One Parameter Deformation of Symmetric Toda Lattice Hierarchy

Xiong Zhen
(Department of Mathematics and Computer, Yichun University, Yichun, Jiangxi, 336000)
Communicated by Du Xian-kun

Abstract

In this paper, we study one parameter deformation of full symmetric Toda hierarchy. This deformation is induced by Hom-Lie algebras, or is the applications of Hom-Lie algebras. We mainly consider three kinds of deformation, and give solutions to deformations respectively under some conditions.

Key words: Hom-Lie algebra, deformation, symmetric Toda hierrchy
2010 MR subject classification: 17B99, 55U15
Document code: A
Article ID: 1674-5647(2018)01-0047-07
DOI: 10.13447/j.1674-5647.2018.01.05

1 Introduction

Consider the following equation given by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L}=\boldsymbol{B} \boldsymbol{L}-\boldsymbol{L} \boldsymbol{B}=[\boldsymbol{B}, \boldsymbol{L}], \tag{1.1}
\end{equation*}
$$

where \boldsymbol{L} is an $n \times n$ symmetric real tridiagonal matrix, and \boldsymbol{B} is the skew symmetric matrix obtained from L by

$$
\boldsymbol{B}=\boldsymbol{L}_{>0}-\boldsymbol{L}_{<0},
$$

where $\boldsymbol{L}_{>0(<0)}$ denotes the strictly upper (lower) triangular part of \boldsymbol{L}. In order to study the Toda lattice of statistical mechanics, the equation (1.1) was introduced by Flaschka ${ }^{[1]}$, and this further was studied by Kodama et al. ${ }^{[2],[3]}$.

The notion of Hom-Lie algebras was introduced by Hartwig et al. ${ }^{[4]}$ as part of a study of deformations of the Witt and the Virasoro algebras. In a Hom-Lie algebra, the Jacobi identity is twisted by a linear map, called the Hom-Jacobi identity. Some q-deformations of the Witt and the Virasoro algebras have the structure of a Hom-Lie algebra (see [4] and [5]). Because of close relation to discrete and deformed vector fields and differential calculus

[^0](see [4], [6] and [7]), more people pay special attention to this algebraic structure and their representations (see [8] and [9]).

We give an application of Hom-Lie algebras. Define a smooth map

$$
\beta: R_{1} \longrightarrow G L(V), \quad \boldsymbol{\beta}(s) \in G L(V),
$$

where R_{1} is a subset of $\mathbf{R}, s \in R_{1}$. In this paper, $R_{1}=\mathbf{R} \backslash\{0\}$, or $R_{1}=\mathbf{R}$.
We mainly consider the following system:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L}=\boldsymbol{\beta}(s) \boldsymbol{B} \boldsymbol{\beta}(s)^{-1} \boldsymbol{L} \boldsymbol{\beta}(s)^{-1}-\boldsymbol{\beta}(s) \boldsymbol{L} \boldsymbol{\beta}(s)^{-1} \boldsymbol{B} \boldsymbol{\beta}(s)^{-1}=\left[\begin{array}{ll}
\boldsymbol{B}, & \boldsymbol{L} \tag{1.2}
\end{array}\right]_{\boldsymbol{\beta}(s)},
$$

where $s \in R_{1}$, and s is not dependent on variable t. $[\cdot, \cdot]_{\boldsymbol{\beta}(s)}$ is just a Hom-Lie bracket, and $\left(\mathfrak{g l}(V),[\cdot, \cdot]_{\boldsymbol{\beta}(s)}, \operatorname{Ad}_{\boldsymbol{\beta}(s)}\right)$ is a Hom-Lie algebra (see [9]), where $\operatorname{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{L})=\boldsymbol{\beta}(s) \boldsymbol{L} \boldsymbol{\beta}(s)^{-1}$.

