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Abstract: We study the global behavior of complete minimal δ-stable hypersurfaces

in Rn+1 by using L2-harmonic 1-forms. We show that a complete minimal δ-stable(
δ >

(n− 1)2

n2

)
hypersurface in Rn+1 has only one end. We also obtain two vanish-

ing theorems of complete noncompact quaternionic manifolds satisfying the weighted

Poincaré inequality. These results are improvements of the first author’s theorems on

hypersurfaces and quaternionic Kähler manifolds.
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1 Introduction

Palmer[1] showed that there is no non-trivial L2-harmonic 1-form on a complete stable mini-

mal hypersurface in Rn+1. Cao et al.[2] proved that a complete stable minimal hypersurface

in Rn+1 (n ≥ 3) must have only one end. Cheng et al.[3] showed that a complete oriented

weakly stable minimal hypersurface in Rn+1 (n ≥ 3) must contain no nonconstant bounded

harmonic functions with finite Dirichlet integral and have only one end. If the ambient man-

ifold is not the Euclidean space, Cheng[4] gave one end theorem for complete noncompact

oriented stable minimal hypersurfaces immersed in an (n+1)-dimensional (n ≥ 3) complete

oriented manifold of positive sectional curvature. Recently, by use of the rigidity of complete

Riemannian manifolds with weighted Poincaré inequality, Cheng and Zhou[5] showed that:

if M is an
n− 2

n
-stable complete minimal hypersurface in Rn+1 (n ≥ 3) and it has bounded

Received date: Dec. 15, 2014.
Foundation item: The NSF (11471145, 11371309) of China and Qing Lan Project.
E-mail address: Zhupeng2004@126.com (Zhu P).



2 COMM. MATH. RES. VOL. 33

norm of second fundamental form, then M either has only one end or is a catenoid. The

first author proved that if Mn (n ≥ 2) is a complete minimal δ-stable

(
δ >

(n− 1)2

n2

)
hypersurface in Rn+1 and it has the bounded norm of the second fundamental form, then

the space of L2 integrable harmonic 1-forms H1(L2(M)) is trivial (see [6], Corollary 2.5).

In this paper, firstly, we can obtain the following result:

Theorem 1.1 Suppose that Mn (n ≥ 2) is a complete minimal δ-stable

(
δ >

(n− 1)2

n2

)
hypersurface in Rn+1. Then the space of L2 integrable harmonic 1-forms H1(L2(M)) is

trivial and M has only one end.

Remark 1.1 Theorem 1.1 generalizes Corollary 2.5 in [6] without the restriction of the

second fundamental forms.

Secondly, Lam[7] showed that if M4n is a 4n-dimensional complete noncompact quater-

nionic Kähler and the Ricci curvature of M satisfies

RicM ≥ −4

3
λ1(M) + δ

for a positive constant δ, where λ1(M) is the lower bound of the spectrum of the Laplacian

on M , then

H1(L2(M)) = {0}.

Suppose that M is a 4n-dimensional complete noncompact quaternionic manifold satisfying

the weighted Poincaré inequality with a non-negative weight function ρ(x) and the Ricci

curvature satisfies

RicM (x) ≥ −4

3
ρ(x) + σ(x)

for a nonnegative continuous function σ (σ ̸= 0). If ρ(x) = O(r2−α
p ), where rp(x) is the

distance function from x to some fixed point p and 0 < α < 2, then H1(L2(M)) = {0} (see

[6]). It is interesting to see if a similar theorem holds without the restriction of growth rate

of the weight function. The following theorems had been established:

Theorem 1.2 Suppose that M is a 4n-dimensional complete noncompact quaternionic

manifold satisfying the weighted Poincaré inequality with a non-negative continuous weight

function ρ(x) (ρ(x) is not identically zero). Assume that the Ricci curvature satisfies

RicM (x) ≥ −αρ(x)

for a constant α with 0 < α <
4

3
. Then H1(L2(M)) = {0}.

Theorem 1.3 Suppose that M is a 4n-dimensional complete noncompact quaternionic

manifold satisfying the weighted Poincaré inequality with a non-negative continuous weight

function ρ(x). Assume that the Ricci curvature satisfies

RicM (x) ≥ −αρ(x)− β

for constants α with 0 < α <
4

3
and β > 0. If the lower bound of the spectrum λ1(M) of the
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Laplacian on M satisfies

λ1(M) >
β

4

3
− α

,

then

H1(L2(M)) = {0}.

2 One End Theorem on Hypersurfaces in Rn+1

In this section, we give the proof of Theorem 1.1.

Let Mn be a minimal hypersurface of Rn+1. Let ν denote the unit normal vector field

of M and |A| be the norm of the second fundamental form A. A minimal hypersurface

Mn ⊂ Rn+1 is called δ-stable if, for each ϕ ∈ C∞
0 (M),

δ

∫
M

|A|2ϕ2 ≤
∫
M

|∇ϕ|2.

Proof of Theorem 1.1 First, a complete minimal hypersurface in Rn+1 is noncompact.

