On the Coefficients of Several Classes of Bi-univalent Functions Defined by Convolution

Guo Dong ${ }^{1}$ and Li Zong-TAO ${ }^{2}$
(1. Foundation Department, Chuzhou Vocational and Technical College, Chuzhou, Anhui, 239000)
(2. Foundation Department, Guangzhou Civil Aviation College, Guangzhou, 510403)

Communicated by Ji You-qing

Abstract

In this paper, we introduce several new subclasses of the function class Σ of bi-univalent functions analytic in the open unit disc defined by convolution. Furthermore, we investigate the bounds of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses. The results presented in this paper improve or generalize the recent works of other authors.

Key words: analytic and univalent functions, coefficient, bi-univalent function, Hadamard product, convolution
2010 MR subject classification: 30C45, 30C50, 30C80
Document code: A
Article ID: 1674-5647(2018)01-0065-12
DOI: 10.13447/j.1674-5647.2018.01.07

1 Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{+\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. Further, we denote by S the class of all functions in A which are univalent in U. A function f in S is said to be starlike of order $\alpha, 0 \leq \alpha<1$, and is denoted by $S^{*}(\alpha)$ if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, z \in U$, and is said to be convex of order $\alpha, 0 \leq \alpha<1$, and is denoted by $K(\alpha)$ if $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha$,
$z \in U$. Mocanu ${ }^{[1]}$ studied linear combinations of the representations of convex and starlike functions and defined the class of α-convex functions. In [2], it was shown that if

$$
\operatorname{Re}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>0, \quad z \in U
$$

then f is in the class of starlike functions $S^{*}(0)$ for α be a real number and is in the class of convex functions $K(0)$ for $\alpha \geq 1$.

Further, We say that $f(z) \in A$ is α-starlike in U if $f(z)$ satisfies

$$
f(z) f^{\prime}(z) \frac{1+z f^{\prime \prime}(z)}{f^{\prime}(z)} \neq 0, \quad|z|<1
$$

and

$$
\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\alpha}>0\right\} .
$$

For such α-starlike functions, Lewandowski et al. ${ }^{[3]}$ proved that all α-starlike functions are univalent and starlike for all $\alpha(\alpha \in \mathbf{R})$.

In [4], it was shown that if

$$
\operatorname{Re}\left(\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right)>-\frac{\alpha}{2}, \quad \alpha \geq 0, z \in U
$$

then $f \in S^{*}(0)$.
For the function $f(z)=z+\sum_{n=2}^{+\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{+\infty} b_{n} z^{n}$, let $(f * g)(z)$ denote the Hadamard product or convolution of $f(z)$ and $g(z)$, defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{+\infty} a_{n} b_{n} z^{n} . \tag{1.2}
\end{equation*}
$$

For $0 \leq \alpha<1$ and $\lambda \geq 0$, we let $Q_{\lambda}(h, \alpha)$ be the subclass of A consisting of functions $f(z)$ of the form (1.1) and functions $h(z)$ given by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{+\infty} h_{n} z^{n}, \quad h_{n}>0 \tag{1.3}
\end{equation*}
$$

and satisfying the analytic criterion:

$$
\operatorname{Re}\left[(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right]>\alpha, \quad 0 \leq \alpha<1, \lambda \geq 0 .
$$

It is easy to see that $Q_{\lambda_{1}}(h, \alpha) \subset Q_{\lambda_{2}}(h, \alpha)$ for $\lambda_{1}>\lambda_{2} \geq 0$. Thus, for $\lambda \geq 1,0 \leq \alpha<1$, $Q_{\lambda}(h, \alpha) \subset Q_{1}(h, \alpha)=\left\{f, h \in A: \operatorname{Re}(f * h)^{\prime}(z)>\alpha, 0 \leq \alpha<1\right\}$ and hence $Q_{\lambda}(h, \alpha)$ is univalent class (see [5]-[7]).

We note that $Q_{\lambda}\left(\frac{z}{1-z}, \alpha\right)=Q_{\lambda}(\alpha)($ see $[8])$.
It is well known that every function $f \in S$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z, \quad z \in U
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega, \quad|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
$$

where

$$
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots
$$

A function $f \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U.

Let Σ denote the class of all bi-univalent functions in U given by (1.1). The class of bi-univalent functions was introduced by Lewin ${ }^{[9]}$ in 1967 and was showed that $\left|a_{2}\right|<1.51$. Brannan and Clunie ${ }^{[10]}$ conjectured that $\left|a_{2}\right|<\sqrt{2}$ for $f \in \Sigma$. Netanyahu ${ }^{[11]}$ showed that $\max \left|a_{2}\right|=\frac{4}{3}$ if $f \in \Sigma$. Recently, many authors investigated bounds for various subclasses of bi-univalent functions (see [12]-[17]).

