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1 Introduction and Main Results

Suppose that L is a linear operator on L2(Rn) which generates an analytic semigroup e−tL

with a kernel at(x, y) satisfying an upper bound of the form

|at(x, y)| ≤ t−
n
m g

(
|x− y|m

t

)
, (1.1)

where m is a positive fixed constant and g is a positive, bounded, decreasing function

satisfying

lim
r→∞

rn+εg(rm) = 0 (1.2)

for some ε > 0.
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For 0 < α <
2n

m
, the fractional integrals L−α/2 of the operator L is defined by

L−α
2 f(x) =

1

Γ

(
α

2

) ∫ ∞

0

e−tL(f)
dt

t−
α
2 +1

(x). (1.3)

Note that if L = −∆ is the Laplacian on Rn, then L−α
2 is the classical fractional integrals

Iα (see, for example, Chapter 5 in [1]),

Iα(f)(x) =
∫
Rn

f(y)

|x− y|n−mα
2
dy, 0 < α <

2n

m
.

Let b be a BMO function on Rn. The commutator of b and L−α
2 is defined by

[b, L−α
2 ](f)(x) = b(x)L−α

2 (f)(x)− L−α
2 (bf)(x).

It is well known that when b ∈ BMO(Rn), the commutator [b, Iα] is bounded from

Lp(Rn) to Lq(Rn), 1 < p <
n

α
,
1

q
=

1

p
− α

n
(see [2]), and of weak type LlogL estimate for

p = 1 (see [3] and [4]). For commutators of fractional integrals on homogeneous spaces, we

refer the reader to [5], also to [6] for commutators of fractional integrals on non-homogeneous

spaces.

The aim of this paper is to prove the following estimate.

Theorem 1.1 Let b ∈ BMO, Φ(t) = t(1 + log+ t). Then for every 0 < α <
2n

m
, and

1

q
=

1

p
− mα

2n
,

(i) ∥[b, L−α
2 ]f∥q ≤ c∥b∥∗∥f∥p, 1 < p <

2n

mα
;

(ii) When p = 1, [b, L−α
2 ] is of weak type L logL, that is,

|{x ∈ Rn : |[b, L−α
2 ](f)(x)| > λ}|

1
q

≤ C

[ ∫
Rn

Φ

(
∥b∥∗|f(x)|

λ

)
dx

][
1 +

mα

2n
log+

∫
Rn

Φ

(
∥b∥∗|f(x)|

λ

)
dx

]
, (1.4)

where ∥b∥∗ denotes the BMO norm of b(x).

Our result extends the results of [3] and [4] from (−∆) to a general operator L, while

we only assumes pointwise upper bounds on kernel at(x, y) of e−tL and no regularity on its

space variables. Under our assumptions, the kernel of the operator L−α
2 does not have any

regularity on space variables x and y. This allows flexibility on the choice of operator L in

applications.

The paper is organized as follows. In Section 2, we recall some important estimates

on BMO functions, maximal functions and fractional integrals. In Section 3, we prove

some estimates on fractional integrals, which play a key role in the proof of the main result

Theorem 1.1, which will be shown in Section 4 by using the approach of [4] and [7], combining

with some estimates on the sharp maximal function M#
L f . We conclude this paper by giving

applications to large classes of differential operators which include the Schrödinger operators

and second-order elliptic operators of divergence form.
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Throughout, the letter “C” denote (possibly different) constants that are independent

of the essential variables.

2 Definitions and Preliminary Results

Denote the Hardy-Littlewood maximal function Mf and its variant Mαf by

Mf(x) = sup
x∈B

1

|B|

∫
B

|f(y)|dy,

and

Mαf(x) = sup
x∈B

1

|B|1−mα
2n

∫
B

|f(y)|dy.

For any f ∈ Lp(Rn), p ≥ 1, the sharp maximal function M#
L f associated with “generalized

approximations to the identity” {e−tL, t > 0}, is given by

M#
L f(x) = sup

x∈B

1

|B|

∫
B

|f(y)− e−tBLf(y)|dy, (2.1)

where tB = rmB and rB is the radius of the ball B (see [8]).

