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Abstract

Under two hypotheses of nonconforming finite elements of fourth order elliptic prob-
lems, we present a side-patchwise projection based error analysis method (SPP-BEAM
for short). Such a method is able to avoid both the regularity condition of exact solutions
in the classical error analysis method and the complicated bubble function technique in
the recent medius error analysis method. In addition, it is universal enough to admit
generalizations. Then, we propose a sufficient condition for these hypotheses by imposing
a set of in some sense necessary degrees of freedom of the shape function spaces. As an
application, we use the theory to design a P3 second order triangular H? non-conforming
element by enriching two P; bubble functions and, another P, second order triangular
H? nonconforming finite element, and a Ps; second order tetrahedral H? non-conforming
element by enriching eight P, bubble functions, adding some more degrees of freedom.
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1. Introduction

We solve a biharmonic equation:

A%y = f, in Q,

U= Uy 1= @ =0, on 0%}, (L)
on

where (2 is a bounded 2D polygonal domain or 3D polyhedral domain, and n is the unit

outer normal to JQ). Doing integration by parts twice, the weak formulation of (1.1) is: Find

u € HZ(Q) such that

a(u,v) = (f,v) Vv € H3 (). (1.2)

Here HZ(Q) := {v € H*(Q) | v =1, =0o0n 90} and H%(Q) is the standard Sobolev space [3].
The bilinear forms are

a(u,v) = / D?*u : D?vdx,

Q
(f,0) = /Q fodx,
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where

Opy 2, U Opyz, U

D%y : = ( ) for 2D,
Oppa U OpyaaUl

O 2, ¥ Opyzt Oy gat
2, .
Du:= | Opya, ¥ Opyz,t Opyagu | for 3D,
8m3w1u awngu 8I313u

with Op,z,u 1= 8:512;12'

In traditional finite element methods of problem (1.2), degree 2 is the minimum polynomial
degree. We need polynomials of degree 2 or above so that the second derivatives are not
identically zero in the weak variational form. On a macro-triangle grid, the Powell-Sabin
element [14] is a P, H2-conforming finite element in 2D. That is, the finite element space is C1,
a subspace of the H? Sobolev space. The Hsieh-Clough-Tocher P; element is an H2-conforming
finite element on the 1-to-3 splitting macro-triangle grids, [6]. When the polynomial degree is
5 or above, single-triangle H?-conforming elements can be constructed on general triangular
grids [2]; when the polynomial degree is 9 or above, single-tetrahedron H2-conforming elements
can be constructed on general tetrahedral grids [21,22]. On both non-macro-triangle grids and
non-macro-tetrahedra grids, Morley element is a P, non-conforming finite element, i.e., the
finite element space is not a subspace of the H? space. The remaining gap is the P; and P,
non-conforming finite elements for the 4-th order differential equations in 2D and the Ps, - - -,
P non-conforming finite elements for the 4-th order differential equations in 3D.

In this paper, we first present two hypotheses of nonconforming finite elements. Then,
under them, we generalize the idea of [10,12] to develop a side-patchwise projection based error
analysis method (SPP-BEAM for short). Such a method only assumes the basic H? regularity
for the exact solution. Compared with the classical a priori error analysis of nonconforming
finite elements [3,6,16], the analysis herein applies integration by parts to discrete functions
in nonconforming finite element spaces rather than the exact solution of the problem under
consideration. This in particular allows to remove the indispensable regularity condition of the
exact solution in the classical analysis. Compared with the recent medius analysis of [8,10,13],
the analysis herein does not involve the bubble function technique which was first introduced to
analyze efficiency of a posteriori error estimators [17]. Note that the bubble function technique
will be very complicated for high dimensional cases and high order problems [8].

As an application of the theory, we propose a sufficient condition for these two hypotheses.
More precisely, we give a set of in some sense necessary degrees of freedom of the possible shape
functions space. Based on these degrees of freedom, we construct a P3 second order triangular
H? non-conforming finite element by enriching two P, bubble functions and imposing some
additional degrees of freedom. As a result, the shape functions space is of 12 dimensions, and
the corresponding degrees of freedom are the function value at three vertices and the average of
function, the average of the normal derivative, and the first moment of the normal derivative, on
three edges. Then, we construct another Py, but still of 2nd order, H? non-conforming element
on triangular grids. After that we design a P; second order tetrahedral H? non-conforming
finite element by enriching eight P, bubble functions and adding some necessary degrees of
freedom. The shape functions space of this three dimensional element is of 28 dimensions, and
the corresponding degrees of freedom are the average and the first moment of function on six
edges, and the average of function, the average of the normal derivative, and the first moment
of the normal derivative, on four faces. We show that the three elements are well-defined
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and converge at the second order. Moreover, we give explicitly the basis functions for them.
Numerical tests confirm the theory.

Previously, for 2D, Wang, Zu and Zhang enriched the Ps; polynomials by six Pz bubble
functions in [20], to obtain a 2nd-order triangular H? non-conforming element. Independently,
but similarly, Chen and Chen constructed a 2nd-order triangular H? non-conforming element
in [4], by enriching the P; polynomials by three Ps bubble functions and three Ps bubble
functions, cf. [4]. Both elements have 16 degrees of freedom on each element. In [7], Gao, Zhang
and Wang did construct another 12 dof 2nd order triangular H? non-conforming element. In
their construction, they enriched the P3 space by two special Ps bubbles, cf. [7], such that the
resulting finite element space is C°. This construction seems not natural, but intelligent. We
numerically compare the two new triangular elements with three existing finite elements of 2nd
order, showing that the new elements are more stable and more accurate. For 3D, see [5] for
a second order P; plus 12 Py element bubbles H? nonconforming tetrahedron element and [20]
for a second order Ps plus 12 P; element bubbles H? nonconforming tetrahedron element.

2. Hypothesis and SPP-BEAM

This section presents hypotheses and consequently the SPP-BEAM of nonconforming finite
element methods satisfying the hypotheses. This leads to abstract a priori error estimates. To
this end, we introduce some more notation. Let 7, = {K} be a regular triangulation on €,
cf. [3]. Let &, be the set of n —1 dimensional sides of 7y, and &,(2) be the set of internal sides.
For each internal n — 1 dimensional side e, let w, be the union of two elements sharing the side
e; for each boundary side e, let w, be the unique element which takes e as one of its n — 1
dimensional sides. Given integer ¢ > 0, let II;,, u be the L? projection of u to the degree £
polynomial space on w,, and II,_1 g u be the L? projection of u onto the degree £— 1 polynomial
space over element K; for the case £ =0, let II,_1 gu = 0.

Let V"', be a nonconforming finite element space of Hg () defined over the mesh 75, with
n = 2,3. The condition of the wellposedness of the discrete problem and a priori error estimate
of the finite solution is presented under the following two hypotheses.

Hypothesis 2.1. For any internal n — 1 dimensional side e, it holds that
/[th] cqds =0 Vqe€ (Pye)", Vv e Viles

here and throughout this paper, {-} denotes the average and [-] the jump across a side e, V}y, and
D% are the discrete counterpart of V and D?, respectively, defined piecewise; for any boundary
n — 1 dimensional side e, it holds that

/Vv ~qds =0 Vg€ (Pe)", YveV,.
Hypothesis 2.2. For any internal n — 1 dimensional side e, it holds that

/[v]qu =0 Vg€ Pra(e), YveVy;
for any boundary n — 1 dimensional side e, it holds that

/qus =0 Vg€ Pri(e), YveV,.