The object of the present paper is to introduce several subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Peng et al. ${ }^{[16]}$

2 Coefficient Estimates

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk U, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(U)$ is symmetric with respect to the real axis. Such a function has a Taylor series of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \quad B_{1}>0 \tag{2.1}
\end{equation*}
$$

Suppose that $u(z)$ and $v(z)$ are analytic in the unit disk U with $u(0)=v(0)=0,|u(z)|<1$, $|v(z)|<1$, and

$$
\begin{equation*}
u(z)=b_{1} z+\sum_{n=2}^{+\infty} b_{n} z^{n}, \quad v(z)=c_{1} z+\sum_{n=2}^{+\infty} c_{n} z^{n}, \quad|z|<1 . \tag{2.2}
\end{equation*}
$$

It is well known that (see [18], P.172)

$$
\begin{equation*}
\left|b_{1}\right| \leq 1, \quad\left|b_{2}\right| \leq 1-\left|b_{1}\right|^{2}, \quad\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} . \tag{2.3}
\end{equation*}
$$

By a simple calculation, we have

$$
\begin{array}{ll}
\varphi(u(z))=1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\cdots, & |z|<1 \\
\varphi(v(\omega))=1+B_{1} c_{1} \omega+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) \omega^{2}+\cdots, & |\omega|<1 . \tag{2.5}
\end{array}
$$

Definition 2.1 A function $f \in \Sigma$ given by (1.1) is said to be in the class $M_{\Sigma}(h, \alpha, \varphi)$, $\alpha \geq 0$, if the following conditions are satisfied:

$$
(1-\alpha) \frac{z(f * h)^{\prime}(z)}{(f * h)(z)}+\alpha\left(1+\frac{z(f * h)^{\prime \prime}(z)}{(f * h)^{\prime}(z)}\right) \prec \varphi(z), \quad z \in U
$$

and

$$
(1-\alpha) \frac{\omega\left((f * h)^{-1}\right)^{\prime}(\omega)}{(f * h)^{-1}(\omega)}+\alpha\left(1+\frac{\omega\left((f * h)^{-1}\right)^{\prime \prime}(\omega)}{\left((f * h)^{-1}\right)^{\prime}(\omega)}\right) \prec \varphi(\omega), \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is defined by:

$$
\begin{equation*}
(f * h)^{-1}(\omega)=\omega-a_{2} h_{2} \omega^{2}+\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right) \omega^{3}+\cdots \tag{2.6}
\end{equation*}
$$

We note that for $h(z)=\frac{z}{1-z}$, the class $M_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $M_{\Sigma}(\alpha, \varphi)$ studied by Peng et al. (see [16], Definition 2.3).

Theorem 2.1 Let f given by (1.1) be in the class $M_{\Sigma}(h, \alpha, \varphi), \alpha \geq 0$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{h_{2} \sqrt{(1+\alpha)\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)^{2}}} \tag{2.7}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}(1+\alpha)}, & \text { if }\left|B_{2}\right| \leq B_{1} \tag{2.8}\\ \frac{B_{1}\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+(1+\alpha) B_{1}\left|B_{2}\right|}{h_{3}(1+\alpha)\left(\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)\right)}, & \text { if }\left|B_{2}\right|>B_{1}\end{cases}
$$

Proof. Let $f \in M_{\Sigma}(h, \alpha, \varphi), \alpha \geq 0$. Then there are analytic functions $u, v: U \longrightarrow U$ given by (2.2) such that

$$
\begin{equation*}
(1-\alpha) \frac{z(f * h)^{\prime}(z)}{(f * h)(z)}+\alpha\left(1+\frac{z(f * h)^{\prime \prime}(z)}{(f * h)^{\prime}(z)}\right)=\varphi(u(z)) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{\omega\left((f * h)^{-1}\right)^{\prime}(\omega)}{(f * h)^{-1}(\omega)}+\alpha\left(1+\frac{\omega\left((f * h)^{-1}\right)^{\prime \prime}(\omega)}{\left((f * h)^{-1}\right)^{\prime}(\omega)}\right)=\varphi(v(\omega)) . \tag{2.10}
\end{equation*}
$$

Now, equating the coefficients in (2.9) and (2.10), we get

$$
\begin{align*}
& (1+\alpha) a_{2} h_{2}=B_{1} b_{1}, \tag{2.11}\\
& 2(1+2 \alpha) a_{3} h_{3}-(1+3 \alpha) a_{2}^{2} h_{2}^{2}=B_{1} b_{2}+B_{2} b_{1}^{2}, \tag{2.12}\\
& -(1+\alpha) a_{2} h_{2}=B_{1} c_{1}, \tag{2.13}\\
& (3+5 \alpha) a_{2}^{2} h_{2}^{2}-2(1+2 \alpha) a_{3} h_{3}=B_{1} c_{2}+B_{2} c_{1}^{2} . \tag{2.14}
\end{align*}
$$