For any point p ∈ M and any unit tangent vector v belonging to tangent space at p, we can

choose an orthonormal frame {e1, e2, · · · , en} on M at p such that e1 = v. Since M is a

minimal hypersurface, there has the following inequality:

|A|2 ≥ h2
11 +

( n∑
i=2

hii

)2

n− 1
+ 2

n∑
i=2

h2
1i ≥

n

n− 1

n∑
i=1

h2
1i. (2.1)

The Gauss equation implies that

RicM (v, v) =

n∑
i=2

(h11hii − h2
1i) = −

n∑
i=1

h2
1i. (2.2)

By (2.1) and (2.2), we have

RicM (v, v) ≥ −n− 1

n
|A|2. (2.3)

Let ω ∈ H1(L2(M)). Then h = |ω| satisfies a formula (see [8]):

h∆h ≥ RicM (ω, ω) +
1

n− 1
|∇h|2

≥ − n− 1

n
|A|2h2 +

1

n− 1
|∇h|2. (2.4)

So, for each ϕ ∈ C∞
0 (M), we have

ϕ2h∆h ≥ −n− 1

n
|A|2h2ϕ2 +

1

n− 1
|∇h|2ϕ2. (2.5)

Integration by parts implies that(
1 +

1

n− 1

)∫
M

|∇h|2ϕ2 ≤ n− 1

n

∫
M

|A|2h2ϕ2 − 2

∫
M

ϕh∇ϕ · ∇h

≤ n− 1

n

∫
M

|A|2h2ϕ2 + ϵ1

∫
M

|ϕ∇h|2 + 1

ϵ1

∫
M

|h∇ϕ|2

for each positive constant ϵ1. That is,
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1 +

1

n− 1
− ϵ1

)∫
M

|∇h|2ϕ2 ≤ n− 1

n

∫
M

|A|2h2ϕ2 +
1

ϵ1

∫
M

|h∇ϕ|2. (2.6)

By the definition of minimal δ-stable hypersurfaces, we have that

δ

∫
M

|A|2h2ϕ2 ≤
∫
M

|∇(hϕ)|2

≤
(
1 +

1

ϵ2

)∫
M

h2|∇ϕ|2 + (1 + ϵ2)

∫
M

|∇h|2ϕ2 (2.7)

for each positive constant ϵ2. Combining (2.6) with (2.7), we have

A1

∫
M

|∇h|2ϕ2 ≤ A2

∫
M

h2|∇ϕ|2, (2.8)

where

A1 = 1 +
1

n− 1
− ϵ1 −

(n− 1)

nδ
(1 + ϵ2),

A2 =
1

ϵ1
+

(n− 1)

nδ

(
1 +

1

ϵ2

)
.

Obviously, A2 is positive. Since δ >
(n− 1)2

n2
, we can choose sufficient small constants ϵ1

and ϵ2 such that A1 > 0. Choose ϕ ∈ C∞
0 (M) such that

0 ≤ ϕ ≤ 1,

ϕ ≡ 1 on B
(r
2

)
,

ϕ ≡ 0 on M \B(r),

|∇ϕ| ≤ 2

r
.

(2.9)

Thus, (2.8) implies that

A1

∫
B( r

2 )

|∇h|2 ≤ 4A2

r2

∫
M

h2. (2.10)

Note that ∫
M

h2 < +∞. (2.11)

Letting r → +∞, we obtain that h is a constant on M . Since M is a complete noncompact

minimal hypersurface in Rn+1, it implies that M has infinite volume (see [9]). Thus by

(2.11), we have h = 0. That is,

H1(L2(M)) = {0}.

Since Mn is a minimal hypersurface of Rn+1 (n ≥ 3), each end of M is non-parabolic (see

[2]) and the number of non-parabolic end ofM is bounded from above by dimH1(L2(M))+1

(see [10]). Therefore, M has only one end.

3 Vanishing Theorems on Quaternionic Manifolds

In this section, we give the proofs of Theorems 1.2 and 1.3, respectively.
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If M is a quaternionic manifold and ω ∈ H1(L2(M)), then h = |ω| satisfies a Bochner

type formula (see [11]):

h∆h ≥ RicM (ω, ω) +
1

3
|∇h|2. (3.1)

Proof of Theorem 1.2 Note that RicM (x) ≥ −αρ(x). Combining with (3.1), we have

h∆h ≥ −αρh2 +
1

3
|∇h|2.

For each ϕ ∈ C∞
0 (M), integration by parts implies that

−
∫
M

∇(hϕ2) · ∇h ≥ −α

∫
M

ρh2ϕ2 +

∫
M

1

3
|∇h|2ϕ2. (3.2)

That is,
4

3

∫
M

|∇h|2ϕ2 ≤ α

∫
M

ρh2ϕ2 − 2

∫
M

ϕh∇ϕ · ∇h. (3.3)

Note that

−2

∫
M

ϕh∇ϕ · ∇h ≤ 1

ϵ1

∫
M

h2|∇ϕ|2 + ϵ1

∫
M

ϕ2|∇h|2 (3.4)

holds for each positive constant ϵ1. Since ρ is weight function, we have∫
M

ρh2ϕ2 ≤
∫
M

|∇(hϕ)|2 ≤
(
1 +

1

ϵ2

)∫
M

h2|∇ϕ|2 + (1 + ϵ2)

∫
M

|∇h|2ϕ2 (3.5)

for each positive constant ϵ2. By (3.3), (3.4) and (3.5), we get

B1

∫
M

|∇h|2ϕ2 ≤ B2

∫
M

h2|∇ϕ|2, (3.6)

where

B1 =
4

3
− ϵ1 − α(1 + ϵ2), B2 =

1

ϵ1
+ α

(
1 +

1

ϵ2

)
> 0.

