2.1, (3.1)-(3.2), we have

ϑ
{
φ(w)− φ(w̄k) +

〈
w − w̄k,Mw̄k

〉}
≥
〈
w − w̄k, H̄(wk − wk+1)

〉
=

1

2

(
‖w − wk+1‖2H̄ − ‖w − w

k‖2H̄
)

+
1

2

(
‖wk − w̄k‖2H̄ − ‖w

k+1 − w̄k‖2H̄
)
, (3.4)

where the above equality uses the identity

〈a− b, H̄(c− d)〉 =
1

2

(
‖a− d‖2H̄ − ‖a− c‖

2
H̄

)
+

1

2

(
‖c− b‖2H̄ − ‖d− b‖

2
H̄

)
with specifications a = w, b = w̄k, c = wk, d = wk+1.

Notice that, by using (3.1)-(3.2) the last term of (3.4) can be further simplified as

‖wk − w̄k‖2H̄ − ‖w̄
k − wk+1‖2H̄

=‖wk − w̄k‖2H̄ − ‖w
k − w̄k − (wk − wk+1)‖2H̄

=‖wk − w̄k‖2H̄ − ‖w
k − w̄k − ϑD(wk − w̄k)‖2H̄

=ϑ(wk − w̄k)T(H̄D +DTH̄)(wk − w̄k)− ϑ2(wk − w̄k)TDTH̄D(wk − w̄k)
=ϑ(wk − w̄k)T(QT +Q− ϑDTH̄D)(wk − w̄k)
=ϑ‖wk − w̄k‖2Ḡ, (3.5)

where the fourth equality use the symmetric property of the matrix H̄. Therefore,
substituting (3.5) into (3.4) we complete the whole proof. �

Now, by setting w = w∗ in (3.3) and using VI(φ,M,Ω) in (2.1), the following
theorem holds directly.

Theorem 3.1. For the matrices H̄, Ḡ defined in (3.2), under Assumption 3.1 the sequence
{wk} generated by Algorithm 3.1 satisfies∥∥wk+1 − w∗

∥∥2

H̄
≤
∥∥wk − w∗∥∥2

H̄
− ϑ

∥∥wk − w̄k∥∥2

Ḡ
, ∀w∗ ∈ Ω∗.

It is clear that both the terms ‖ · ‖H̄ and ‖ · ‖Ḡ are positive from Assumption 3.1,
which shows the contractive property of the sequence {wk−w∗} according to the result
in Theorem 3.1. Next, we prove the global convergence of Algorithm 3.1 and its worst-
case O(1/t) convergence rate in the ergodic and nonergodic case, where t denotes the
iteration number.

Theorem 3.2. Let the sequence {wk} be generated by Algorithm 3.1 and Assumption 3.1
hold. Then, there exists a w∞ ∈ Ω∗ such that

lim
k→∞

wk+1 = w∞.
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Moreover, for any integer t > 0 and

w̄t =
1

t+ 1

t∑
k=0

w̄k,

we have

〈w̄t − w,J (w)〉 ≤ 1

2ϑ(t+ 1)
‖w − w0‖2H̄ , ∀w ∈ Ω.

Proof. The first result of Theorem 3.2 can be proved in a similar way as that of
Theorem 2.2 and is omitted here. For the second result, by (2.9) and (3.4)-(3.5), we
can get

〈w̄k − w,J (w)〉 ≤ −
〈
w − w̄k, Q(wk − w̄k)

〉
=− 1

ϑ

〈
w − w̄k, H̄(wk − wk+1)

〉
=

1

2ϑ

(
‖w − wk‖2H̄ − ‖w − w

k+1‖2H̄
)
− 1

2
‖wk − w̄k‖2Ḡ

≤ 1

2ϑ

(
‖w − wk‖2H̄ − ‖w − w

k+1‖2H̄
)
, (3.6)

where the above last inequality uses the positive definiteness of matrix Ḡ. By summing
the above inequality (3.6) over k = 0, 1, · · · , t and using the notation w̄t, we deduce

〈w̄t − w,J (w)〉 ≤ 1

2ϑ(t+ 1)
‖w − w0‖2H̄ .

Thus, we complete the proof. �

Lemma 3.2. Let the sequence {wk} be generated by Algorithm 3.1 and Assumption 3.1
hold. Then, we have

‖D(wk+1 − w̄k+1)‖H̄ ≤ ‖D(wk − w̄k)‖H̄ , ∀k ≥ 0.