From (2.11) and (2.13) we get

$$
\begin{align*}
& b_{1}=-c_{1}, \tag{2.15}\\
& a_{2}^{2}=\frac{B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right)}{2 h_{2}^{2}(1+\alpha)^{2}} . \tag{2.16}
\end{align*}
$$

Adding (2.12) and (2.13), we have

$$
\begin{equation*}
2(1+\alpha) a_{2}^{2} h_{2}^{2}=B_{1}\left(b_{2}+c_{2}\right)+B_{2}\left(b_{1}^{2}+c_{1}^{2}\right) . \tag{2.17}
\end{equation*}
$$

Substituting (2.15) and (2.16) into (2.17), we get

$$
\begin{equation*}
b_{1}^{2}=\frac{B_{1}(1+\alpha)^{2}\left(b_{2}+c_{2}\right)}{2(1+\alpha) B_{1}^{2}-2 B_{2}(1+\alpha)^{2}} . \tag{2.18}
\end{equation*}
$$

Substituting (2.15) and (2.18) into (2.16), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(b_{2}+c_{2}\right)}{2(1+\alpha) h_{2}^{2}\left(B_{1}^{2}-B_{2}(1+\alpha)\right)} . \tag{2.19}
\end{equation*}
$$

Then, in view of (2.3), we have

$$
\begin{equation*}
(1+\alpha) h_{2}^{2}\left|B_{1}^{2}-B_{2}(1+\alpha)\right|\left|a_{2}\right|^{2} \leq B_{1}^{3}\left(1-\left|b_{1}\right|^{2}\right) \tag{2.20}
\end{equation*}
$$

From (2.11) and (2.20) we get

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{h_{2} \sqrt{(1+\alpha)\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)^{2}}}
$$

Next, from (2.12) and (2.14) we have

$$
4(1+2 \alpha)(1+\alpha) a_{3} h_{3}=(3+5 \alpha) B_{1} b_{2}+(1+3 \alpha) B_{1} c_{2}+4(1+2 \alpha) B_{2} b_{1}^{2}
$$

Then, in view of (2.3), we have

$$
4(1+2 \alpha)(1+\alpha) h_{3}\left|a_{3}\right| \leq 4(1+2 \alpha) B_{1}+4(1+2 \alpha)\left[\left|B_{2}\right|-B_{1}\right]\left|b_{1}\right|^{2}
$$

Notice that

$$
\left|b_{1}\right|^{2}=\frac{(1+\alpha)^{2} h_{2}^{2}}{B_{1}^{2}}\left|a_{2}\right|^{2} \leq \frac{B_{1}(1+\alpha)}{\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)},
$$

we get

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}(1+\alpha)}, & \text { if }\left|B_{2}\right| \leq B_{1} ; \\ \frac{B_{1}\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+(1+\alpha) B_{1}\left|B_{2}\right|}{h_{3}(1+\alpha)\left(\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)\right)}, & \text { if }\left|B_{2}\right|>B_{1} .\end{cases}
$$

This completes the proof of Theorem 2.1.
Remark 2.1 Putting $h(z)=\frac{z}{1-z}$ in Theorem 2.1, we obtain the results obtained by Peng et al. (see [16], Theorem 2.3).

Example 2.1 (1) For

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{+\infty}\left[\frac{1+\iota+\gamma(n-1)}{1+\iota}\right]^{m} z^{n}, \quad \iota, \gamma \geq 0, m \in \mathbf{N} \tag{2.21}
\end{equation*}
$$

this operator contains in turn many interesting operator (see [19]). Theorem 2.1 becomes

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\left[\frac{1+\iota+\gamma}{1+\iota}\right]^{m} \sqrt{(1+\alpha)\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{1}{\left[\frac{1+\iota+2 \gamma}{1+\iota}\right]^{m}} \frac{B_{1}}{(1+\alpha)}, & \text { if }\left|B_{2}\right| \leq B_{1} \\ \frac{1}{\left[\frac{1+\iota+2 \gamma}{1+\iota}\right]^{m}} \frac{B_{1}\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+(1+\alpha) B_{1}\left|B_{2}\right|}{(1+\alpha)\left(\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)\right)}, & \text { if }\left|B_{2}\right|>B_{1}\end{cases}
$$

(2) For

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{+\infty} \Gamma_{n-1}\left(\alpha_{1}\right) z^{n} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n-1}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{n-1} \cdots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots\left(\beta_{s}\right)_{n-1}(1)_{n-1}}, \quad n \geq 2 \tag{2.23}
\end{equation*}
$$

$q \leq s+1, \alpha_{i} \in \mathbf{C}(i=1,2, \cdots, q)$, and $\beta_{j} \in \mathbf{C} \backslash \mathbf{Z}_{0}^{-}(j=1,2, \cdots, s)$, where $\mathbf{Z}_{0}^{-}=$ $\{0,-1,-2, \cdots\}$, this operator contains in turn many interesting operators (see [20]). Theorem 2.1 becomes