A function A : [0, ∞) → [0, ∞) is said to be a Young function if it is continuous, convex,

and increasing satisfying A(0) = 0, A(t) 7→ +∞ as t 7→ +∞. We define the A-average of a

function f over a ball B by means of the following Luxemburg norm:

∥f∥A,B = inf

{
λ > 0 :

1

|B|

∫
B

A
(
|f(y)|
λ

)
dy ≤ 1

}
.

For the mean Luxemburg norm, the following generalized Hölder inequality holds (see [9]):

1

|B|

∫
B

|f(y)g(y)|dy ≤ ∥f∥A,B∥g∥Ā,B , (2.2)

where Ā is the complementary Young function associated to A.

We use a Young function Φ(t) = t(1 + log+ t) with the corresponding average denoted

by ∥f∥Φ,B = ∥f∥L logL,B . Its complementary Young function is Φ̄(t) ≈ et with the corre-

sponding average denoted by ∥f∥Φ̄,B = ∥f∥expL,B . We also introduce the maximal operator

of the fractional order associated with ∥ · ∥L logL,B , which is defined by

ML logL,αf(x) = sup
x∈B

|B|mα
2n ∥f∥L logL,B .

A function b ∈ L1
loc(R

n) is said to be in BMO(Rn) if and only if

sup
x∈B

1

|B|

∫
B

|b(y)− bB |dy < ∞,

where bB =
1

|B|

∫
B

b(y)dy. The BMO norm of b is defined by

∥b∥∗ = sup
B

1

|B|

∫
B

|b(y)− bB |dy.

Lemma 2.1 (i) Assume that b ∈ BMO and N > 1. Then for every ball B, we have

|bB − bNB | ≤ C∥b∥∗ logN.

(ii) (John-Nirenberg Lemma) Let 1 ≤ p < ∞. Then b ∈ BMO if and only if
1

|B|

∫
Q

|b− bB |pdx ≤ C∥b∥p∗.



76 COMM. MATH. RES. VOL. 33

(iii) If b ∈ BMO, then there exists a constant C such that for every ball B,

1

|B|

∫
B

exp

{
|b(x)− bB |
C∥b∥∗

}
dx ≤ ∞.

(iv) For every p ∈ [1,∞], there exists a constant C such that for every f ∈ Lp,

|e−tLf(x)| ≤ CMf(x).

Proof. For the proofs of (i) and (ii), see Lemma 2.1 of [7]. For (iii), see Chapter 6 of [10],

and for (iv), see Proposition 2.4 of [11].

Lemma 2.2 Given α, 0 < α <
2n

m
, and a non-negative f, the following statements are

true:

(i) There exists a constant C such that for any ball B,∫
B

Iα(f)(x)dx ≤ C|B|mα
2n

∫
Rn

f(x)dx.

(ii) Iαf ∈ A1; in particular, it satisfies the reverse Hölder inequality for some exponent

r > 1.

(iii)
1

q
= 1− mα

2n
, Iα is weak (1, q) : for all λ > 0,∣∣{x ∈ Rn : |Iα(f)(x)| > λ}

∣∣1/q ≤ C

λ

∫
Rn

|f(x)|dx.

(iv) If Mf is locally integrable, then there exists a constant C independent of f and x

such that

CMαMf(x) ≤ ML logL,αf(x) ≤ C−1MαMf(x).

Proof. For the proofs of (i)–(iii), see Lemma 5.2 of [4]. For (iv), see Lemma 2.3 of [3].

Lemma 2.3 Let Φ(t) = t(1 + log+ t). Then for 0 < α <
2n

m
, there exist a constant C

such that for any bounded function f with bounded support and for all λ > 0,

|{x ∈ Rn : ML logL,αf(x) > λ}|
1
q

≤ C

[ ∫
Rn

Φ

(
|f(x)|
λ

)
dx

][
1 +

mα

2n
log+

∫
Rn

Φ

(
|f(x)|
λ

)
dx

]
. (2.3)

Proof. For the proof of this lemma, see Lemma 2.7 of [3].