€
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For two dimensions, a sufficient condition for both Hypothesis 2.1 and 2.2 is up to additional
possible degrees of freedom for the uni—solvency to take the following degrees of freedom on
each element K:

1. the moments [ g%'jqu for all ¢ € Py(e) on each edge e;

€

2. the moments [ (-)gds for all ¢ € P;_1(e) on each edge e;
3. the value of () at each vertex.

For three dimensions, a sufficient condition for both Hypothesis 2.1 and 2.2 is up to addi-
tional possible degrees of freedom for the uni—solvency to take the following degrees of freedom
on each element K:

1. the moments | g%‘e)qu for all ¢ € Py(e) on each face e;
2. the moments [ (-)gds for all ¢ € P,_1(e) on each face e;
3. the moments [ (-)gds for all ¢ € P;(s) on each edge s.

The finite element problem, discretizing the biharmonic equation (1.1), is: Find wy € Vit
such that

(Dzuh,DQ’Uh)h = (f,vn) Yoy, € th,lév (2.1)

where the discrete inner product is defined element-wise, (,-)n = > c. (-, ")k, and the semi-
1/2
norm [vplo.n = (X ger, (D?vn, D?vp) k) /

For the analysis, we introduce the projection averaging interpolation operator defined in [16].
To this end, let V,¢ be the P5 Argyris element space for 2D [2] and the Py H 2 conforming element
space for 3D [21,22], respectively. For the Ps Argyris element, its degrees of freedom on triangle
K are as follows

1. the values of D’(-), £ =0, 1,2, at each vertex;

2. the first order normal derivative % at the mid-point of each edge.

For the Py H? conforming element in 3D, its degrees of freedom on tetrahedron K are as follows

1. the values of D’(-), £ =0,1,2,3,4, at each vertex;
2. the first order normal derivatives % and % at the mid-point of each edge;

2 2 2
3. the second order normal derivatives %15'2), gn(j'z), ;nggl at 2 equally-distributed internal

points of each edge;

4. the value (-) at the mid-point of each face;

5. the first order normal derivatives % at three standardly-distributed internal points of

each face which are able to uniquely determine a 2D P; polynomial;

6. the values (-) at four standardly-distributed internal points of element which are able to
uniquely determine a 3D P; polynomial.
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where for each edge of K n and m are the unit normal vector of the two faces sharing the edge,
respectively.

For each degree of freedom d at point a on the boundary of K, let w(a) denote the union of
elements that share point @ and N (a) denote the number of elements in w(a). Let k = 2 for 2D
and k = 4 for 3D. Then, for any v € V}",, define the projection average interpolation operator
In 2 V', — V¢ by: if a € 99 and dg (¢) = 0 for any ¢ € C*(Q) N HZ(Q), then dg (Ipv|x) = 0;

otherwise L

dK(fhle) = N(a) Z dK(’UlK/)(CL).
K'ew(a)

Lemma 2.1. Assume that Hypothesis 2.1 and 2.2 hold with £ > 0. Then, for 0 <1 < 2, it
holds that ~ .
| Dhon = Duon)1§ < € 3 Wi ID*unllf e
KeTy,

for any v, € V}',. Here and throughout the paper Dy = V.

Proof. The proof can be found in [16, Lemma 5.6.4]. O

Theorem 2.1. Let uy, be the solution of (2.1), and u be the solution of (1.1). Assume that
Hypothesis 2.1 and 2.2 hold with ¢ > 0, and that the seminorm | D3 - |lo defines a norm over
the nonconforming finite element space V;',. Then,

1/2
DR = wlo < € int, (DR slo+ (X 10~ M) D2ulR., )
VS Tht eely

1/2
+ O< > hklI - HZ—l,K)f|(2),K> -

KeTy

Remark 2.1. The SPP-BEAM is closely related to the medius error analysis method in [8,10,
13]. The major new idea herein is to introduce the side patch projection operator Il ,, . This
enables us to avoid the bubble function technique which is the main tool of [8,10,13]. Note
that the bubble function technique will become very complicated for high dimensional cases
and high order problems.

Proof. Since the seminorm ||D% - ||o defines a norm over the nonconforming finite element
space V}'y, the discrete problem (2.1) is well-defined. For the nonconforming finite element
solution, it holds that

(D*(sp — un), D*(sn — un))n
= (D2u, Dz(Sh — uh))h — (f, Sp — Uh) + (DQ(S}L — ’LL),DZ(S}L — uh))h,

for any s, € Vi'e- By the Schwarz inequality and the triangle inequality,

(Dzu, DQ’Uh)}L - (f7 ’Uh)

|sp, — upl2,n < sup + |u — spl2,h, (2.2)
0Avn eV, |vn]2,n
DQUJ, D2’Uh h — , Up
|u—upl2p < sup ( ) (£,n) + 2|u — spl2,n- (2.3)

0£vn €V, [Un 2,1
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Let @, = Ipvp be the averaging interpolation of v, defined above. Next we shall follow [8,10,13]
to use such an averaging interpolation to analyze the first term on the right—hand side of (2.3).
This shall allow for an application of the usual Green formulation to a discrete function in the
finite element space but not to the exact solution.

(DQU, DQUh)h — (f, Uh)

[Unl2,h
_ (D?u, D*(vp, — n))n — (f, (vn — Tn))
B |Uh\2,h
_ (D*(u —sn), D*(vn, — n))n + (D*sp, D*(vn — 94))n — (f;vn — On)
B \Uh|2,h
< (DQShaDQ(Uh - ﬁh))h — (f, Vp — 17}1) " C’|u _ $h|27h,
|vn|2,n

where we use the stability of the averaging interpolation operator I, that

(D*(u = sn), D?(vp — )
<|u — spl2,nlvn — Oplon < (14 C)|u— sy

2,h|vh|2,h~

We start to estimate the consistency error. An integration by parts leads to
(D?sp, D*(vn — o)) — (f, 00 — On)

= [Dispn - {V (v, — Tp)}ds — [ [divy, Disp] - n{v, — O }ds
> (/ / )

EES;L(Q € €

+ Z (/{D,leh}n~ [Vi(vp, — op)]ds — /e{dth D35} -nfuy, — 17h]ds)

e€&y ¢

-y /K A%(sp, — w) (v — n)dx. (2.4)

KeThn

Here, n is a fixed unit normal vector to the side e. We estimate the five error terms one by one.

One observation is that [IIy,,, D?*u]. = 0 for any internal e. The main idea here is to use
it to analyze the first term on the right—hand side of (2.4) which avoids the bubble function
technique used in the medius error analysis from [8,10,13]. This leads to

/[D,leh]n . {Vh(vh — f)h)}ds
= /[D%Sh - HngeDzu]n . {Vh(vh - ﬁh)}ds

0,el{Vr(vn — 0n)}Hlo.e

1 .
< §||D28h — g, D*ullg.etve- 1V (0h — B0 llo,e+ve- -

< ||[Dysn — e, D?ul|

Here and throughout the paper, e™ and e~ denote the restrictions from both side of e. Using
the inverse inequality, we get

ID7 s — e, D*ullo,et ve-
S C(h71/2||Df2Lsh - H€7weD2u||07we + h1/2|Df2LSh - H[7W8D2u|17we)
< Ch™2(|Dji(sh = wlow. + | = Mg, ) D?u

O,we)~
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For the other term, we apply the stability of the averaging interpolation operator to get

IVi(vn = 0n)lo,e+ e
<Ch™ 2|V (vn = n)llow. + ChY2[Vh(vn — Tn)l1 ..
<ChM2|Vp(on = ),
<Ch'2(||Divnllow. + | Dhvnllos.) < ChY? (| Divllo . (25)

where w, is the union of all the elements which shares at least one vertex with the two elements
of w.. Combining the two estimates, we estimate the first term in (2.4) to get

> [ [Disnln-{Va(vn —n)}ds
ecEn ()Y€

1/2
SC( > la- Hz,we)DQUHawe) |vnl2,n + C|ID (u = s)llo|vn2,n- (2.6)
e€&n(Q)

For the third error term in (2.4), we need to use the P, continuity of Vv, in the sense that
J.IVnonlpeds = 0 for any Py polynomial py.