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\left|\Gamma_{1}\left(\alpha_{1}\right)\right| \sqrt{(1+\alpha)\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{\left|\Gamma_{2}\left(\alpha_{1}\right)\right|(1+\alpha)}, & \text { if }\left|B_{2}\right| \leq B_{1} \\ \frac{B_{1}\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+(1+\alpha) B_{1}\left|B_{2}\right|}{\left|\Gamma_{2}\left(\alpha_{1}\right)\right|(1+\alpha)\left(\left|B_{1}^{2}-(1+\alpha) B_{2}\right|+B_{1}(1+\alpha)\right)}, & \text { if }\left|B_{2}\right|>B_{1}\end{cases}
$$

Definition 2.2 A function $f \in \Sigma$ given by (1.1) is said to be in the class $B_{\Sigma}(h, \lambda, \varphi)$, $\lambda \geq 0$, if the following conditions are satisfied:

$$
(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z) \prec \varphi(z), \quad z \in U
$$

and

$$
(1-\lambda) \frac{(f * h)^{-1}(\omega)}{\omega}+\lambda\left((f * h)^{-1}\right)^{\prime}(\omega) \prec \varphi(\omega), \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is given by (2.6).
We note that for $h(z)=\frac{z}{1-z}$, the class $B_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $B_{\Sigma}(\lambda, \varphi)$ studied by Peng et al. (see [16], Definition 2.5). Also for $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}$, the class $B_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $B_{\Sigma}(h, \alpha, \lambda)$, which is introduced and studied by EI-Ashwah (see [17], Definition 1). And for $\varphi(z)=\frac{1+(1-2 \beta)}{1-z}$, the class $B_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $B_{\Sigma}(h, \beta, \lambda)$, which is introduced and studied by EI-Ashwah (see [17], Definition 2].

Theorem 2.2 Let f given by (1.1) be in the class $B_{\Sigma}(h, \lambda, \varphi), \lambda \geq 0$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{h_{2} \sqrt{\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+\lambda)^{2} B_{1}}} \tag{2.24}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}(1+2 \lambda)}, & \text { if } B_{1} \leq \frac{(1+\lambda)^{2}}{1+2 \lambda} \tag{2.25}\\ \frac{B_{1}\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+2 \lambda) B_{1}^{3}}{h_{3}(1+2 \lambda)\left(\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+\lambda)^{2} B_{1}\right)}, & \text { if } B_{1}>\frac{(1+\lambda)^{2}}{1+2 \lambda} .\end{cases}
$$

Proof. Let $f(z) \in B_{\Sigma}(h, \lambda, \varphi), \lambda \geq 0$. Then there are analytic functions $u, v: U \longrightarrow U$ given by (2.2) such that

$$
\begin{equation*}
(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)=\varphi(u(z)) \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{(f * h)^{-1}(\omega)}{\omega}+\lambda\left((f * h)^{-1}\right)^{\prime}(\omega)=\varphi(v(\omega)) . \tag{2.27}
\end{equation*}
$$

Since

$$
(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)=1+(1+\lambda) a_{2} h_{2} z+(1+2 \lambda) a_{3} h_{3} z^{2}+\cdots
$$

and
$(1-\lambda) \frac{(f * h)^{-1}(\omega)}{\omega}+\lambda\left((f * h)^{-1}\right)^{\prime}(\omega)=1-(1+\lambda) a_{2} h_{2} \omega+(1+2 \lambda)\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right) \omega^{2}+\cdots$, it follows from $(2.4),(2.5),(2.26)$ and (2.27) that

$$
\begin{align*}
& (1+\lambda) a_{2} h_{2}=B_{1} b_{1} \tag{2.28}\\
& (1+2 \lambda) a_{3} h_{3}=B_{1} b_{2}+B_{2} b_{1}^{2} \tag{2.29}\\
& -(1+\lambda) a_{2} h_{2}=B_{1} c_{1} \tag{2.30}\\
& 2(1+2 \lambda) a_{2}^{2} h_{2}^{2}-(1+2 \lambda) a_{3} h_{3}=B_{1} c_{2}+B_{2} c_{1}^{2} \tag{2.31}
\end{align*}
$$

From (2.28) and (2.30) we get

$$
\begin{align*}
& b_{1}=-c_{1} \tag{2.32}\\
& a_{2}^{2}=\frac{B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right)}{2 h_{2}^{2}(1+\lambda)^{2}} \tag{2.33}
\end{align*}
$$

By adding (2.29) to (2.31), we have

$$
\begin{equation*}
2(1+2 \lambda) a_{2}^{2} h_{2}^{2}=B_{1}\left(b_{2}+c_{2}\right)+B_{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{2.34}
\end{equation*}
$$

Substituting (2.32) and (2.33) into (2.34), we get

$$
\begin{equation*}
b_{1}^{2}=\frac{B_{1}(1+\lambda)^{2}\left(b_{2}+c_{2}\right)}{2(1+2 \lambda) B_{1}^{2}-2 B_{2}(1+\lambda)^{2}} \tag{2.35}
\end{equation*}
$$