We study system (1.2) which is based on the following points:
(1) (1.2) is one parameter deformation of (1.1). Deformation theory is a very important field in singularity theory and bifurcation theory, and has many applications in science and engineering (see [10] and [11]).
(2) (1.2) is equivariant under the action of Lie group

$$
\left\{\operatorname{Ad}_{\boldsymbol{\beta}(s)} \mid s \in R_{1}\right\}: \operatorname{Ad}_{\boldsymbol{\beta}(s)} \circ[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(s)}=\left[\operatorname{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{B}), \operatorname{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{L})\right]_{\boldsymbol{\beta}(s)} .
$$

This kind of differential equations is very important in equation theory and bifurcation theory (see [10] and [11]).
(3) For a Hom-Lie algebra $\left(\mathfrak{g l}(V),[\cdot, \cdot]_{\boldsymbol{\beta}(s)}, \operatorname{Ad}_{\boldsymbol{\mathcal { \beta } (s)}}\right)$, when $\boldsymbol{\beta}(s)=\boldsymbol{I}_{n}$, it is just a Lie algebra $(\mathfrak{g l}(V),[\cdot, \cdot])$, where \boldsymbol{I}_{n} is the $n \times n$ identity matrix.

The general framework is organized as follows: we first introduce the relevant definitions: one parameter deformation, Γ-equivariant and so on; then, we give definitions of $\boldsymbol{\beta}(s)$ and prove that $\left\{\operatorname{Ad}_{\boldsymbol{\beta}(s)} \mid s \in R_{1}\right\}$ is a Lie group. Second, we give three kinds of one parameter deformation of (1.1). Then, we study these deformations respectively and give solutions. At last, some problems are given.

2 Preliminaries

We first give some definitions, one can find these definitions easily in [10] and [11].

Definition 2.1 An equation

$$
g(x, s)=0,
$$

where x is an unknown variable, and the equation depends on an parameter $s(\in \mathbf{R})$. For a fixed s_{0}, let $g_{1}(x)=g\left(x, s_{0}\right)$. Then we call $g(x, s)$ is one parameter deformation of $g_{1}(x)$.

Definition 2.2 A smooth map $g: \mathbf{R}^{n} \times \mathbf{R} \longrightarrow \mathbf{R}^{n}$ is Γ-equivariant, if for any $\gamma \in \Gamma, \Gamma$ is a Lie group, we have

$$
g(\gamma x, s)=\gamma g(x, s)
$$

where γx is the Lie group Γ action on \mathbf{R}^{n}.

Definition 2.3 Let $f, g: X \longrightarrow Y$ be continuous maps. We say that f is homotopic to g if there exists a homotopy of f to g, that is, a map $H: X \times[0,1] \longrightarrow Y$ such that $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Let

$$
G=\left\{\operatorname{Ad}_{\boldsymbol{\beta}(s)} \mid s \in R_{1}\right\}
$$

We know that

$$
\operatorname{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{B})=\boldsymbol{\beta}(s) \boldsymbol{B} \boldsymbol{\beta}(s)^{-1}
$$

Then we have

$$
\operatorname{Ad}_{\boldsymbol{\beta}(s)}^{-1}=\operatorname{Ad}_{\boldsymbol{\beta}(s)^{-1}}, \quad \operatorname{Ad}_{\boldsymbol{\beta}\left(s_{1}\right)} \circ \operatorname{Ad}_{\boldsymbol{\beta}\left(s_{2}\right)}=\operatorname{Ad}_{\boldsymbol{\beta}\left(s_{1}\right) \boldsymbol{\beta}\left(s_{2}\right)}
$$

So, G is a Lie group.
Proposition 2.1 A map $F_{1}: \mathbf{R} \backslash\{0\} \longrightarrow G$ is given by $\boldsymbol{F}_{1}(r)=\operatorname{Ad}_{\boldsymbol{\beta}(r)}$, where $\boldsymbol{\beta}(r)=$ $r \boldsymbol{I}_{n}$. Then \boldsymbol{F}_{1} is a homomorphism from a Lie group $(\mathbf{R} \backslash\{0\}, \times)$ to a Lie group G.