Proof. Firstly, by the identity ‖a‖2
H̄
−‖b‖2

H̄
= 2aTH̄(a−b)−‖a−b‖2

H̄
with substitutions

a = D(wk − w̄k) and b = D(wk+1 − w̄k+1),

it can be achieved that

‖D(wk − w̄k)‖2H̄ − ‖D(wk+1 − w̄k+1)‖2H̄
=2(wk − w̄k)TDTH̄D

{
(wk − w̄k)− (wk+1 − w̄k+1)

}
−
∥∥∥D{(wk − w̄k)− (wk+1 − w̄k+1)

}∥∥∥2

H̄
. (3.7)
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Secondly, we prove

(wk − w̄k)TDTH̄D
{

(wk − w̄k)− (wk+1 − w̄k+1)
}

≥ 1

2ϑ

∥∥∥(wk − w̄k)− (wk+1 − w̄k+1)
∥∥∥2

QT+Q
. (3.8)

Note that (3.6) with k := k + 1 and w := w̄k gives

(w̄k+1 − w̄k)TJ (w̄k) ≤ (w̄k+1 − w̄k)TQ(wk+1 − w̄k+1), (3.9)

and (3.6) itself with w := w̄k+1 implies

(w̄k − w̄k+1)TJ (w̄k+1) ≤ (w̄k − w̄k+1)TQ(wk − w̄k). (3.10)

Adding (3.9) to (3.10) together with (2.12), we obtain

(w̄k − w̄k+1)TQ
{

(wk − w̄k)− (wk+1 − w̄k+1)
}
≥ 0. (3.11)

Then, by adding the term{
(wk − w̄k)− (wk+1 − w̄k+1)

}T
Q
{

(wk − w̄k)− (wk+1 − w̄k+1)
}

=
1

2
‖(wk − w̄k)− (wk+1 − w̄k+1)‖2QT+Q

to both sides of (3.11), we have

(wk − wk+1)TQ
{

(wk − w̄k)− (wk+1 − w̄k+1)
}

≥1

2
‖(wk − w̄k)− (wk+1 − w̄k+1)‖2QT+Q,

which immediately confirms (3.8) by combining (3.1) and Q = H̄D.
Finally, substituting (3.8) into (3.7) and using Assumption 3.1, we get

‖D(wk − w̄k)‖2H̄ − ‖D(wk+1 − w̄k+1)‖2H̄

≥ 1

ϑ
‖(wk − w̄k)− (wk+1 − w̄k+1)‖2Ḡ ≥ 0.

Thus, we complete the proof. �

Theorem 3.3. Let the sequence {wk} be generated by Algorithm 3.1 and Assumption 3.1
hold. Then, for any integer t > 0, there exists a constant c0 > 0 such that

‖D(wt − w̄t)‖2H̄ ≤
1

(t+ 1)ϑc0
‖w0 − w̄∗‖2H̄ .
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Proof. By Theorem 3.1 and Assumption 3.1, there exists a constant c0 > 0 such that∥∥∥wk+1 − w∗
∥∥∥2

H̄
≤
∥∥∥wk − w∗∥∥∥2

H̄
− ϑc0

∥∥∥D(wk − w̄k)
∥∥∥2

H̄
, ∀w∗ ∈ Ω∗,

which deduces to

ϑc0

t∑
k=0

∥∥∥D(wk − w̄k)
∥∥∥2

H̄
≤
∥∥w0 − w∗

∥∥2

H̄
. (3.12)

Besides, it follows from Lemma 3.2 that

(t+ 1)
∥∥D(wt − w̄t)

∥∥2

H̄
≤

t∑
k=0

∥∥∥D(wk − w̄k)
∥∥∥2

H̄
. (3.13)

Combining the above inequalities (3.12) and (3.13), the proof is completed. �

Remark 3.1. By Theorem 3.3, we know that Algorithm 3.1 with a relaxation step is
globally convergent with the worst-case O(1/t) convergence rate in the nonergodic
sense. Analogous to the whole analysis in Section 3, the global convergence and the
same convergence rate in the ergodic/nonergodic sense of Algorithm 3.2 can be proved.