Substituting (2.32) and (2.35) into (2.33), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(b_{2}+c_{2}\right)}{h_{2}^{2}\left(2(1+2 \lambda) B_{1}^{2}-2 B_{2}(1+\lambda)^{2}\right)} . \tag{2.36}
\end{equation*}
$$

Then, in view of (2.3) and (2.32), we have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{B_{1}^{3}\left(1-\left|b_{1}\right|^{2}\right)}{h_{2}^{2}\left|(1+2 \lambda) B_{1}^{2}-B_{2}(1+\lambda)^{2}\right|} \tag{2.37}
\end{equation*}
$$

From (2.28) and (2.37) we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{h_{2} \sqrt{\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+\lambda)^{2} B_{1}}} \tag{2.38}
\end{equation*}
$$

By subtracting (2.29) from (2.31) and a computation using (2.32) finally leads to

$$
\begin{equation*}
2(1+2 \lambda) a_{3} h_{3}=2(1+2 \lambda) a_{2}^{2} h_{2}^{2}+B_{1}\left(b_{2}-c_{2}\right) \tag{2.39}
\end{equation*}
$$

Then, in view of (2.3) and (2.32), we have

$$
\begin{aligned}
2(1+2 \lambda) h_{3}\left|a_{3}\right| & \leq 2(1+2 \lambda) h_{2}^{2}\left|a_{2}\right|^{2}+B_{1}\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \\
& \leq 2(1+2 \lambda) h_{2}^{2}\left|a_{2}\right|^{2}+2 B_{1}\left(1-\left|b_{1}\right|^{2}\right)
\end{aligned}
$$

It follows from (2.28) that

$$
(1+2 \lambda) h_{3} B_{1}\left|a_{3}\right| \leq h_{2}^{2}\left[(1+2 \lambda) B_{1}-(1+\lambda)^{2}\right]\left|a_{2}\right|^{2}+B_{1}^{2}
$$

Notice that (2.38), we have

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}(1+2 \lambda)}, & \text { if } B_{1} \leq \frac{(1+\lambda)^{2}}{1+2 \lambda} \\ \frac{B_{1}\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+2 \lambda) B_{1}^{3}}{h_{3}(1+2 \lambda)\left(\left|(1+2 \lambda) B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|+(1+\lambda)^{2} B_{1}\right)}, & \text { if } B_{1}>\frac{(1+\lambda)^{2}}{1+2 \lambda}\end{cases}
$$

This completes the proof of Theorem 2.2.

Remark 2.2 (1) Putting $h(z)=\frac{z}{1-z}$ in Theorem 2.2, we obtain the results obtained by Peng et al. (see [16], Theorem 2.5).
(2) If let $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots(0<\alpha \leq 1)$, then inequalities (2.24) and (2.25) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{h_{2} \sqrt{\alpha\left|1+2 \lambda-\lambda^{2}\right|+(1+\lambda)^{2}}} \tag{2.40}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{2 \alpha}{h_{3}(1+2 \lambda)}, & \text { if } 0<\alpha \leq \frac{(1+\lambda)^{2}}{2(1+2 \lambda)} \tag{2.41}\\ \frac{2 \alpha^{2}\left|1+2 \lambda-\lambda^{2}\right|+4(1+2 \lambda) \alpha^{2}}{h_{3}(1+2 \lambda)\left(\alpha\left|1+2 \lambda-\lambda^{2}\right|+(1+\lambda)^{2}\right)}, & \text { if } \frac{(1+\lambda)^{2}}{2(1+2 \lambda)}<\alpha \leq 1\end{cases}
$$

The bounds on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given in (2.40) and (2.41) are more accurate than that given by Theorem 1 in [17].
(3) If let $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots(0 \leq \alpha<1)$, then inequalities (2.24) and (2.25) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2(1-\beta)}{h_{2} \sqrt{\left|2(1+2 \lambda)(1-\beta)-(1+\lambda)^{2}\right|+(1+\lambda)^{2}}} \tag{2.42}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{lr}
\frac{2(1-\beta)}{h_{3}(1+2 \lambda)}, & \text { if } \frac{1+2 \lambda-\lambda^{2}}{2(1+2 \lambda)} \leq \beta<1 ; \tag{2.43}\\
\frac{2(1-\beta)\left|2(1+2 \lambda)(1-\beta)-(1+\lambda)^{2}\right|+4(1+2 \lambda)(1-\beta)^{2}}{h_{3}(1+2 \lambda)\left(\left|2(1+2 \lambda)(1-\beta)-(1+\lambda)^{2}\right|+(1+\lambda)^{2}\right)}, \\
& \text { if } 0 \leq \beta<\frac{1+2 \lambda-\lambda^{2}}{2(1+2 \lambda)} .
\end{array}\right.
$$

The bounds on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given in (2.42) and (2.43) are more accurate than that given by Theorem 2 in [17].