/ (D2si¥n - [V (on — n)]ds

_ / (D2 — oo, D%ubn - [V (on — in)]ds

< |{Disn — My, D*ullo.ell[Va(vn — )]0
< Ch7H{Djsn — My, D*ubllo,w. [V h (v — 04)]ll0.w.
< C(ID (sn — wWllo.w. + I = Mo, ) D?ullow, )| Divsllos. -

The analysis in the last two steps is the same as that in the last two steps of (2.5). As in (2.6),
a summation over all sides gives

> [{Disun - [Va(vn — 0n)lds

ec&, V€

1/2
SC( >olu- Hz,we)DQUIlg,we> [onlo.n + CIIDj (u = s)llofvnl2,n- (2.7)
e€lp

The second error term in (2.4) is estimated similarly to the first term:

/[divh D,zlsh] . Il{’Uh — f)h}ds

€

= / [divy, D3 sy, — div Iy, D*u) - n{v, — oy }ds

e
< Ch™ Y| divy, Disp, — div Iy, D*ullo.w, |vn — ]
< Ch™2||Di sy — g, D*ullo.w. ||V — Onll0.w.

< C(ID5 (sn = Wllow. + I(I = Mew, ) D?ullow, )lvnl2.z. -

0,we
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The fourth error term in (2.4) is analyzed similarly to that of the second term.

fe [vr]pe—1ds = 0 for any Pp_q polynomial py_1, we get
/{divh Dish} . n[vh — T}h]ds

= /{divh D%Sh — diV}L Hg,weD2u} . n[vh — ’l~)h]d$
< C(ID7(sn = Wllow, + (I = M, ) D*ullo.w, ) vnl2a, -
For the fifth error term in (2.4), we have

[ (@25 on  on)dx < O 8%sn — Flolonly i
K

where K is the union of elements sharing at least one vertex with K. To estimate

1A%sy — flloe < [|A%sp — o1 i fllox + (T — o1 k)

we follow the idea of [17] to introduce a P, 41 bubble function on element K:

b= )\1"')\n+17

Using

where )\; is a barycentric coordinate on K, i.e., the linear function \; assumes value 1 at vertex
x; and 0 on the opposite side. The two norms, the weighted norm and the standard norm, are

equivalent.
18255 — T, 15 i < ClB(A* s — W15 )15 5
= C(A%sp — o1k f, 0K ) ks
where we let
wre = b*(A%sy, — o1,k f) € H(K).
In order to use the inverse estimate, we need the following decomposition:
(A%sp, — oy i frwi)k = (A%sp — fiw )k + (I = oy k) fLwk )k
We apply the integration by parts twice on one element to get
(A%s), — f,wg) = (D*sy, D*wg ) — (D*u, D*wk)
<|u—splo.x|wkl2, K-
Combining the above two inequalities, we obtain
(A28, = o1 i fwic) < (Chilu— spl2, i + (1 = Tem1, ) fllo, ) [wic o, 5
By (2.9)—(2.11), we have
1A%, = fllo.x < Chillu— spla,x + Cll(I = o1 ,x) fllo,x-
By (2.8), the fifth term of (2.4) is bounded by

Z/AQ sp —u)(vp, — Up)dx

KeTy,

<C(HD2u—sh ||0+( ;h kI —Tle—1, k)
h

)

(2.10)

(2.11)

Putting together the above five bounds into (2.4), we obtain the estimate of the finite element

solution in the theorem.
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3. A P;+ 2B, Element in 2D

On each triangle, the finite element shape functions are formed by the following polynomials
P;(K) = SpaH{Pg(iﬂl, 1'2), 1’1P370(K), ZL’Qng(K)},

where P; o(K) denotes the space of P; polynomials vanishing on 0K. Note that Pso(K) :=
span{A; Az A3} where ); is the barycentric coordinate for vertex x;, a linear polynomial vanishing
on one edge. The dual basis of the finite element space, i.e., the degrees of freedom of the finite
element, is

v(x;) at three vertices of K, (3.1a)

/ vds, / Onvds, / sOpvds  on three edges of K. (3.1b)

The global finite element space is defined by

Vhaz12 1 = {v e L*(Q)|v| € P (K), v is continuous at internal vertices of Ty,
K

/ vds, / Onvds and / s$Onvds are continuous across internal edges of Ty,
e e e

v(x;) = /vds = /3nvds = /s@nvds =0

at boundary vertices and edges of 77L} (3.2)

Theorem 3.1. The 12 degrees of freedom in (3.1a) uniquely determine a polynomial of P (K),
defined in (3.2).

Proof. Let u, € P; (K) such that the 12 degrees of freedom of uj, in (3.1a) and (3.1b)
having zero value. We need to show uj, = 0. On a general triangle K = Ax;xsx3, we recall
that A; is the barycentric coordinate, that is a linear function having values

)‘z(Xj) = 5ij7 7’7.] = 172a3'

Then we can choose such a homogeneous basis for the space of the P3 + 2B, element that

up = Zuibi(x), (3.3)

where
by = A3, by = A3, by = A3,
by = A} As, bs = A1A3, bs = A3As,
by = Ao )3, bs = A2A1, by = A3\3,

bio = AMfAads, b = MA3A3,  bio = A A3,

At x1, all b;(x1) = 0 except ¢ = 1. So the three vertex values would force u; = ug =u3 =0
n (3.3). Next, when restricted on an edge ey, only two basis functions bg and b; are nonzero.
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X2

Fig. 3.1. Computing the normal derivative 01A3 = VA3 - nj.

By computing the zeroth moment on e;, we get

1
/el b7d8 = /61 bﬁds = E|€1|.

A combination of two basis leads to fel (b — b7)ds = 0. So we change a basis for the expansion
of up in (3.3) to
Up = 6454 + 5686 + 5868 + 510?]10 + &11511 =+ 512612, (34)
where
by = (A2 = AMA3), b = (A3As — AaA3), bs = (A3A1 — AsAD),
bio = A hads, b = MA3As, b2 = A3
Next, consider the Oth and 1st moments of Jju, = Vuy - n; on an edge e;. For the linear

functions A1 and Az, cf. Fig. 3.1,

1
(91)\1 = V)\l Ny = —,
1

D= B g, = el
7“1|€1‘ T1‘61|

Consequently, we have

7 |€1|—7‘31 2 31 2
O1bgsds = — ————(2X2A3 — A\3) — A5 — 2D\ d
/el 1esee /el { r1leil (2A2da = 45) 7“1|€1|( 2 2s) | sds

2 1
:@/ [_ (1—7a1)(2(1 — )t — %) — 7 (1 — £)* — 2(1 — t)t)} tdt
1 0
e 1
o 127
where 731 := r31/|e1| := |x201|/|e1]. Note that the answer is independent of r3;. Similarly, we
get
b 5 -5
bs lea]? 15 5
/ | bs|(s 8)ds= 60 -5 —=151, (3.5)
| by T2 3

b12 3 2
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where § = |e;| — s. The two columns of the matrix make two equations for the unknown ¢;.
Rotating the above calculation, on es and eg, together we would get 6 equations that

5 5 15 | 2 3\ [é
~15 -5 5 | 3 2| | é
15 5 5 |3 2||&|_,
5 —-15 -5 | 2 3]||éw '
5 15 -5 | 2 3 én
5 5 -15 | 3 2 E1

The determinant of the coefficient matrix is —135000. Thus we have a unique solution ¢; = 0
and up = 0. O

Theorem 3.2. With Vh2,e = Vi, mz12 in (2.1), the finite element equations have a unique solu-

tion. Moreover,
D% (u = un)lo < Ch?|ula,

provided that u € H*(Q) N HZ(Q).