In the end of this section, we state the following analogue of the Fefferman-Stein inequal-

ity on the sharp maximal function M#
L f .

Lemma 2.4 Let λ > 0 and f ∈ Lp(Rn) for some 1 < p < ∞. Then for every 0 < η < 1,

we can find γ > 0 independent of λ, f in such a way that

|{x ∈ Rn : Mf(x) > Aλ, M#
L f(x) ≤ γλ}| ≤ η|{x ∈ Rn : Mf(x) > λ}|, (2.4)

where A > 1 is a fixed constant which depends only on n.

As a consequence, we have the following estimate:

(i) ∥f∥p ≤ ∥Mf∥p ≤ c∥M#
L f∥p for every f ∈ Lp(Rn), 1 < p < ∞.
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(ii) Let φ : (0,∞) → (0,∞) be a doubling function. Then, for any positive constant q,

there exists a positive constant c = c(q) such that

sup
λ>0

φ(λ)|{x : Mf(x) > λ}|
1
q ≤ c sup

λ>0
φ(λ)|{x : M#

L f(x) > λ}|
1
q

for all functions f such that the left side is finite.

Proof. For the proof of (2.4), we refer to Proposition 4.1 of [8].

3 Some Estimates on Fractional Integrals

In this section, we prove several lemmas on fractional integrals L−α
2 which will play a key

role in the proof of Theorem 1.1.

Lemma 3.1 Let ε be the constants in (1.2), and let 0 < α <
2n

m
. Then, the difference

operator L−α
2 − e−tLL−α

2 has an associated kernel Kα,t(x, y) which satisfies

|Kα,t(x, y)| ≤ C
1

|x− y|n−mα
2

(
t

|x− y|m

)ε0

(3.1)

for 0 < ε0 ≤ min
{
1,

ε

m

}
.

Proof. Note that

I − e−tL =

∫ t

0

d

dr
e−rLdr = −

∫ t

0

Le−rLdr.

Hence, by (1.3),

(I − e−tL)L−α
2 =

1

Γ

(
α

2

) ∫ t

0

∫ ∞

0

(
v
d

dv
e−vL

)∣∣∣∣
v=r+s

1

r + s
· dsdr

s−
α
2 +1

.

The kernel of v
d

dv
e−vL also satisfies (1.1) (see [12]). Hence, the operator (I− e−tL)L−α

2 has

an associated kernel Kα,t(x, y) which satisfies

|Kα,t(x, y)| ≤ C
1

Γ

(
α

2

) ∫ t

0

∫ ∞

0

(r + s)−
n
m g

(
|x− y|m

r + s

)
1

r + s
· dsdr

s−
α
2 +1

≤ C

∫ t

0

∫ r

0

(r + s)−
n
m g

(
|x− y|m

r + s

)
1

r + s
· dsdr

s−
α
2 +1

+ C

∫ t

0

∫ ∞

r

(r + s)−
n
m g

(
|x− y|m

r + s

)
1

r + s
· dsdr

s−
α
2 +1

= I + II.

It follows from (1.2) that one has lim
r→∞

rag(rm) = 0 for any a, 0 < a < n+ ε. Choose an ε0

such that 0 < ε0 ≤ min

{
1,

ε

m

}
, then since α <

2n

m
, we get 0 < n+mε0−

mα

2
< n+ε, this

implies that lim
r→∞

rn+mε0−mα
2 g(rm) = 0. Furthermore, we have that g

(
1

s

)
≤ Cs(

n
m+ε0−α

2 ).

Let us estimate term I. Note that 0 < s < r, one has
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I ≤ C

∫ t

0

∫ r

0

r−
n
m g

(
|x− y|m

2r

)
1

r
· dsdr

s−
α
2 +1

= C
1

|x− y|n−mα
2

∫ t
|x−y|m

0

u
α
2 − n

m−1g

(
1

u

)
du

≤ C
1

|x− y|n−mα
2

∫ t
|x−y|m

0

u
α
2 − n

m−1u
n
m+ε0−α

2 du

≤ C
1

|x− y|n−mα
2

(
t

|x− y|m

)ε0

.