Definition 2.3 A function $f \in \Sigma$ given by (1.1) is said to be in the class $C_{\Sigma}(h, \lambda, \varphi)$, $\lambda \geq 0$, if the following conditions are satisfied:

$$
\left(\frac{(f * h)(z)}{z}\right)^{\lambda}\left((f * h)^{\prime}(z)\right)^{1-\lambda} \prec \varphi(z), \quad z \in U
$$

and

$$
\left(\frac{(f * h)^{-1}(\omega)}{\omega}\right)^{\lambda}\left[\left((f * h)^{-1}\right)^{\prime}(\omega)\right]^{1-\lambda} \prec \varphi(\omega), \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is given by (2.6).
By applying the method of the proof of Theorem 2.2, we can prove the following result.
Theorem 2.3 Let f given by (1.1) be in the class $C_{\Sigma}(h, \lambda, \varphi), \lambda \geq 0$. Then

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{h_{2} \sqrt{\left|\left(\lambda^{2}-5 \lambda+6\right) B_{1}^{2}-2(2-\lambda)^{2} B_{2}\right|+2(2-\lambda)^{2} B_{1}}}
$$

and
$\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}|3-2 \lambda|}, & \text { if } B_{1} \leq \frac{(2-\lambda)^{2}}{|3-2 \lambda|} ; \\ \frac{2 B_{1}^{3}|3-2 \lambda|+B_{1}\left|\left(\lambda^{2}-5 \lambda+6\right) B_{1}^{2}-2(2-\lambda)^{2} B_{2}\right|}{h_{3}|3-2 \lambda|\left[\left|\left(\lambda^{2}-5 \lambda+6\right) B_{1}^{2}-2(2-\lambda)^{2} B_{2}\right|+2(2-\lambda)^{2} B_{1}\right]}, & \text { if } B_{1}>\frac{(2-\lambda)^{2}}{|3-2 \lambda|} .\end{cases}$
Definition $2.4 \quad A$ function $f \in \Sigma$ given by (1.1) is said to be in the class $L_{\Sigma}(h, \alpha, \varphi)$, $\alpha \geq 0$, if the following conditions are satisfied:

$$
\left(\frac{z(f * h)^{\prime}(z)}{(f * h)(z)}\right)^{\alpha}\left(1+\frac{z(f * h)^{\prime \prime}(z)}{(f * h)^{\prime}(z)}\right)^{1-\alpha} \prec \varphi(z), \quad z \in U
$$

and

$$
\left(\frac{\omega\left((f * h)^{-1}\right)^{\prime}(\omega)}{(f * h)^{-1}(\omega)}\right)^{\alpha}\left(1+\frac{\omega\left((f * h)^{-1}\right)^{\prime \prime}(\omega)}{\left((f * h)^{-1}\right)^{\prime}(\omega)}\right)^{1-\alpha} \prec \varphi(\omega), \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is given by (2.6). We note that for $h(z)=\frac{z}{1-z}$, the class $L_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $L_{\Sigma}(\alpha, \varphi)$ studied by Peng et al. (see [16], Definition 2.4).

By applying the method of the proof of Theorem 2.1, we can prove the following result.
Theorem 2.4 Let f given by (1.1) be in the class $L_{\Sigma}(h, \alpha, \varphi), \alpha \geq 0$. Then

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{h_{2} \sqrt{\left|\left(\alpha^{2}-3 \alpha+4\right) B_{1}^{2}-2(2-\alpha)^{2} B_{2}\right|+2 B_{1}(2-\alpha)^{2}}}
$$

and
$\left|a_{3}\right| \leq \begin{cases}\frac{2 B_{1}}{h_{3}\left(\alpha^{2}-3 \alpha+4\right)}, & i f\left|B_{2}\right| \leq B_{1} ; \\ \frac{2 B_{1}\left|\left(\alpha^{2}-3 \alpha+4\right) B_{1}^{2}-2(2-\alpha)^{2} B_{2}\right|+4(2-\alpha)^{2} B_{1}\left|B_{2}\right|}{h_{3}\left(\alpha^{2}-3 \alpha+4\right)\left(\left|\left(\alpha^{2}-3 \alpha+4\right) B_{1}^{2}-2(2-\alpha)^{2} B_{2}\right|+2 B_{1}(2-\alpha)^{2}\right)}, & i f\left|B_{2}\right|>B_{1} .\end{cases}$
Remark 2.3 Putting $h(z)=\frac{z}{1-z}$ in Theorem 2.4, we obtain the results obtained by Peng et al. (see [16], Theorem 2.4).