Proof. It is obvious that $\left(R_{1}, \times\right)$ is a Lie group. We have

$$
\boldsymbol{F}_{1}\left(r_{1} r_{2}\right)=\operatorname{Ad}_{\boldsymbol{\beta}\left(r_{1} r_{2}\right)}=\operatorname{Ad}_{r_{1} r_{2} \boldsymbol{I}_{n}}=\operatorname{Ad}_{\boldsymbol{\beta}\left(r_{1}\right)} \circ \operatorname{Ad}_{\boldsymbol{\beta}\left(r_{2}\right)}=\boldsymbol{F}_{1}\left(r_{1}\right) \circ \boldsymbol{F}_{1}\left(r_{2}\right)
$$

In particular, we have

$$
\boldsymbol{F}_{1}(1)=\operatorname{Ad}_{\boldsymbol{I}_{n}}=\boldsymbol{I}_{n}
$$

Proposition $2.2 \quad A$ map $F_{2}: \mathbf{R} \longrightarrow G$ is given by $\boldsymbol{F}_{2}(\theta)=\operatorname{Ad}_{\boldsymbol{\beta}(\theta)}$, where

$$
\boldsymbol{\beta}(\theta)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

Then \boldsymbol{F}_{2} is a homomorphism from a Lie group $(\mathbf{R},+)$ to a Lie group G.
Proof. It is obvious that $(\mathbf{R},+)$ is a Lie group. We have

$$
\boldsymbol{\beta}\left(\theta_{1}+\theta_{2}\right)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
0 & \sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)=\boldsymbol{\beta}\left(\theta_{1}\right) \boldsymbol{\beta}\left(\theta_{2}\right) .
$$

The following is correct:

$$
\begin{aligned}
& \boldsymbol{F}_{2}\left(\theta_{1}+\theta_{2}\right)=\operatorname{Ad}_{\boldsymbol{\beta}\left(\theta_{1}+\theta_{2}\right)}=\operatorname{Ad}_{\boldsymbol{\beta}\left(\theta_{1}\right) \boldsymbol{\beta}\left(\theta_{2}\right)}=\operatorname{Ad}_{\boldsymbol{\beta}\left(\theta_{1}\right)} \circ \operatorname{Ad}_{\boldsymbol{\beta}\left(\theta_{2}\right)}=\boldsymbol{F}_{2}\left(\theta_{1}\right) \circ \boldsymbol{F}_{2}\left(\theta_{2}\right) \\
& \boldsymbol{F}_{2}(0)=\operatorname{Ad}_{\boldsymbol{\beta}(0)}=\boldsymbol{I}_{n}
\end{aligned}
$$

The proof is completed.

Remark 2.1 Define $H: S O(n) \times[0,1] \longrightarrow S O(n)$ by

$$
\boldsymbol{H}(\theta, s)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cos (s \theta) & -\sin (s \theta) \\
0 & \sin (s \theta) & \cos (s \theta)
\end{array}\right)
$$

then $\boldsymbol{\beta}(\theta)$ is homotopic to \boldsymbol{I}_{n}. Similarly, when

$$
\boldsymbol{\beta}_{1}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & \boldsymbol{I}_{n-2} & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

we have $\boldsymbol{\beta}_{1}(\theta)$ is homotopic to \boldsymbol{I}_{n}. Then

$$
\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & \boldsymbol{I}_{n-2} & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

is homotopic to

$$
\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

So, we just study

$$
\boldsymbol{\beta}(\theta)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

Now, we let

$$
\boldsymbol{\beta}(\lambda)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cosh (\lambda) & \sinh (\lambda) \\
0 & \sinh (\lambda) & \cosh (\lambda)
\end{array}\right)
$$

where

$$
\cosh (\lambda)=\frac{\mathrm{e}^{\lambda}+\mathrm{e}^{-\lambda}}{2}, \quad \sinh (\lambda)=\frac{\mathrm{e}^{\lambda}-\mathrm{e}^{-\lambda}}{2}
$$