For II, note that 0 < r < s, one has

II ≤ C

∫ t

0

∫ ∞

r

s−
n
m g

(
|x− y|m

2s

)
1

s
· dsdr

s−
α
2 +1

≤ C

∫ t

0

∫ s

0

s−
n
m g

(
|x− y|m

2s

)
1

s
· drds

s−
α
2 +1

+ C

∫ ∞

t

∫ t

0

s−
n
m g

(
|x− y|m

2s

)
1

s
· drds

s−
α
2 +1

= C

∫ t

0

s−
n
m g

(
|x− y|m

2s

)
ds

s−
α
2 +1

+ Ct

∫ ∞

t

s−
n
m g

(
|x− y|m

2s

)
ds

s−
α
2 +2

= II1 + II2.

Similar to the estimate of term I, one has

II1 ≤ C
1

|x− y|n−mα
2

(
t

|x− y|m

)ε0

.

On the other hand,

II2 ≤ Ct

∫ ∞

t
|x−y|m

(|x− y|mu)
α
2 − n

m−2g

(
1

u

)
|x− y|mdu

≤ C
1

|x− y|n−mα
2

t

|x− y|m

∫ ∞

t
(|x−y|)m

u
α
2 − n

m−2u
n
m+ε0−α

2 du

= C
1

|x− y|n−mα
2

(
t

|x− y|m

)ε0

.

Therefore, condition (3.1) is satisfied and then the proof of Lemma 3.1 is completed.

We remark that when L has a Gaussian upper bounds, Lemma 3.1 is proved in [7] for

0 < α < 1, and in [13] for 0 < α < n, respectively.

Remark 3.1 Let 0 < α <
2n

m
. Using the formula (1.3), together with properties (1.1)

and (1.2) and elementary integration, it can be verified that the kernel Kα(x, y) of L−α
2

satisfies
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|Kα(x, y)| ≤ C

∫ ∞

0

t
α
2 t−

n
m g

(
|x− y|m

t

)
dt

t

≤ C
1

|x− y|n−mα
2

(3.2)

for some positive constant C.

Lemma 3.2 Let b ∈ BMO. Then there exists a positive constant C such that

M#
L ([b, L−α

2 ]f)(x) ≤ C∥b∥∗[Iα(|f |)(x) +ML logL,αf(x)]. (3.3)

Proof. Since Iαf ∈ A1, it suffices to prove that there exists a constant C such that for all

x ∈ Rn and for all B ∋ x,

1

|B|

∫
B

|(I − e−tBL)[b, L−α
2 ]f(y)|dy ≤ C∥b∥∗[M(Iα(|f |))(x) +ML logL,αf(x)], (3.4)

where tB = rmB , and rB is the radius of B.

For an arbitrary fixed x ∈ Rn, choose a ball B = B(x0; r) = {y ∈ Rn : |x0 − y| < r}
which contains x. Let f1 = fχ2B and f2 = f − f1. One writes

[b, L−α
2 ]f = (b− b2B)L

−α
2 f − L−α

2 ((b− b2B)f1)− L−α
2 ((b− b2B)f2)

and

e−tBL([b, L−α
2 ]f) = e−tBL

[
(b− b2B)L

−α
2 f − L−α

2 ((b− b2B)f1)− L−α
2 ((b− b2B)f2)

]
.

Then,

LHS of (3.4) =
1

|B|

∫
B

|[b, L−α
2 ]f(y)− e−tBL[b, L−α

2 ]f(y)|dy

≤ 1

|B|

∫
B

|(b(y)− b2B)L
−α

2 f(y)|dy

+
1

|B|

∫
B

{
|L−α

2 ((b− b2B)f1)(y)|+ |e−tBLL−α
2 ((b− b2B)f1)(y)|

}
dy

+
1

|B|

∫
B

|e−tBL((b− b2B)L
−α

2 f)(y)|dy

+
1

|B|

∫
B

|(L−α
2 − e−tBLL−α

2 )((b− b2B)f2)(y)|dy

= I + II + III + IV.