Definition 2.5 A function $f \in \Sigma$ given by (1.1) is said to be in the class $S T_{\Sigma}(h, \alpha, \varphi)$, $\alpha \geq 0$, if the following conditions are satisfied:

$$
\frac{z(f * h)^{\prime}(z)}{(f * h)(z)}+\alpha \frac{z^{2}(f * h)^{\prime \prime}(z)}{(f * h)(z)} \prec \varphi(z), \quad z \in U
$$

and

$$
\frac{\omega\left((f * h)^{-1}\right)^{\prime}(\omega)}{(f * h)^{-1}(\omega)}+\alpha \frac{\omega^{2}\left((f * h)^{-1}\right)^{\prime \prime}(\omega)}{(f * h)^{-1}(\omega)} \prec \varphi(\omega), \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is given by (2.6). We note that for $h(z)=\frac{z}{1-z}$, the class $S T_{\Sigma}(h, \alpha, \varphi)$ reduces to the class $S T_{\Sigma}(\alpha, \varphi)$ studied by Peng et al. (see [16], Definition 2.2).

By applying the method of the proof of Theorem 2.1, we can prove the following result.
Theorem 2.5 Let f given by (1.1) be in the class $S T_{\Sigma}(h, \alpha, \varphi), \alpha \geq 0$. Then

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{h_{2} \sqrt{\left|(1+4 \alpha) B_{1}^{2}-(1+2 \alpha)^{2} B_{2}\right|+B_{1}(1+2 \alpha)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{h_{3}(1+4 \alpha)}, & \text { if }\left|B_{2}\right| \leq B_{1} \\ \frac{B_{1}\left|(1+4 \alpha) B_{1}^{2}-(1+2 \alpha)^{2} B_{2}\right|+(1+2 \alpha)^{2} B_{1}\left|B_{2}\right|}{h_{3}(1+4 \alpha)\left(\left|(1+4 \alpha) B_{1}^{2}-(1+2 \alpha)^{2} B_{2}\right|+(1+2 \alpha)^{2} B_{1}\right)}, & \text { if }\left|B_{2}\right|>B_{1}\end{cases}
$$

Remark 2.4 Putting $h(z)=\frac{z}{1-z}$ in Theorem 2.5, we obtain the results obtained by Peng et al. (see [16], Theorem 2.2).

Definition 2.6 A function $f \in \Sigma$ given by (1.1) is said to be in the class $B_{\Sigma}(h, \lambda, k)$, $\lambda \geq 0,0<k \leq 1$, if the following conditions are satisfied:

$$
\left|(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)-1\right|<k, \quad z \in U
$$

and

$$
\left|(1-\lambda) \frac{(f * h)^{-1}(\omega)}{\omega}+\lambda\left((f * h)^{-1}\right)^{\prime}(\omega)-1\right|<k, \quad \omega \in U,
$$

where the function $h(z)$ is given by (1.3) and $(f * h)^{-1}(\omega)$ is given by (2.6).
Theorem 2.6 Let f given by (1.1) be in the class $B_{\Sigma}(h, \lambda, k), \lambda \geq 0,0<k \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{k}{h_{2} \sqrt{(1+2 \lambda) k+(1+\lambda)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{k}{h_{3}(1+2 \lambda)}, & \text { if } k \leq \frac{(1+\lambda)^{2}}{1+2 \lambda} \\ \frac{2 k^{2}}{h_{3}\left[(1+2 \lambda) k+(1+\lambda)^{2}\right]}, & \text { if } k>\frac{(1+\lambda)^{2}}{1+2 \lambda}\end{cases}
$$

Proof. Let $f(z) \in B_{\Sigma}(h, \lambda, k), \lambda \geq 0,0<k \leq 1$. Then there are analytic functions $u, v: U \longrightarrow U$ given by (2.2) such that

$$
\begin{equation*}
(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)=1-k u(z) \tag{2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{(f * h)^{-1}(\omega)}{\omega}+\lambda\left((f * h)^{-1}\right)^{\prime}(\omega)=1-k v(\omega) . \tag{2.45}
\end{equation*}
$$

Now, equating the coefficients in (2.44) and (2.45), we get

$$
\begin{align*}
& (1+\lambda) a_{2} h_{2}=-k b_{1}, \tag{2.46}\\
& (1+2 \lambda) a_{3} h_{3}=-k b_{2}, \tag{2.47}\\
& -(1+\lambda) a_{2} h_{2}=-k c_{1}, \tag{2.48}
\end{align*}
$$

$$
\begin{equation*}
2(1+2 \lambda) a_{2}^{2} h_{2}^{2}-(1+2 \lambda) a_{3} h_{3}=-k c_{2} \tag{2.49}
\end{equation*}
$$

From (2.46) and (2.48) we get

$$
\begin{equation*}
b_{1}=-c_{1} . \tag{2.50}
\end{equation*}
$$

By adding (2.47) to (2.49), we have

$$
\begin{equation*}
2(1+2 \lambda) a_{2}^{2} h_{2}^{2}=-k\left(b_{2}+c_{2}\right) \tag{2.51}
\end{equation*}
$$