Proof. For the finite square system of equations, the uniqueness implies the existence of a
solution. We show a unique solution of (2.1) when f = 0. Letting v, = uy in (2.1), we get

> ID*uplf = 0.

KeTy

As all second derivatives of uy are zero, uy is a linear function on each triangle K. Since uy,
is continuous at the vertices of Ty, uy is a function in the space H& (). As Vuy, is continuous
at the midpoints of the internal edges and vanishes at the midpoints of the boundary edges,
Vup = 0 and consequently uw, = 0. The error estimate follows from the abstract theory in
Theorem 2.1. Il

4. The P, Finite Element in 2D

On a triangular grid, the dual basis of the P, finite element space, i.e., the degrees of freedom
of the finite element, is

v(x;) at three vertices of K,

/ vds, / Onvds, / sOpvds on three edges of K,

/vd:z:, /sclvdx, /:Ugvdx on the triangle K.
K K K

The global finite element space is defined by

Vh,iz15 = {v € L*(Q) | v‘ € Py(K), v is continuous at internal vertices of Ty,

/ vds, / Onvds and / sOnpvds are continuous across internal edges of Ty,

v(x;) /vds-/@,wds-/s@ vds =0

at boundary vertices and edges of Ty, } (4.2)
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Theorem 4.1. The 15 degrees of freedom in (4.1) uniquely determine a Py polynomial in the
space Vi, mz1s of (4.2).

Proof. Let up, € Py such that the 15 degrees of freedom of uy, in (4.1) having zero value.
We need to show up, = 0. On a general triangle K = Ax3x3x3, we can choose a homogeneous
basis for the space of P, such that

15
up, = Zuibi(x)a (4.3)

where
b = i, by = A3, by = A3,
by = X3, bs = A2\3, bs = A1 )\3,
by = X33, bs = A2)2, by = Ao )3,

bio =AM, b =A3A],  bip = AsA,
bz = AMfAads, bia = MA3A3,  bis = A A2);.

At x1, all bi(x1) = 0 except ¢ = 1. So the three vertex values would force u; = us = uz = 0 in
(4.3). Next, when restricted on an edge e1, only three basis functions b7, bg, and by are nonzero.
By computing the zeroth moment on e;, we get

/b7dS:/ bgdS:@, /bgdS:@
e e 20 e 30

A combination of two basis yields fel (2b7 — 3bg)ds = 0. The constraint of zero Oth moment on
e1 would force the coefficient of the only non-zero term bg to be zero. So we change a basis for
the expansion of uy, in (4.3) to

up, = E4by + Ebe + E1by + Eobg + E10b1o + E12bia + E13b13 + E1abis + E15b1s, (4.4)
where
by = (203X — 3A2)\2), be = (203 — 3A\2)\2),
by = (2X3)3 — 3A2)\2), bo = (2Xa)3 — 3X2)\2),
bro = (2A3A; — 3A2\3), bia = (2X3A3 — 3A2\%),

bis = M oAz, bia = MA3A3, bis = M.

Next, consider the Oth and 1st moments of dju, = Vuy - ny on an edge e;. For the linear
functions A; and As, cf. Figure 3.1,

81 B 7’1|€1| B 7’1|€1|
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Consequently, we have

/ O1bysds = / el =T gae s eana2) - L (903 - 6A2ag)]sds

riles] rile1]

:|6r11|2/0 [~ (1= Fa)(6(1 — 1)t = 6(1 — 1))
T (21 = ) = 6(1 = 1)) |t
_laP1
71 10’

where 751 = r31/|e1|. Note that the answer is independent of r3;. Similarly, we get

1 1
bz T 10
b _ 1 1
9 ) 410 110
b1o . e 5 5
/ 01 P (s 8)ds=—-| 1P 0o (4.5)
e S
1315 50 30
b 1 1
14 30 20

where § = |e;| — s. The two columns of the matrix make two equations for the unknown ¢;.
Rotating the above calculation, on es and e3, we would get 6 equations that

C4
6 6 -6 24 2 3 26
24 -6 6 6 | 3 2 57
24 6 6 —6 | 3 2 59 0
6 24 —6 6 | 2 3 &10 e
6 —6 24 6 | 2 3 512
-6 6 6 24 | 3 2 -
Ci4
C15
The reduced row-echelon form is
o
1 |1 I
1 Cr
1 | 6 s
1 | 1 >
1 | 1] |G| =0
¢ C12
1 | 5 -
1 | 1 C13
6 C14
C15
Thus, if we choose basis functions Bz = l;i, 1 <12, and
e . -1
b3 = b3 — =by — =b b1y = b1y — =bg — =b
13 = b1z = gba = gz, 14 = bia = 2b — 2 b7,
- 1-

bis = bis — gbs - gbm»
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then the expansion of uy, is forced to a simple form, by above 12 conditions, that
up, = é13brs + érabrg + érsbis.
Finally, evaluating uy, at the three internal points, (2x; + x; + x3)/4, we get
1 16 21 21 C13
— (21 16 21| [és]| =0.

1936 \o1 91 16/ \éys

Adding 5 to the diagonal entries of the above matrix, the eigenvalues are 0,0,3 x 21. So the

eigenvalues of the above matrix are —5, —5, 58, non zero. Thus, ¢; = 0 and u, = 0. O

Theorem 4.2. With Vh2,e = Vi, mz15 in (2.1), the finite element equations have a unique solu-
tion. Moreover,

17 (u = un)llo < Ch2|uls,
provided that u € H*(Q) N HZ(Q).

Proof. The proof is the same as that for Theorem 3.2. d

5. The Basis Functions of the Two New Elements in 2D

In this section, we give explicitly the basis functions on each element K.

5.1. The basis functions for the P; + 2B, element

The first six nodal basis functions are associated to the Oth and 1st moments of normal
derivative on three edges of element K.

@1,1(x) = 11 (4(A3A3 — A2A3) — 2(A5A1 — A3AT) — 2ATA0A3 — 220 A3A3 + 181 A2)3),

©1.2( (200 A2 — M A3) — 4(A3A3 — AaA3) — 2ATXaAs + I8A1A3As — 22X 003),
©2.1(x) = 12 (2(A3A3 — A2A3) — 4(A5A1 — A3AT) — 2227 00A3 — 201 A58 + 181 A2)3),
P2.2(x) =2 (= 2(AT A2 — A1A3) + 4(A3A1 — A3AT) + 18AT A2 — 2010303 — 2201003,
©3,1(x) = r3(4ATA2 — A1A3) — 2(A3A3 — A2A3) — 222700 A3 + 181 A3A; — 201 A2)3),

032(x) = r3( — 4(AT A2 — MA3) + 2(A3A1 — A3AT) + 18MT a3 — 2200305 — 2M\1 A2 )3).
These six nodal basis functions satisfy the usual orthogonal conditions in the sense that

1 a(pl %

Tl ). ooy N Dds = 605,  Lk=1,2,3, i,j=12.
k

Here and in the following, Aéi), j = 1,2, are the edge barycenter coordinates on ey, for instance,
,\8) = Ao, )\g) = A3, on e;. Note that the six nodal basis functions vanish for the remaining
degrees of freedom in (3.1a), namely,

vri(xg) =0, / v ids=0, Lk=123, i=1,2.