We estimate each integral in turn. Obviously, by (3.2), we have the following pointwise

inequality

|L−α
2 (f)(x)| ≤ CIα(|f |)(x), x ∈ Rn. (3.5)

For I, by Lemma 2.2, Iαf satisfies the reverse Hölder’s inequality with exponent r, by Lemma

2.2 and (3.5), we have

I ≤
(

1

|B|

∫
B

|b(y)− b2B |r
′
dy

) 1
r′
(

1

|B|

∫
B

|L−α
2 f(y)|rdy

) 1
r

≤ C∥b∥∗
(

1

|B|

∫
B

|Iα(|f |)(y)|rdy
) 1

r
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≤ C∥b∥∗
1

|B|

∫
B

|Iα(|f |)(y)|dy

≤ C∥b||∗M(Iα(|f |)(x).
To estimate the second integral, note that by Lemmas 2.1, 2.2 and (3.5),

|L−α
2 ((b− b2B)f1)(y)| ≤ CIα(|(b− b2B)f1|)(y),

and

|e−tBLL−α/2((b− b2B)f1)(y)| ≤ CM(Iα(|(b− b2B)f1|))(y) ≤ CIα(|(b− b2B)f1|)(y).
Hence, by Lemmas 2.2, 2.1, and by the generalized Hölder’s inequality (2.2),

II ≤ 1

|B|

∫
B

Iα(|(b− b2B)f1|)(y)dy

≤ C
|B|mα

2n

|B|

∫
2B

|(b(y)− b2B)||f(y)|dy

≤ C|2B|mα
2n ∥(b− b2B)∥expL,2B∥f∥L logL,2B

≤ C∥b∥∗ML logL,αf(x).

For term III, we have

III =
1

|B|

∫
B

|e−tBL((b− b2B)L
−α

2 f)(y)|dy

≤ 1

|B|

∫
B

∫
Rn

|atB (y, z)||b(z)− b2B ||L−α
2 f(z)|dzdy

≤ 1

|B|

∫
B

∫
2B

|atB (y, z)||b(z)− b2B |Iα(|f |)(z)dzdy

+

∞∑
k=1

1

|B|

∫
B

∫
2k+1B\2kB

|atB (y, z)||b(z)− b2B |Iα(|f |)(z)dzdy

= III1 + III2.

We now estimate III1. For y ∈ B, z ∈ 2B, we have

|atB (y, z)| ≤ t
− n

m

B g

(
|y − z|m

tB

)
≤ g(0)

t
n
m

B

=
C

rnB
=

C

|2B|
.

Similar to the estimate of term I, we obtain

III1 ≤ C

|B|
1

|2B|

∫
B

∫
2B

|b(z)− b2B |Iα(|f |)(z)dzdy

≤ C

|2B|

∫
2B

|b(z)− b2B |Iα(|f |)(z)dz

≤ C∥b∥∗M(Iα(|f |)(x).

Regarding III2, for y ∈ B and z ∈ 2k+1B \ 2kB, we have

|y − z| ≥ 2k−1rB

and

|atB (y, z)| ≤ t
− n

m

B g

(
|y − z|m

tB

)
≤ g(2(k−1)m)

rnB
=

g(2(k−1)m)2(k+1)n

|2k+1B|
.