From (2.3) and (2.51) we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{k}{h_{2} \sqrt{(1+2 \lambda) k+(1+\lambda)^{2}}} \tag{2.52}
\end{equation*}
$$

Subtracting (2.47) from (2.49) we have

$$
\begin{equation*}
2(1+2 \lambda) a_{3} h_{3}=2(1+2 \lambda) a_{2}^{2} h_{2}^{2}+k\left(c_{2}-b_{2}\right) \tag{2.53}
\end{equation*}
$$

Then, in view of (2.3) and (2.53), we have

$$
\begin{aligned}
2(1+2 \lambda) h_{3}\left|a_{3}\right| & \leq 2(1+2 \lambda) h_{2}^{2}\left|a_{2}\right|^{2}+k\left(\left|c_{2}\right|+\left|b_{2}\right|\right) \\
& \leq 2(1+2 \lambda) h_{2}^{2}\left|a_{2}\right|^{2}+2 k\left(1-\left|b_{1}\right|^{2}\right)
\end{aligned}
$$

It follows from (2.46) that

$$
(1+2 \lambda) h_{3} k\left|a_{3}\right| \leq h_{2}^{2}\left[(1+2 \lambda) k-(1+\lambda)^{2}\right]\left|a_{2}\right|^{2}+k^{2}
$$

Notice that (2.52), we have

$$
\left|a_{3}\right| \leq \begin{cases}\frac{k}{h_{3}(1+2 \lambda)}, & \text { if } k \leq \frac{(1+\lambda)^{2}}{1+2 \lambda} \\ \frac{2 k^{2}}{h_{3}\left[(1+2 \lambda) k+(1+\lambda)^{2}\right]}, & \text { if } k>\frac{(1+\lambda)^{2}}{1+2 \lambda}\end{cases}
$$

This completes the proof of Theorem 2.6.

References

[1] Mocanu P T. Une propriete de convexite generalisee dans la theorie de la representation conforme. Mathematica (Cluj), 1969, 11: 127-133.
[2] Miller S S, Mocanu P T, Reade M O. All α-convex functions are univalent and starlike. Proc. Amer. Math. Soc., 1973, 37: 553-554.
[3] Lewandowski Z, Miller S, Zlotkiewicz E. Gamma-starlike functions. Annales Universitatis Mariae Curie Sklodowska Sect. A, 1974, 28: 53-58.
[4] Li J L, Owa S. Sufficient conditions for starlikness. Indian. J. Pure. Appl. Math., 2002, 33: 303-318.
[5] Chen M. On the regular functions satisfying $\operatorname{Re}\left(\frac{f(z)}{z}>\alpha\right)$. Bull. Inst. Math. Acad. Sinica, 1975, 3: 65-70.
[6] Chichra P N. New subclasses of the class of close-to-convex functions. Proc. Amer. Math. Soc., 1977, 62: 37-43.
[7] MacGregor T H. Functions whose derivative has a positive real part. Trans. Amer. Math. Soc., 1962, 104: 532-537.
[8] Ding S S, Ling Y, Bao G J. Some properties of a class of analytic functions. J. Math. Anal. Appl., 1995, 195(1): 71-81.
[9] Lewin M. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc., 1967, 18(1): 63-68.
[10] Brannan D A, Clunie J G. Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Instute Held at the University of Durham, Durham, July 1-20, 1979. New York: Academic Press, 1980.
[11] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Ration. Mech. Anal., 1969, 32: 100-112.
[12] Lashin A Y. On certain subclasses of analytic and bi-univalent functions. J. Egyptian Math. Soc., 2016, 24: 220-225.
[13] Ularu N. Coefficient estimates for bi-univalent Bazilevic functions. Anal. Thoery Appl., 2014, 30(3): 275-280.
[14] Orhan H, Magesh N, Balaji V K. Fekete-Szegö problem for certain class of Ma-Minda biunivalent functions. Afr. mat., Publishing online: 25 September, 2015.
[15] Srivastava H M, Murugusundaramoorthy G, Vijaya K. Coefficient estimates for some families of bi-bazilevic functions of the Ma-Minda type involving the Hohlov operator. J. Clssical Analysis, 2013, 2(2): 167-181.
[16] Peng Z G, Han Q Q. On the coefficients of several classes of bi-univalent functions. Acta Math. Sci., 2014, 34B(1): 228-240.
[17] EI-Ashwah R M. Subclasses of bi-univalent functions defined by convolution. J. Egyptian Math. Soc., 2014, 22: 348-351.
[18] Nehari Z. Conformal Mapping. New York: McGraw-Hill Book Co., 1952.
[19] Catas A, Oros G I, Oros G. Differential subordinations associated with multiplier transformations. Abstr. Appl. Anal., 2008, ID 845724: 1-11.
[20] Dziok J, Srivastava H M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput., 1999, 103: 1-13.