We have

$$
\begin{aligned}
& \cosh ^{2}(\lambda)-\sinh ^{2}(\lambda)=1 \\
& 2 \sinh (\lambda) \cosh (\lambda)=\sinh (2 \lambda) \\
& \cosh ^{2}(\lambda)+\sinh ^{2}(\lambda)=\cosh (2 \lambda) \\
& \boldsymbol{\beta}(\lambda)^{-1}=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cosh (\lambda) & -\sinh (\lambda) \\
0 & -\sinh (\lambda) & \cosh (\lambda)
\end{array}\right) .
\end{aligned}
$$

Obviously, by a direct calculation, we also have

$$
\left(\begin{array}{cc}
\cosh \left(\lambda_{1}\right) & \sinh \left(\lambda_{1}\right) \\
\sinh \left(\lambda_{1}\right) & \cosh \left(\lambda_{1}\right)
\end{array}\right)\left(\begin{array}{ll}
\cosh \left(\lambda_{2}\right) & \sinh \left(\lambda_{2}\right) \\
\sinh \left(\lambda_{2}\right) & \cosh \left(\lambda_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
\cosh \left(\lambda_{1}+\lambda_{2}\right) & \sinh \left(\lambda_{1}+\lambda_{2}\right) \\
\sinh \left(\lambda_{1}+\lambda_{2}\right) & \cosh \left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right) .
$$

Proposition 2.3 With above notations, a map $F_{3}: \mathbf{R} \longrightarrow G$ is given by $\boldsymbol{F}_{3}(\lambda)=\operatorname{Ad}_{\boldsymbol{\beta}(\lambda)}$. Then \boldsymbol{F}_{3} is a homomorphism from a Lie group $(\mathbf{R},+)$ to a Lie group G.

Proof. By a direct calculation, we have

$$
\boldsymbol{F}_{3}\left(\lambda_{1}+\lambda_{2}\right)=\operatorname{Ad}_{\boldsymbol{\beta}\left(\lambda_{1}+\lambda_{2}\right)}=\operatorname{Ad}_{\boldsymbol{\beta}\left(\lambda_{1}\right) \boldsymbol{\beta}\left(\lambda_{2}\right)}=\operatorname{Ad}_{\boldsymbol{\beta}\left(\lambda_{1}\right)} \circ \operatorname{Ad}_{\boldsymbol{\beta}\left(\lambda_{2}\right)}=\boldsymbol{F}_{3}\left(\lambda_{1}\right) \circ \boldsymbol{F}_{3}\left(\lambda_{2}\right)
$$

At the same time, we have

$$
\boldsymbol{F}_{3}(0)=\operatorname{Ad}_{\boldsymbol{\beta}(0)}=\boldsymbol{I}_{n}
$$

Remark 2.2 We can also define $H: S O(n) \times[0,1] \longrightarrow S O(n)$ by

$$
\boldsymbol{H}(\lambda, s)=\left(\begin{array}{ccc}
\boldsymbol{I}_{n-2} & 0 & 0 \\
0 & \cosh (s \lambda) & \sinh (s \lambda) \\
0 & \sinh (s \lambda) & \cosh (s \lambda)
\end{array}\right)
$$

Then $\boldsymbol{\beta}(\lambda)$ is homotopic to \boldsymbol{I}_{n}.

3 Main Results

3.1 Case of $\boldsymbol{\beta}(r)$

In this case, (1.2) has the following form:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}=[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(r)}=\frac{1}{r}(\boldsymbol{B} \boldsymbol{L}-\boldsymbol{L} \boldsymbol{B}) \tag{3.1}
\end{equation*}
$$

We have the following theorem.
Theorem 3.1 System (3.1) is integrable. If \boldsymbol{L} is a solution of system (1.1), then $\frac{1}{r} \boldsymbol{L}$ is a solution of system (3.1).

So, in this case, deformation system (3.1) does not change properties of the solution of system (1.1).