Similarly, by Lemma 2.1, we have
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III2 ≤ C
∞∑
k=1

g(2(k−1)m)2(k+1)n 1

|B|
1

|2k+1B|

∫
B

∫
2k+1B\2kB

|b(z)− b2B |Iα(|f |)(z)dzdy

≤ C
∞∑
k=1

g(2(k−1)m)2(k+1)n 1

|2k+1B|

∫
2k+1B

|b(z)− b2B |Iα(|f |)(z)dz

≤ C
∞∑
k=1

g(2(k−1)m)2(k+1)n 1

|2k+1B|

∫
2k+1B

|b(z)− b2k+1B |Iα(|f |)(z)dz

+ C

∞∑
k=1

g(2(k−1)m)2(k+1)n 1

|2k+1B|

∫
2k+1B

|b2k+1B − b2B |Iα(|f |)(z)dz

≤ C∥b∥∗M(Iα(|f |)(x).
Let us see what happens with term IV. By using Lemmas 3.1 and 2.1, one has

IV ≤ 1

|B|

∫
B

∫
(2B)c

|Kα,tB (y, z)||(b(z)− bB)f(z)|dzdy

≤ C

∞∑
k=1

∫
2krB≤|x0−z|<2k+1rB

1

|x0 − z|n−mα
2

(
tB

|x0 − z|m

)ε0

|(b(z)− bB)f(z)|dz

≤ C
∞∑
k=1

2−kmε0
1

|2k+1B|1−mα
2n

∫
2k+1B

|(b(z)− bB)f(z)|dz

≤ C
∞∑
k=1

2−kmε0
1

|2k+1B|1−mα
2n

∫
2k+1B

|(b(z)− b2k+1B)f(z)|dz

+ C
∞∑
k=1

2−kmε0 |b2k+1B − bB |
1

|2k+1B|1−mα
2n

∫
2k+1B

|f(z)|dz

≤ C
∞∑
k=1

2−kmε0 |2k+1B|mα
2n ∥b(z)− b2k+1B∥expL,2k+1B∥f∥L logL,2k+1B

+ C∥b∥∗
∞∑
k=1

2−kmε0(k + 1)Mαf(x)

≤ C∥b∥∗
∞∑
k=1

2−kmε0ML logL,αf(x) + C∥b∥∗
∞∑
k=1

2−kmε0(k + 1)Mαf(x)

≤ C∥b∥∗ML logL,αf(x).

Combining the above estimates I, II, III and IV, we obtain (3.4), and the proof of Lemma

3.2 is completed.

4 Proof of Theorem 1.1

(i) By Lemmas 2.4, 3.2 and 2.2, we have

∥[b, L−α
2 ]f∥q ≤ c∥M#

L ([b, L−α
2 ])f∥q
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≤ c∥b∥∗∥Iαf∥q + c∥b∥∗∥MLlogL,αf∥q

≤ c∥b∥∗∥Iαf∥q + c∥b∥∗∥MαMf∥q

≤ c∥b∥∗∥f∥p,

where we use the fact that Iα,Mα are both bounded from Lp(Rn) to Lq(Rn) for
1

q
=

1

p
−mα

2n

and 1 < p <
2n

mα
, M is bounded from Lp(Rn) to Lp(Rn) for 1 < p < ∞.

(ii) Without loss of generality, we assume that f is a smooth function with compact

support. By homogeneity, it suffices to verify that (1.4) is true for λ = 1, that is,

|{x ∈ Rn : |[b, L−α
2 ]f(x)| > 1}|

1
q

≤ C

[ ∫
Rn

Φ

(
|f(x)|∥b∥∗

)
dx

][
1 +

mα

2n
log+

∫
Rn

Φ

(
|f(x)|∥b∥∗

)
dx

]
. (4.1)

Note that

|{x ∈ Rn : |[b, L−α
2 ](f)|(x) > 1}|

1
q

≤ Φ(Φ(1)) sup
t>0

1

Φ

(
Φ

(
1

t

)) |{x ∈ Rn : |[b, L−α
2 ]f(x)| > t}|

1
q

≤ Φ(Φ(1)) sup
t>0

1

Φ

(
Φ

(
1

t

)) |{x ∈ Rn : |M([b, L−α
2 ]f)(x)| > t}|

1
q .

Let

φ(t) =
1

Φ

(
Φ

(
1

t

)) .

A straightforward calculation shows that φ(t) is a doubling function. So

φ(2t) ≤ Cφ(t).