Choose sufficient small constants ϵ1 and ϵ2 such that B1 > 0. Choose ϕ ∈ C∞
0 (M) satisfying

(2.9). Thus, (3.6) implies that

B1

∫
B( r

2 )

|∇h|2 ≤ 4B2

r2

∫
M

h2.

Note that (2.11) holds. Letting r → +∞, we have h is a constant onM . If h is not identically

zero, then, by (2.11), the volume of the M is finite. The weighted Poincaré inequality implies

that ∫
B( r

2 )

ρ ≤
∫
M

4

r2
=

4Vol(M)

r2
.

Letting r → +∞, we have

∫
M

ρ ≤ 0 which contradicts the fact that ρ is non-negative

continuous weight function and not identically zero. Therefore,

H1(L2(M)) = {0}.
Proof of Theorem 1.3 Combining the fact RicM (x) ≥ −αρ(x)− β with (3.1), we have

h∆h ≥ (−αρ− β)h2 +
1

3
|∇h|2.

For each ϕ ∈ C∞
0 (M), integration by parts implies that

−
∫
M

∇(hϕ2) · ∇h ≥ −α

∫
M

ρh2ϕ2 − β

∫
M

h2ϕ2 +

∫
M

1

3
|∇h|2ϕ2.



6 COMM. MATH. RES. VOL. 33

That is,

4

3

∫
M

|∇h|2ϕ2 ≤ α

∫
M

ρh2ϕ2 + β

∫
M

h2ϕ2 − 2

∫
M

ϕh∇ϕ · ∇h. (3.7)

Note that

−2

∫
M

ϕh∇ϕ · ∇h ≤ 1

ϵ1

∫
M

h2|∇ϕ|2 + ϵ1

∫
M

ϕ2|∇h|2 (3.8)

for each positive constant ϵ1. Since ρ is a weight function, we obtain∫
M

ρh2ϕ2 ≤
∫
M

|∇(hϕ)|2 ≤
(
1 +

1

ϵ2

)∫
M

h2|∇ϕ|2 + (1 + ϵ2)

∫
M

|∇h|2ϕ2 (3.9)

for each positive constant ϵ1. By (3.7), (3.8) and (3.9), we have

B1

∫
M

|∇h|2ϕ2 ≤ B2

∫
M

h2|∇ϕ|2 + β

∫
M

h2ϕ2, (3.10)

where

B1 =
4

3
− ϵ1 − α(1 + ϵ2), B2 =

1

ϵ1
+ α

(
1 +

1

ϵ2

)
> 0.

Since 0 < α <
4

3
, we can choose sufficient small constants ϵ1 and ϵ2 such that B1 > 0.

Choose ϕ ∈ C∞
0 (M) satisfying (2.9). Thus, (3.10) implies that

B1

∫
B( r

2 )

|∇h|2 ≤ B2C̃
2

r2

∫
M

h2 + β

∫
B(r)

h2. (3.11)

Note that (2.11) holds. Letting r → +∞, we obtain that

B1

∫
M

|∇h|2 ≤ β

∫
M

h2. (3.12)

Choosing ϵ1, ϵ2 → 0, we get (4
3
− α

)∫
M

|∇h|2 ≤ β

∫
M

h2. (3.13)

It is well known that

λ1(M)

∫
M

h2ϕ2 ≤
∫
M

|∇(hϕ)|2

≤ (1 + ϵ3)

∫
M

|∇h|2ϕ2 +
(
1 +

1

ϵ3

)∫
M

h2|∇ϕ|2, (3.14)

for each positive constant ϵ3. Substituting (2.9) into (3.14), we get

λ1(M)

∫
B( r

2 )

h2 ≤ (1 + ϵ3)

∫
B(r)

|∇h|2 +
(
1 +

1

ϵ3

) 1

r2

∫
M

h2. (3.15)

Letting r → +∞, we have

λ1(M)

∫
M

h2 ≤ (1 + ϵ3)

∫
M

|∇h|2. (3.16)

Let ϵ3 → 0. Then we obtain that

λ1(M)

∫
M

h2 ≤
∫
M

|∇h|2. (3.17)

Suppose that there exists ω ∈ H1(L2(M)) such that h is not identically constant. Combining

(3.13) and (3.17), we have

λ1(M)
(4
3
− α

)
≤ β, (3.18)

which is contradiction with the restriction of λ1(M). Thus, h is constant. By (3.17), we

obtain that h is identically zero. Therefore,

H1(L2(M)) = {0}.
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