€k
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Using the edge barycenter coordinates, these six basis functions can be expressed in a unifying
way:

©1i(x) =7 (4((/\((;1'))2>\gzl'+1) _ (AZH))QAS)) _ 2((/\gz;+1))2)\l . )\l2>\g+1))
—A1 Aoz (22200 — 18AUHD) 4 2/\1)), 1=1,2,3, i=1,2

The second three nodal basis functions are associated to the Oth moment of function on three
edges of element K.
+ 3p2.2(x)

$1(x) = 122223 + (nl)T((g + 21?)@1,1( )+ (3* + 2*)901 2(x )) + P21 (x) ’ ,
T2 r3 T2 o

a(3) = 120332 + (o) (222 4 321 3) + (222 4 D)3 4 2000 H 20200)
1 T3 T3

T3

3 +
¢3(X) _ 12/\1)\3 + (n3)T<(111 i 2n2)(p371(x) i (3n1 i 2n2)<p372(x)) T @1,1(x) 901,2(X)_
T1 T2 r1 T2 T1

These three nodal basis functions satisfy the usual orthogonal conditions in the sense that
1
— ¢Z(X)d82517k, l,k: 1,2,37
ekl Je,

and vanish for the remaining degrees of freedom in (3.1a), namely,

- |/ ad” @ds=0, Gi(xi)=0, Lk=123 j=12
k

The last three nodal basis functions are associated to the value of function at three vertices of
element K.

6100 = A& + () e $is )+ i¢2,2<x>) r

39031 4<,032( x) /7’1**(052( ) + ¢3(x)),

n3

s )
i) = @ : 4¢1,2<x>)/r2

s )

o )

1
49011 4801 2( )

+ 0) T (a0 + iw2,2<x>)/r3 L0169 + 6a().
These three nodal basis functions satisfy the usual orthogonal conditions in the sense that
01(xx) = 01k, l,k=1,2,3,
and vanish for the remaining degrees of freedom in (3.1a), namely,

1 00i(x)
|6k | er 8nk

, 1
ADds =0, W/ 0,(x)ds =0, 1,k=1,2,3, j=1,2.
k
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5.2. The basis functions for the P; element

The first six nodal basis functions are associated to the normal derivatives.

o11(x) =i (- g(m% CAIAZ) - (20008 — 3A202) + (203N — 3A2)2)
- %(%Ag _322) 4+ %(zxgxl SN - %(sz — 322
O AN — 120020 + 3)\1>\2>\§>,

o12(x) = 11 ( - %(m% — 3A2A2) + %(2)\1)\3 —3A2A2) — %mgxg —3A2)2)
4 (2023 — 3X2A2) — (2A30; — 3A2N?) — g(mgx;’ —3X\2)\%)

FON2 AN + 3N A2A; — 12)\1)\2/\§>,

3

2
1 1

+ 5(2A2/\§ —3MI\3) — 5(2A§A1 —3AIN) 4 (2030F — 3X209)

1
@21(x) = 12 — (2N = 3AY) — S @M - 3AY) — S (2Ahs — 3M3AY)

12020005 + 9N AN, + 3A1)\2)\§),

3

2
1

— (2223 — 3A3N2) 4+ (2030 — 3A2\3) — 5(2>\3)\§ —3M\2\D)

p22(x) = 252N — BXIN) — Z(AN] — BAAR) — 5 (230 — 3M3AD)
+3X2 000 + OA A2Ag — 12)\1)\2>\§>7

03.1(x) = 13 ((2»1% —3A202) — %(%Ag —3A202) + %(2/\“;’/\3 — 3A2A2)
- %(QAQ/\g —3M\\D) — g(2>\§/\1 —3A2N2) — (2030% — 3A209)
12020005 4 3AAIN; + 9)\1>\2>\§>7

p2(0) = 73— S XD — 3XIND) + (201X~ BXDA) — (2045 — 3A3AD)

3 1
— 5(2>\2)\§ —3AIAZ) — —(2X3N — 302N + 5(2>\3>€’ —3A2\%)

1
2
F 302000 — 120020 + 9)\1>\2)\§>.

Using the edge barycenter coordinates, the above six basis functions can be expressed in a
unifying way:

3 ) ) ) )
1,i(x) =ri < =5 (@NAE =3 0)%) = OGN =3P (AD)?)
i i i i 1 i i i i
+ ATV =300 0% = 5 AT G =30 00)?)

1 i i i i

DN | =

+ A3 (9N — 12200 +3/\g§+1>)>, 1=1,2,3, i=1,2.
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The second three nodal basis functions are associated to the Oth and 1st moments of function
on element K.

P1(x) = (120(2)5{’)\2 —3A2X2) — 90(2X1 05 — 3A2A2) — 90(2A3N3 — 3A3)3)
—90(2X2A3 — 3A2A2) — 90(2A3N1 — 3A3A2) 4+ 120(2A3)3 — 3A2\D)
— 72072 X5 + 5400 A2As + 540A1A2A§),

Po(x) = ( —90(2X3 A — 3AIAZ) + 120(2M\1 A3 — 3ATAZ) + 120(2X303 — 3A3)3)
—90(2X2A3 — 3A2X2) — 90(2A3 N1 — 3AZAZ) — 90(2A3)3 — 3A2)%)
54002 X0\ — T20A A2\5 + 540A1)\2)\§),

s (x) = ( —90(2X3 A5 — 3A2X2) — 90(20, A2 — 3A2)2) — 90(2A3 N5 — 3A2\2)
4+ 120(2X0 A3 — 3AZN2) + 120(203A1 — 3A3AT) — 90(2A30F — 3A2N%)
54002 X0 \3 + 5400 A2\5 — 720)\1>\2>\§>.

The above three basis functions can be expressed in a unifying way:

i (x) :<120(2>\f’>\j — BAZAZ) + 120(2A A7 — BAZAT) — 90(2A;A — BATAZ)
= 90(2MAF — BARAT) — 90(2AkAT — BAFAY) — 90(2ARN; — 3ATAZ)
— \iAoAa(720A; - 540); — 540y)),

where (4, j, k) is a permutation of (1,2,3). The third three nodal basis functions are associated
to the Oth moment of function on three edges of element K.

o1(x) = 30)\§>‘§ + (nl)T ((2112 + 33)901,1@() + (3% + 2r13)§01,2(x)>
T2 r3 )] T3
1 1 1
- @wl(x) - ﬂwQ(X) - ﬁw-?o(x)a
@@)%ﬁﬁ+omTQf“+f“mm@>uf”+f“wmkﬁ
1 r3 ™ T3

1 1 1
- ﬁwl(x) - 57/12@() - ﬁwfi(x)a

6alo) = 300 + ()" (22 4 322) 0000 + 622 4 22 )

1 T2

() — () — s,

The last three nodal basis functions are associated to the value of function at three vertices
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of element K.