Remark 3.2. Note that Theorems 3.1-3.2 are very similar to Theorems 2.1-2.2. For
the choice of ϑ, it is not easy to directly obtain its region for any inverse matrix D (we
can treat it as a preconditioned matrix from the prospect of numerical algebra) in our
certain knowledge, but we can list two special cases to determine it. For instance, in
Algorithm 3.2,

• when taking D = %I with % > 0, we have Ḡ = %(2− ϑ%)H̄ and

‖w‖2Ḡ = %(2− ϑ%)‖w‖2H̄ =
2− %ϑ
%
‖Dw‖2H̄ ,

which implies c0 = 2−%ϑ
% and ϑ ∈ (0, 2

%). In such case, by Theorems 3.2-3.3, we
conjecture that Algorithm 3.2 may converge faster than Algorithm 1.2 when ϑ
closes to 2/%. What’s more, if we take D = I and ϑ ∈ (0, 2), then the relaxation
step is similar to relaxed proximal point methods (see e.g., [2,7,8]), which shows
that our algorithm is more general.

• when takingD = U where U is orthogonal matrix, we deduce Ḡ = (2I−ϑUT)H̄U
and

‖w‖2Ḡ =
〈

(2I− ϑUT)Tw, H̄Uw
〉

=
〈

(2I− ϑUT)TUTUw, H̄Uw
〉

=
〈

(2UT − ϑI)Dw, H̄Dw
〉

=c0

〈
Dw, H̄Dw

〉
= c0‖Dw‖2H̄ ,

which together with c0 > 0 implies that ϑ should be smaller than the eigenvalues
of matrix 2UT.
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4. Numerical experiments

This section investigates the performance of our proposed algorithms by solving the
standard image deblurring problem about man, salt-pepper and earth images shown
in Fig. 1, and numerical results are reported and analyzed by comparing to several
existing algorithms. All experiments are conducted in MATLAB 7.10 (R2010a) on a PC
with Intel Core i5 processor (3.3GHz) with 4GB memory.

Figure 1: The left is a 512× 512 original man image, the middle is a 512× 512 original salt-pepper image,
and the right is a 1024× 1024 original earth image.

4.1. Test problem

The popular Gaussian noise image deblurring problem is of the following form

min
x∈Rmn

{
λ

2
‖Px− b‖22 + ‖Ax‖2,1

}
, (4.1)

where λ > 0 denotes a weighting parameter; P ∈ Rmn×mn is convolution operator
(possibly large and ill-conditioned); A ∈ R2mn×mn is total difference operator consist-
ing of vertical and horizontal difference operator; b ∈ Rmn is given vector vectorized
from an observed image; the pixel values of the image x belong to [0, 255] and can be
scaled to [0, 1]. Notice that the second term in the objective function of (4.1) can be
equivalently transformed into

‖Ax‖2,1 :=
mn∑
i=1

‖Aix‖2 = max
v∈V
〈Ax, v〉 = max

v∈R2mn
{〈Ax, v〉 − δV(v)} , (4.2)

in which

V = {v ∈ R2mn|‖vi‖2 ≤ 1, vi ∈ R2, i = 1, 2, · · · ,mn}

is a convex set whose indicator function is denoted by δV(v). By (4.2) the problem
(4.1) is rewritten as

min
x∈Rmn

max
v∈V

{
λ

2
‖Px− b‖22 + 〈Ax, v〉

}
(4.3)
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or expressed as the following form [12]:

min
x∈Rmn

max
v∈R2mn

{
λ

2
‖Px− b‖22 + 〈Ax, v〉 − δV(v) + δ[0,1](x)

}
, (4.4)

where δ[0,1](x) is the indicator function of [0, 1] and can be converted to a dual expres-
sion

δ[0,1](x) = max
w∈Rmn

{
〈x,w〉 − δ∗[0,1](w)

}
. (4.5)

Here δ∗[0,1](w) stands for the conjugate function of δ[0,1](x). Substituting (4.5) into (4.4),
we have

min
x∈Rmn

max
v∈R2mn,w∈Rmn

{
λ

2
‖Px− b‖22 + 〈Ax, v〉 − δV(v) + 〈x,w〉 − δ∗[0,1](w)

}
, (4.6)

which is a special case of the problem (1.1) with p = q = 1 and specifications

f(x) =
λ

2
‖Px− b‖22, g(y) = δV(v) + δ∗[0,1](w),

Ā = −
(
A
I

)
, y =

(
v
w

)
.