3.2 Case of $\boldsymbol{\beta}(\theta)$

We just consider $n=2$. Let

$$
\boldsymbol{L}=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)
$$

where a, b, c are functions which are independent of variable t. Then system (1.1) can be written as the following form:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L}=[\boldsymbol{B}, \boldsymbol{L}]=\left(\begin{array}{cc}
2 c^{2} & b c-a c \\
b c-a c & -2 c^{2}
\end{array}\right)
$$

System (1.2) has the following form:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L} & =[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\theta)} \\
& =\cos \theta \cos (2 \theta)\left(\begin{array}{cc}
2 c^{2} & b c-a c \\
b c-a c & -2 c^{2}
\end{array}\right)+2 \sin \theta \cos ^{2} \theta\left(\begin{array}{cc}
a c-b c & 2 c^{2} \\
2 c^{2} & b c-a c
\end{array}\right) \tag{3.2}
\end{align*}
$$

By a direct calculation, we have the following results.

Proposition 3.1 In this case, we have

$$
\begin{aligned}
& \operatorname{tr}\left(\left[\begin{array}{ll}
\boldsymbol{B}, & \left.\boldsymbol{L}]_{\boldsymbol{\beta}(\theta)}\right) \\
{\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{L}
\end{array}\right]_{\boldsymbol{\beta}(\theta)}^{\mathrm{T}}=\left[\begin{array}{ll}
\boldsymbol{B}, & \boldsymbol{L}
\end{array}\right]_{\boldsymbol{\beta}(\theta)},} \\
{\left[\begin{array}{lll}
\boldsymbol{B} & \boldsymbol{L}
\end{array}\right]_{\boldsymbol{\beta}(\theta+\pi)}=-\left[\begin{array}{ll}
\boldsymbol{B}, & \boldsymbol{L}
\end{array}\right]_{\boldsymbol{\beta}(\theta)} .}
\end{array}\right.\right.
\end{aligned}
$$

Theorem 3.2 System (3.2) is integrable. If $\boldsymbol{L}=\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)$ is a solution of system (1.1), then

$$
\cos \theta \cos (2 \theta)\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)+2 \sin \theta \cos ^{2} \theta\left(\begin{array}{cc}
-c & a \\
a & c
\end{array}\right)+\text { constant matrix }
$$

is a solution of system (3.2).
Remark 3.1 When $\theta=\frac{\pi}{2}+k \pi, k \in \mathbf{Z}$, the solution of system (3.2) is a constant matrix. So, in this case, parameter θ has changed properties of the solution of system (1.1).

3.3 Case of $\boldsymbol{\beta}(\lambda)$

In this case, we just consider $n=2$. By a direct calculation, the system (1.2) has the following form:

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L}= & {[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\lambda)}} \\
= & \cosh (\lambda) \cosh (2 \lambda)\left(\begin{array}{cc}
2 c^{2} & b c-a c \\
b c-a c & -2 c^{2}
\end{array}\right)+\cosh (\lambda) \sinh (2 \lambda)\left(\begin{array}{cc}
b c-a c & -2 c^{2} \\
2 c^{2} & b c-a c
\end{array}\right) \\
& +2 \sinh (\lambda)\left(\begin{array}{c}
-\cosh (2 \lambda) b c \\
-\sinh (2 \lambda) a c \\
-\sinh (2 \lambda) b c
\end{array} \cosh (2 \lambda) a c\right. \tag{3.3}
\end{array}\right) .
$$

Then, we have the following facts.

Proposition 3.2

$$
\begin{aligned}
\operatorname{tr}([\boldsymbol{B}, & \left.\boldsymbol{L}]_{\boldsymbol{\beta}(\lambda)}\right) \\
\operatorname{tr}\left([\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\lambda)}^{\mathrm{T}}\right) & =2(b c-a c) \sinh (\lambda),
\end{aligned}
$$

From the above discussion, we have the following theorem.
Theorem 3.3 The system (3.3) is integrable if and only if $\lambda=0$.
So, the parameter λ change the integrability of system (1.1).