01(0) = X+ 75 (421 (0) + 922()) + L (s () + 05.2(x)
— 2 (62(0) + 850) — g (3) — 51tha() — 51 (%),

nTn
+ 273(@3,1()‘{) + 4p32(%))

02(x) = A5 + oy 4
2(x) = Ay + 57 2 (4011 (%) + p1.2(x)) 57
2 (01(%) + 93(x)) — 51t () — tha(x) — o)
5.1 ST 910 T R T gp s
4 Ill ns l’lgl’lg
O5(x) = A3 + 5 (p1,1(x) + dp12(x)) + 5 (p2,1(x) + 4p2.2(x))
1 1
- g(¢1(x) + ¢2(x)) — mw 1(x) — m%( x) — Ew?’(x)'
For these thirty nodal basis functions, the twelve basis functions ¢; ;(x), ¢;(x) and 6;(x) are
similarly defined as those for the enriched P; element in the previous subsection. In addition,

they vanish for the following three conditions
/ (YNdx =0, 1=1,2,3. (5.1)
K

Compared to the enriched P; element, there are three more basis functions v;(x) which are
associated to the three moments on element K in (5.1) and satisfy the following orthogonal
conditions )
—_ ’l/)l(X))\de?:dlvk, l,k: 1,2,3
w)
Moreover 1;(x) vanish for the remaining degrees of freedom in (4.1)
6. A P;+ 8B, Element in 3D

On a tetrahedral grid T;, = {K} of 2, the finite element shape functions space can be chosen

as
P+(K) = P3(K) —|—span{/\z)\g)\4,/\f)\3)\4,/\%)\3)\4,)\1)\3)\3,)\2)\3)\4,)\1)\2)\ )\1)\2)\4,)\1)\3)\4}

A :
where P;(K) denotes the space of P3 polynomials, A; is the barycentric coordinate for vertex
X;, & linear polynomial vanishing on the face triangle opposite to the vertex.

6.1. The degrees of freedom
The dual basis of the finite element space, i.e., the degrees of freedom of the finite element

is
E;r(-): |e |/ )\(k)ds onedgee;,j=1,---,6,k=1,2,
J
(- :W/ Nd on face F},j =1,--- ,4, (6.1)
1
Njk(:) := W/F an(~))\§fj)df on face Fj,j=1,--- ,4,k=1,2,3.
j
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Here ,\é’j) are two 1D barycentric coordinates on the edge e;, Ag) are three 2D barycenter

coordinates on the face triangle Fj, in the sense that )\(1) = Ao, )\(21) = A3 and )\531) =M. In
addition, let r; be the distance from x; to face F;. The global finite element space is defined
by

V.t z28 = {v S L2(Q) | v|k € P;(K), /vplds is continuous around internal edges of Ty,

e

/ vdf & / Onvp1df are continuous across internal face triangles of Tj
F F

/vplds :/ vdf :/ Onvprdf =0
e P P

at boundary edges and face triangles of E}, (6.2)

where p; is a linear function on an edge or a face triangle.
Theorem 6.1. The 28 degrees of freedom in (6.1) uniquely determine a polynomial of Py (K).

Proof. Let u € P3F(K) such that the 28 degrees of freedom of u in (6.1) have zero value.
Since we use only 2 face bubbles instead of 3 face bubbles, the nodal basis on a general element
depends on the numbering of vertex. First we list twelve functions which have zero edge
moments and face value moments. In fact, these functions vanish on all edges and faces, except
one face where only the average vanishes.

b= AMAoda(BA — 1), by = M Asha(3A — 1),
by = AoMAs(Bha — 1), ba = Aadsha(3ha — 1),
bs = MAiAa(3hs — 1), b = Asheda(3A5 — 1), (65)
br = MAdAe(3h — 1), bs = AAAs(3As — 1).

Before we find the rest 4 basis functions which have 16 vanishing edge and face moments, we
find 16 dual-basis functions (they do not have vanishing normal derivative moments and they
are not unique).

bis = 120 A2(5A1 — 2),  big = 1221 00(5A2 — 2),  bis = 12X A3(5A; — 2),
big = 1201 A3(5A3 — 2), bz = 122 A (5A1 — 2),  bis = 12X A (5Ag — 2),
bio = 120023(5X2 — 2),  bao = 1200A3(5A3 — 2),  bay = 120004 (Ao — 2),
bas = 120004 (5As — 2),  baz = 122304 (5A3 — 2),  bay = 122304 (5Ag — 2),

b25 = 60)\1)\2)\3, bg@ = 60)\1)\2)\4, b27 = 60/\1 /\3)\47 bgg = 60)\2)\3/\4.
For the first 16 dual basis functionals, we have

Ejr(biy12) = 6i2(—1)+k> Fm(biz12) =0, 1<5<6, k=12, 1<m<4, 1<i<12,

Fro(biv2a) = 6im, Ejp(bigos) =0, 1<5<6, k=12, 1<m<4, 1<i<A4
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Now we correct the four A3 functions to get four new basis functions with vanishing edge and
face moments.

bo = —20A3 + 2407 —6);, b = —20A\3 + 24)\3 — 6, (6.4a)
b = —20X\3 + 2402 — 6)3, Do = —20\3 + 2423 — 6. (6.4b)

Under the basis, u = Z?il cibi. As Ej(u) =F;(u) = 0, we get

Ci+12 = O7 1 S ) S 16.
Hence u = 221 c;b;. Next we show that the remaining 12 coeflficients are also zero. An
application of the functionals r;N; 5, j =1,---,4, kK =1,2,3, to u, yields the following matrix
1 1o—1 1
%5 @ 6 @ O 0 0 0 2 0 0 O
1 1 -1 1
o 30 0 0 % & O 0 2 0 0 O
1 1 -1 -1
5 39 0 0 o o 2 000
-1 1 1 1
%% @0 3 s O 0 0 0 0 2 0 O
1 1 -1 -1
0 35 3 @ o U 0 0 2 0 O
1 1 -1 1
A 0 0 & 3 O 0 % g 0 2 00
1 =1 1 1
& @ 0 0 55 & O 0 0 0 2 O
0 0 % % 3 3 0 0 00 20
0 0 0 0 & 3 & 5 00 20
—1 —1 1 1
% @ 0 0 0 0 3 355 000 2
0 0 & % 0 0 5% 4 00 0 2
0 0 0 0 & % & 3 000 2
Its determinant is nonzero. Thus, we have ¢; = 0 for ¢ < 12. O

It follows from Theorem 2.1 that

Theorem 6.2. With V}iz = Vi mzos in (2.1), the finite element solution wy, of (2.1) approzi-
mates the biharmonic solution u of (1.1) at the second order.

lu — up|2n < Ch%|uly

provided that u € H*(Q) N HZ ().

6.2. The basis functions

We present a basis for P;"(K) with respect to degrees of freedom defined in (6.1). Let
bi,i=1,---,8and i =9,---,12 be defined in (6.3), (6.4a) and (6.4b), respectively. We first
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give the 12 basis functions for the functionals N; ;. as follows

,
©1,1(x) = 2071 (by — b3 + bs + 2b7) + El(blo —bi1 — b12),

;
©1,2(x) = 2071 (ba + bs — bs + 2bs) + é(*blo + b1 — b12),

©1.3(x) = =207 (by + by + 2by + 2bg) + %(bg + 2b1y),
02.1(X) = 2075 (—by + bs + 2bs + by) + %"(b9 .
02.2(X) = —20r(bs + by + 2bs + 2bg) + %2(610 +2b1y),
©2,3(x) = 2072(by + bg + 206 — b7) + 7%2(*179 — b1 + b12),
©3.1(x) = 20r3(—ba + 2b3 + bs + bg) + %3(()9 —b1p — b12),
03.2(x) = —20r3(2bs + 2y + bs + bg) + %(wa b,
©3.3(x) = 2073 (b + 2bs + bs — bg) + %3(*1)9 —bio + b12),

@471(X) = 7207’4(2()1 + 2b2 + b7 + bg) + %(ng + b12),

r

a2(x) = 20ry (201 — bs + b + b7) + ;(*bg + biop — b11),
T

@473(X) = 20T4(2b2 + b4 — b@ + bg) + ;(*bg — blO + b11)~

These 12 basis functions satisfy
Ni,l(@j,k):(si,jdl,k, 7’7]:17 a4» lak:17273

and vanish for the remaining functionals in (6.1).
The second four basis functions are for the functionals IF;.