Next, we use Algorithms 1.2 and 3.2 to solve the transformed problem (4.6), while
we apply Algorithms 1.1 and 3.1 to solve the problem (4.3). For the sake of conciseness,
we take an example to illustrate how to solve the involved subproblems of Algorithm
1.2. It is easy to know that the x-update is

xk+1 = arg min
x∈Rmn

{
λ

2
‖Px− b‖22 + 〈Ax, v〉+ 〈x,w〉+

r

2
‖x− xk‖22

}
,

whose first-order optimality condition is (λPTP + rI)x = λPTb−ATv − w + rxk =: b̄.
By making use of the convolution theorem of Fourier transforms as shown in [11], the
closed form solution for the above linear equation is derived as

xk+1 = F−1

(
F(b̄)

λF(P)∗ ◦ F(P) + r

)
, (4.7)

where F , F−1 denote fast Fourier transform and its inverse transform, respectively; the
symbols ∗ and ◦ stand respectively for complex conjugacy and componentwise multi-
plication in which the division is computed component-wisely. Besides, the y-update is
equivalent to

yk+1 = arg max
y=(v,w)

{
〈Ax̄k, v〉 − δV(v) + 〈x̄k, w〉 − δ∗[0,1](w)

−s
2

(
‖v − vk‖22 + ‖w − wk‖22

)}
(4.8)
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with x̄k = 2xk+1 − xk. Note that the above y-subproblem is separable. Therefore, we
have from (4.2) and (4.8) that

vk+1 = arg max
‖vi‖2≤1

{
〈Ax̄k, v〉 − s

2
‖v − vk‖22

}
= arg min

‖vi‖2≤1

s

2
‖v − vk −Ax̄k/s‖22

=M‖vi‖2≤1

(
vk +Ax̄k/s

)
, (4.9)

whereMΩ(·) denotes the projection operator onto the set Ω, and

wk+1 = arg max
w∈Rmn

{
〈x̄k, w〉 − δ∗[0,1](w)− s

2
‖w − wk‖22

}
= arg min

w∈Rmn

{s
2
‖w − wk − x̄k/s‖22 + δ∗[0,1](w)

}
=wk +

1

s
x̄k − 1

s
M[0,1]

(
swk + x̄k

)
, (4.10)

where the above last equality comes from the Moreau proximal identity and definition
of proximal operator (see e.g., [10, Eq.(2.5)] for more details).

4.2. Numerical results

In this subsection, we test the above mentioned example by seven well-established
algorithms with tuned values of parameters: Algorithms 1.1-3.2 with D = I, ϑ =
0.6 which are set by Remark 3.2; CP (i.e., Algorithm 1 in [4]) with its parame-
ters satisfying στL2 = 1 and θ = 0.6 that has the same meaning as ϑ; PD (i.e.,
the scheme (17) in [14]) and PDHG (i.e., PDHG-D in [13]), where Algorithms
1.2 and 3.2 are used to solve the transformed problem (4.6) and Algorithms 1.1
and 3.1 are used to solve (4.3). All codes are written based on PDHG (the x-
subproblem is solved by fast Fourier transform for all algorithms) that is downloaded
from http://pages.cs.wisc.edu/∼swright/GPUreconstruction/, and the primal
and dual steps are respectively fixed as unified values 0.25 and 0.0018 for the sake
of comparison experiments (note that these settings can be satisfied for our proposed
algorithms when taking ti ∈ (0.0018, 4)). The testing images are degraded by convolu-
tions and zero-mean Gaussian noise with variance 10−6, where the blur operator and
the additive noise are generated by scripts fspecial() and imnoise() in MATLAB Im-
age Processing Toolbox. Specifically, we set the medium Gaussian blur with hsize=12

and sigma = 5. In order to deblur corrupted images, the problem parameter in (4.1)
is set as λ = 5500 for the Gaussian blur cases, and the following stopping criterion is
used to terminate all algorithms:

IT res(k + 1) :=
‖xk+1 − xk‖2
‖xk+1‖2

≤ 1.0× 10−4
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Table 1: Comparative results for deblurring corrupted images by different algorithms.

Images Algorithm Iter(k) CPU RE IT res
CP 307 24.6482 0.0122 9.9931e-5
PD 491 37.8302 0.0122 9.9933e-5

PDHG 491 38.1875 0.0122 9.9931e-5
Man IPDHA1 453 61.5720 0.0120 9.9899e-5

IPDHA2 491 36.2686 0.0122 9.9939e-5
RPDHA1 282 36.7803 0.0122 9.9773e-5
RPDHA2 295 23.5014 0.0122 9.9893e-5

CP 250 21.9213 0.0118 9.9958e-5
PD 400 34.3046 0.0118 9.9940e-5

PDHG 400 30.1706 0.0118 9.9938e-5
Salt-pepper IPDHA1 369 48.8739 0.0115 9.9860e-5