By Lemmas 2.4, 2.2 and 2.3 in sequence, and note that tΦ

(
Φ

(
1

t

))
≥ 1, we have

|{x ∈ Rn : |[b, L−α
2 ](f)|(x) > 1}|

1
q

≤ Φ(Φ(1)) sup
t>0

1

Φ

(
Φ

(
1

t

)) |{x ∈ Rn : |M#
L ([b, L−α

2 ]f)(x)| > t}|
1
q

≤ C sup
t>0

1

Φ

(
Φ

(
1

t

))∣∣∣∣{x ∈ Rn : Iα(|f |)(x) +ML logL,αf(x) >
t

C∥b∥∗

}∣∣∣∣ 1
q

≤ C sup
t>0

1

Φ

(
Φ

(
1

t

))∣∣∣∣{x ∈ Rn : Iα(|f |)(x) >
t

C∥b∥∗

}∣∣∣∣ 1
q

+ C sup
t>0

1

Φ

(
Φ

(
1

t

))∣∣∣∣{x ∈ Rn : ML logL,αf(x) >
t

C∥b∥∗

}∣∣∣∣ 1
q
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≤ C sup
t>0

1

Φ

(
Φ

(
1

t

)) ∥b∥∗
t

∫
Rn

|f(x)|dx

+ C sup
t>0

1

Φ

(
Φ

(
1

t

))[∫
Rn

Φ

(
∥b∥∗|f(x)|

t

)
dx

][
1 +

mα

2n
log+

∫
Rn

Φ

(
∥b∥∗|f(x)|

t

)
dx

]

≤ C sup
t>0

1

Φ

(
Φ

(
1

t

)) 1

t

∫
Rn

∥b∥∗|f(x)|dx+ C sup
t>0

1

Φ

(
Φ

(
1

t

))Φ

(
Φ

(
1

t

))

×
[ ∫

Rn

Φ(∥b∥∗|f(x)|)dx
][

1 +
mα

2n
log+

∫
Rn

Φ(∥b∥∗|f(x)|)dx
]

= J1 + J2. (4.2)

Furthermore, since t ≤ Φ(t), we have∫
Rn

∥b∥∗|f(x)|dx ≤
[ ∫

Rn

Φ(∥b∥∗|f(x)|)dx
][

1 +
mα

2n
log+

∫
Rn

Φ(∥b∥∗|f(x)|)dx
]
. (4.3)

From (4.2) and (4.3) we get

J1 + J2 ≤ C

[ ∫
Rn

Φ(∥b∥∗|f(x)|)dx
][

1 +
mα

2n
log+

∫
Rn

Φ(∥b∥∗|f(x)|)dx
]
,

which proves (4.1). The proof of Theorem 1.1 is completed.

Remark 4.1 The heat kernel upper bound (1.1) of Theorem 1.1 is satisfied by large

classes of differential operators. We list some of them as follows.

(a) Let V be a nonnegative function on Rn. The Schrödinger operator with potential

V is defined by

L = −∆+ V (x). (4.4)

By domination, the kernel at(x, y) of the semigroup {e−tL}t>0 has a Gaussian upper

bound (see [14]). Therefore, the result for the fractional integrals L−α
2 , that is Theorem 1.1,

holds for the operator L of (4.4) in which V is a nonnegative function on Rn.

Note that unless V satisfies additional conditions, the heat kernel can be a discontinuous

function of the space variables and the Hölder continuous estimates may fail to hold.

(b) Let A = ((aij(x))1≤i,j≤n be an n× n matrix of complex with entries aij ∈ L∞(Rn)

satisfying

Re
∑

aij(x)ξiξj ≥ λ|ξ|2

for all x ∈ Rn, ξ = (ξ1, ξ2, · · · , ξn) ∈ Cn and some λ > 0. We define a divergence form

operator

Lf ≡ −div(A∇f),

which we interpret in the usual weak sense via a sesquilinear form.

It is known that the Gaussian upper bound on the heat kernel e−tL is true when A has

real entries, when n = 1, 2 in the case of complex entries, see Chapter 1 of [15].
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