$1(x) = 601 X2A3 + (201,1(%) 4 2¢1,2(x) + ¢1,3(x)) /71
+ (2021 (%) 4 202,2(X) + 92,3(x)) /72 + (203,1(X) + 203 2(X) + ©3,3(x)) /73

~ 2" ( 22 20 + (2 + 2 ona).
P2(x) = 60A1 X2 + (201,1(%) + 1,2(%) + 2¢1,3(x)) /71
+ (202,1(x) + ©2,2(%) + 2¢02,5(x)) /T2 + (204,1 (%) + 2¢04,2(x) + a,3(x)) /74

- 2<n3>T(<;‘; + 200+ >w3,3<x>)7

n; ny

o E)%’l(x) +(

ny ns ny ns

S —)ps2(x) + (T —
T2 T3 T4 T3
¢3(X) = 60)\1)\3)\4 + (2(,0171()() + @1’2(X) + 2@1’3(X))/?"1

+ (2931 (%) + @3.2(%) + 203.3(x)) /73 + (2041(X) + Pa,2(X) + 2043(X)) /74

o) ((2“ 42200100 + n ;‘j>¢2,3<x>),

ng ns ny
273 + T9 )4'02’2()() + (27“4

Pa(x) = 60A2A3A + (2,1(%) + 202.2(x) + 22,3(x)) /72
+ (p3.1(%) 4+ 203,2(%) + 203 3(x)) /73 + (Pa,1(%X) + 204.2(X) + 204,3(x)) /14

—9(ny)7 <<“2 + (%) + (

ns n; n
27“2 1

)p1,2(%) + (74 + nl)sﬁl,g(x))
4 T

27“3 E 2r

215
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These 4 basis functions satisfy

F](¢k): 5,k jak:]-v"'74

and vanish for the remaining functionals in (6.1).
At the end we present the 12 basis functions for the functionals E; j.

91,1(X) = 12)\1)\2(5)\1 — 2) — 2(2(/71 1( ) + (p172(X) + (‘01)3(X)>/7“1

+ 29 1(x) /12 + 2 *) (<,03,1(X)n3 + 30471(x)n4),
o

01,2(x) = 1221 A2 (A2 — 2) — 2(22,1(X) + @2,2(x) + p2,3(x)) /12
n;
+ 2p1.1(x) /71 + 2 + *) (@3,2(X)ﬂ3 + ‘,04,2(X)114)7

B2,1(x) = 1201 A3(5M1 — 2) — 2(p1,1(%) + 201.2(x) + 1.3(x)) /71

m 7) (2,1(x)n2 + @4.1(x)n4),

+ 2p3.1(x) /13 + 2

+2¢1.2(x) /11 + 2 o *) (p2,2(x)n2 + @4 3(x)n4),

83,1( )— 12)\1)\4 5)\1 72 72 (p 1 +§01 2( )+2¢173(X))/7“1

+2041(x) /14 + 2 *) (¢2,1(x)n2 + ¢31(x)n3),

03,2(x) = 12X A4 (B4 — 2) — 2(2¢4,1(X) + @a,2(x) + @a,3(x)) /4

n;
+2p1,3(x) /11 + 2

(
(
(
(1
G
O2,2(x) = 121 A3(5A3 — 2) — 2(2903 1(x) 4 3,2(x) + @33(x)) /73
G
(
(
(
( + *) (p2,3(x)n2 + p33(x)n3),
—2(¢2,

94,1( ) = 12/\2)\3 5)\2 — 2 —|— 2(p2 2( ) + @273()())/7”2
1,
203 9(x)/rs + 2(5 + r—;) (901,1(X)n1 + <p4$2(x)n4),

04,2(x) = 12023 (5A3 — 2) — 2(p3,1(X) + 2¢3,2(x) + ¢3,.3(x)) /13
1
+ 2p9.9(x) /12 + 2 i 7) (p12(x)n1 + @a3(x)n4),

(
(-
05,1(x) = 12X224(5A2 — 2) (@2 1(X) + @2.2(x) + 2p2,3(x)) /12
+ 2p4,2(X) /74 + (* + *) (@1,1(X)111 + 803,2(X)H3),
(01,

O5,2(x) = 120 A4 (5Ag — 2) — 2 X) + 2p4.2(X) + @a,3(x)) /74
n2

2p2,3(x)/r2 + 2(7 + E) (p1.3(x)n1 + @3.3(x)n3),
06,1 (x) = 122304 (53 — 2) — 2(p3,1(x) + @3,2(x) + 203,3(x)) /73
( ny

B n4)

+ 2p4,3(x) /74 + 2 (p1,2(x)n1 + p22(x)n3),

)

06,2( )—12)\3)\4 5A472 72(90 1 X +(,042( +2§043 )/T4
+ 2¢p33(x /7’3+2( *) (p1,3(x)n1 + p2,3(x)n3).



Nonconforming Finite Elements for 4th Order Elliptic Problems 217
These 12 basis functions satisfy
Ei1(0%) =001k, 1<4,j<6, LLk=1,2

vanish for the remaining functionals in (6.1).

7. Numerical Tests

7.1. Numerical results in 2D

We first compute the 2D biharmonic solution of (1.1), where the exact solution is
u=227(1 — 21)%23(1 — 29)?, (7.1)

on the unit square domain (0,1)2. We cut the domain by a north-east line to define the level
one grid for the computation. Then each triangle is refined into four congruent triangles, to
define the higher level grid.

In the first test, we use the P + 2By element, Vj, gz12 in (3.2). As expected, the finite
element solution does converge to the exact solution at the second order, shown in Table 7.1.

Table 7.1: The error e;, = u — uy and the order of convergence, for (7.1), by the Ps + 2B, element.

Tk llenllo A" lenlin  R" | lenlan A"
0.0774343 0.0 | 0.414843 0.0 | 4.05172 0.0
0.0322262 1.3 | 0.198602 1.1 | 2.22543 0.9
0.0018858 4.1 | 0.020767 3.3 | 0.60045 1.9
0.0000831 4.5 | 0.002312 3.2 | 0.14839 2.0
0.0000039 4.4 | 0.000285 3.0 | 0.03598 2.0
0.0000003 4.0 | 0.000036 3.0 | 0.00882 2.0
0.0000000 3.9 | 0.000005 3.0 | 0.00219 2.0

N OO e W N

In the second test, we compute the exact solution (7.1) by the P, non-conforming finite
element Vj, gy z15 defined in (4.2). As shown by the theorem, the finite element solution converges
at the second order in the discrete H? norm, shown in Table 7.2. Comparing with the 12 dof
P5; + 2By element, this element is slightly more accurate though it is also of the second order.

Table 7.2: The error e, = u — up and the order of convergence, for (7.1), by the Py element.