IPDHA2 402 29.8726 0.0118 9.9907e-5
RPDHA1 243 33.9582 0.0118 9.9956e-5
RPDHA2 258 20.6498 0.0118 9.9738e-5

CP 369 238.8214 0.0149 9.9948e-5
PD 590 282.4554 0.0149 9.9963e-5

PDHG 590 244.3288 0.0149 9.9961e-5
Earth IPDHA1 559 438.0651 0.0148 9.9938e-5

IPDHA2 604 261.9419 0.0145 9.9963e-5
RPDHA1 360 308.6289 0.0151 9.9847e-5
RPDHA2 410 217.8890 0.0149 9.9931e-5

under the maximal iteration 1000. We also use the following relative error to evaluate
the quality of the restored image:

RE(k + 1) :=
‖xk+1 − x̂‖2
‖x̂‖2

, (4.11)

where xk+1 and x̂ denote the image restored by a certain algorithm and the original
image, respectively.

Table 1 reports some numerical comparison results for deblurring man, salt-pepper
and earth images by different algorithms, and Figs. 2-4 show the corresponding
blurred-noisy images (BNI) and deblurred-recovery images (DRI), respectively. In
Fig. 5, we also plot the curves of the iterative residual error IT res with respect to
iteration numbers by different algorithms. We can observe from Table 1 that

• No matter which image is deblurred, the algorithm IPDHA1 (i.e., Algorithm 1.1)
could obtain a better quality image than others since the value RE defined in
(4.11) is of the smallest, although it costs more CPU time than some of compari-
son algorithms.

• Although the residual error RE obtained by RPDHA1-RPDHA2 is slightly larger
than that of IPDHA1-IPDHA2, the former two algorithms can significantly im-
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BNI DRI (PD) DRI (CP) DRI (PDHG)

DRI (IPDHA1) DRI (IPDHA2) DRI (RPDHA2) DRI (RPDHA1)

Figure 2: From left to right and up to down: man image with medium Gaussian blur, restored images by
algorithms PD, CP, PDHG, IPDHA1, IPDHA2, RPDHA2 and RPDHA1, respectively.

BNI DRI (PD) DRI (CP) DRI (PDHG)

DRI (IPDHA1) DRI (IPDHA2) DRI (RPDHA2) DRI (RPDHA1)

Figure 3: From left to right and up to down: salt-pepper image with medium Gaussian blur, restored images
by algorithms PD, CP, PDHG, IPDHA1, IPDHA2, RPDHA2 and RPDHA1, respectively.

prove the convergence speed than the latter in terms of the iteration number and
the CPU time costed, which verifies the theoretical analysis in Section 3.

• If the iteration number is considered preferentially, then the algorithm RPDHA1
performs the best and CP underperforms RPDHA1. If the CPU time is considered
preferentially, then the algorithm RPDHA2 outperforms the others.
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BNI DRI (PD) DRI (CP) DRI (PDHG)

DRI (IPDHA1) DRI (IPDHA2) DRI (RPDHA2) DRI (RPDHA1)

Figure 4: From left to right and up to down: earth image with medium Gaussian blur, restored images by
algorithms PD, CP, PDHG, IPDHA1, IPDHA2, RPDHA2 and RPDHA1, respectively.

Reported results in Table 1 together with the recovery images shown in Figs. 2-4 and
convergence curves depicted in Fig. 5 support our theoretical improvements and verify
the numerical performance of our modified algorithms to some extent.

5. Conclusions

This paper presents four variants of the primal-dual hybrid gradient algorithm for
solving a family of saddle-point problems, where our algorithms are designed with
some altered metrics in the dual step and with relaxation steps to accelerate the con-
vergence. By the aid of a unified framework of variational inequality, we characterize
the solution point of the problem and analyze the global convergence and sublinear
convergence rate of the proposed algorithms in the ergodic/ nonergodic sense. Numer-
ical results about the image deblurring problem on testing man, salt-pepper and earth
images of different dimensions illustrate the efficiency of the proposed algorithms to
some extent.

Note that in Algorithms 3.1-3.2 we only explain the general matrix D should be
nonsingular (it is not necessary to calculate its inverse in the updates of the algorithms)
and give a remark to illustrate two easily used cases, so a better choice of the matrix
D and parameter ϑ is worth studying in the further work. Besides, the convergence of
these two algorithms are analyzed under Assumption 3.1. Whether they are convergent
or not in the case that the matrices H̄, Ḡ are not always positive definite needs further
investigations, since convergence of the generalized symmetric ADMM [1] was showed
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Figure 5: Evaluation of the iterative residual IT res with respect to iterations for man (left), salt-pepper
(right) and earth (bottom) images with medium Gaussian blur.

for multi-block separable convex programming but without using positive definiteness
assumption on the involved matrices.
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