4 Problems

When $n=3$, we let

$$
\boldsymbol{L}=\left(\begin{array}{ccc}
a & x & 0 \\
x & b & y \\
0 & y & c
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{ccc}
0 & x & 0 \\
-x & 0 & y \\
0 & -y & 0
\end{array}\right), \quad \boldsymbol{\beta}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

Therefore, the system (1.2) has the following form:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{L}=[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\theta)}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{4.1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

where

$$
\begin{aligned}
& a_{11}=2 x^{2} \cos \theta \\
& a_{12}=b x \cos ^{2} \theta-x c \sin ^{2} \theta-a x \cos \theta+x y \sin (2 \theta), \\
& a_{13}=\frac{1}{2}(b x-c x) \sin (2 \theta)+2 x y \sin ^{2} \theta-a x \sin \theta \\
& a_{21}=b x \cos ^{2} \theta+x c \sin ^{2} \theta-a x \cos \theta-x y \sin (2 \theta), \\
& a_{22}=-2 x^{2} \cos ^{2} \theta+y^{2}(\cos \theta+\cos (3 \theta))-2 c y \cos ^{2} \theta \sin \theta+b y \cos \theta \sin (2 \theta), \\
& a_{23}=-x^{2} \sin (2 \theta)+y^{2}(\sin \theta+\sin (3 \theta))+c y(\cos \theta-\sin \theta \sin (2 \theta))-b y \cos \theta \cos (2 \theta), \\
& a_{31}=-a x \sin \theta-2 x y \sin ^{2} \theta+\frac{1}{2}(b x-c x) \sin (2 \theta) \\
& a_{32}=-x^{2} \sin (2 \theta)-b y(\cos \theta-\sin \theta \sin (2 \theta))+y^{2}(\sin \theta+\sin (3 \theta))+c y \cos \theta \cos (2 \theta), \\
& a_{33}=-2 x^{2} \sin ^{2} \theta-2 b y \sin \theta \cos ^{2} \theta-y^{2}(\cos \theta+\cos (3 \theta))+c y \cos \theta \sin (2 \theta)
\end{aligned}
$$

Thus,

$$
\operatorname{tr}\left([\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\theta)}\right) \neq 0, \quad[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\theta)}^{\mathrm{T}} \neq[\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(\theta)}
$$

So, is this system (4.1) integrable? When $n>3$, system (1.2) is integrable?

References

[1] Flaschka H. The Toda lattice I. Phys. Rev. B, 1974, 9: 1924-1925.
[2] Kodama Y, McLaughlin K. Explicit integration of the full symmetric Toda hierarchy and the sorting property. Lett. Math. Phys., 1996, 37: 37-47.
[3] Kodama Y, Ye J. Iso-spectral deformations of general matrix and their reductions on Lie algebras. Commun. Math. Phys., 1996, 178: 765-788.
[4] Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295: 314-361.
[5] Hu N. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq., 1999, 6(1): 51-70.
[6] Larsson D, Silvestrov S. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra, 2005, 288: 321-344.
[7] Larsson D, Silvestrov S. Quasi-Lie algebras. Contemp. Math., 2005, 391: 241-248.
[8] Sheng Y. Representations of Hom-Lie Algebras. Algebr. Represent. Theory, 2012, 15: 10811098.
[9] Sheng Y, Xiong Z. On Hom-Lie algebras. Linear Multilinear Algebra, 2015, 63(12): 2379-2395.
[10] Golubitsky M, Schaffer G D. Singularities and Groups in Bifurcation Theory VI, Applied Mathematical Sciences, vol. 51. Spring-Verlag, 1985.
[11] Golubitsky M, Stewart I, Schaffer G D. Singularities and Groups in Bifurcation Theory VII, Applied Mathematical Sciences, vol. 69. Spring-Verlag, 1988.

[^0]: Received date: Sept. 9, 2016.
 Foundation item: The Science and Technology Project (GJJ161029) of Department of Education, Jiangxi Province.

 E-mail address: 205137@jxycu.edu.cn (Xiong Z).