Tk llenllo  R" lenlin  h™ | lenlo,n A"
1 | 0.049596736 0.0 | 0.270374 0.0 | 2.50814 0.0
2 | 0.004671002 3.4 | 0.045237 2.6 | 0.79945 1.6
3 | 0.000890065 2.4 | 0.010920 2.1 | 0.30883 1.4
4 | 0.000076285 3.5 | 0.001595 2.8 | 0.08515 1.9
5 | 0.000005480 3.8 | 0.000214 2.9 | 0.02220 1.9
6 | 0.000000364 3.9 | 0.000028 3.0 | 0.00565 2.0
7 | 0.000000023 4.0 | 0.000004 3.0 | 0.00142 2.0

In the third test, we approximate the exact solution (7.1) by the 16 dof P; + 6B¢ element
constructed in [20]. On each triangle K with the barycentric-coordinates A;, the finite element
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Table 7.3: The error e, = u — up and the order of convergence, for (7.1), by the Ps + 6B¢ element.

Tk llenllo A" lenlin R | lenlon R
1 | 0.0950343 0.0 | 0.479167 0.0 | 3.64488 0.0
2 | 0.0601461 0.7 | 0.308401 0.6 | 2.76527 0.4
3 | 0.0092643 2.7 | 0.053634 2.5 | 1.06496 1.4
4 | 0.0009260 3.3 | 0.006878 3.0 | 0.33413 1.7
5 | 0.0000721 3.7 | 0.000812 3.1 | 0.09269 1.8
6 | 0.0000049 3.9 | 0.000098 3.1 | 0.02400 1.9
7 | 0.0000003 4.0 | 0.000012 3.0 | 0.00605 2.0

Table 7.4: The error e, = u—up, and the order of convergence, for (7.1), by the Ps+3B5+3Bs element.

Tk llenllo A" lenlin R | lenlan A"
1 0.0925868 0.0 | 0.473937 0.0 | 3.56790 0.0
2 | 0.0590571 0.6 | 0.304468 0.6 | 2.73905 0.4
3 | 0.0091445 2.7 | 0.053343 2.5 | 1.06181 1.4
4 | 0.0009744 3.2 | 0.007110 2.9 | 0.34331 1.6
5 | 0.0000806 3.6 | 0.000851 3.1 | 0.09788 1.8
6 | 0.0000056 3.8 | 0.000102 3.1 | 0.02579 1.9
7 | 0.0000004 3.9 | 0.000012 3.0 | 0.00655 2.0

shape functions space is Wi6(K) = P3(K) + Bg(K) where

Bﬁ(K) = Al)\g)\gspan{(l - 3)\1 - 2/\2 + 3)\1)\2))\2, (1 - 3)\1 - 2)\3 + 3)\1)\3))\3,
(1 — 3y — 2\ + 3)\1)\2))\1, (1 — 33Xy — 23 + 3)\2)\3))\3,
(1 - 3X3 — 221 + 3A1A3) A, (1 — 343 — 20 + 3)\2>\3))\2}.

The dual basis of the finite element space, i.e., the degrees of freedom of the finite element, is
defined by

v(X5), vz (Xi), vy (X5) at three vertices of K,
v(Xe) at the bary-center of K,

/ anvds,/ sOpvds on three edges of K.

J

The computational results are listed in Table 7.3. The finite element is truly of 2nd order
accuracy. The local dimension of this element is 16, but the H? error is about 3 times of that
of the new 12 dof P3; + 2B, element.

In the fourth test, we approximate the exact solution (7.1) by the 16 dof P3 + 3Bs5 + 3Bg
element from [4]. On each triangle K with barycentric-coordinates \;, the finite element shape
functions space is

Ci6(K) = P3(K) + Al)\g)\gspan{)\l)\g, AoAz, A Az, A2Ag, A2\, AlAg}.

The dual basis of the finite element space, i.e., the degrees of freedom of the finite element, is
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Table 7.5: The error e, = u — up and the order of convergence, for (7.1), by the Ps + 2B5 element.

T llenllo A" lenlin R | lenlon A"
1 | 0.1017755 0.0 | 0.496119 0.0 | 3.66373 0.0
2 | 0.0602523 0.8 | 0.308833 0.7 | 2.77412 0.4
3 | 0.0096740 2.6 | 0.055137 2.5 | 1.09411 1.3
4 | 0.0010644 3.2 | 0.007374 2.9 | 0.35943 1.6
5 | 0.0000901 3.6 | 0.000864 3.1 | 0.10364 1.8
6 | 0.0000064 3.8 | 0.000100 3.1 | 0.02749 1.9
7 | 0.0000004 3.9 | 0.000012 3.0 | 0.00701 2.0

Table 7.6: The error e, = u — uy and the order of convergence, for (7.2), by the Ps + 2B, element.

Tk llenllo A" lenlin R | lenlan A"
1 | 0.0257005 0.0 | 0.155548 0.0 | 1.30794 0.0
2 | 0.0118945 1.1 | 0.082354 0.9 | 1.21970 0.1
3 | 0.0007061 4.1 | 0.009850 3.1 | 0.30520 2.0
4 | 0.0000431 4.0 | 0.001374 2.8 | 0.08565 1.8
5 | 0.0000039 3.4 | 0.000236 2.5 | 0.02793 1.6
6 | 0.0000004 3.2 | 0.000048 2.3 | 0.01093 1.4
7 | 0.0000001 3.0 | 0.000011 2.2 | 0.00486 1.2
defined by
V(X5), v (Xi), vy (X5) at three vertices of K,
v(Xe) at the bary-center of K,

/ anvds,/ sOnpvds on three edges of K.
€j €j
We compute the solution (7.1) by this Cj¢ finite element. The computational results are listed
in Table 7.4. The finite element is truly of 2nd order accuracy. The local dimension of this
element is 16, but the H? error is about 3 times of that of the new 12 dof P; + 2By element.

In the fifth test, we approximate the exact solution (7.1) by the 12 dof Ps + 2By element
constructed in [7]. On each triangle K with barycentric-coordinates \;, the finite element shape
functions space is

Gra(K) = Ps(K) + M) Span{()\l A2 200g), (g — A2 — 2)\1)\3)}.
The dual basis of the finite element space, i.e., the degrees of freedom of the finite element, is

v(X;), v2(X;), vy(x;), at three vertices of K, and / Onvds on three edges of K.
€

The computational results are listed in Table 7.5. The finite element is truly of 2nd order
accuracy. But its H? error is about 3 times of that of the new P3 + 2B, element.
In the next three tests, we consider a singular solution

u=22"2(1—-2)%%(1 —y)?, (21,22) € (0,1) x (0,1). (7.2)

This solution is not smooth enough, but in the Sobolev space H3~¢(£2). We approximate it by
the P34+ 2B, element, the P3 + 6B element, and the P; + 2B5 element. As expected, the finite
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Table 7.7: The error e, = u — up and the order of convergence, for (7.2), by the Ps + 6Bg element.

Tk llenllo A" lenlin R | lenlon R
1 | 0.0402600 0.0 | 0.267845 0.0 | 5.57420 0.0
2 | 0.0218671 0.9 | 0.147111 0.9 | 3.31137 0.8
3 | 0.0031348 2.8 | 0.023770 2.6 | 1.01281 1.7
4 | 0.0003147 3.3 | 0.003168 2.9 | 0.29331 1.8
5 | 0.0000253 3.6 | 0.000403 3.0 | 0.08106 1.9
6 | 0.0000018 3.8 | 0.000058 2.8 | 0.02393 1.8
7 | 0.0000001 3.8 | 0.000010 2.5 | 0.00829 1.5

Table 7.8: The error e, = u — up and the order of convergence, for (7.2), by the Ps + 2B5 element.

Tk llenllo A" lenlin  R™ | lenlon A"
1 | 0.0416108 0.0 | 0.167121 0.0 | 1.55539 0.0
2 1 0.0215182 1.0 | 0.133563 0.3 | 1.77014 0.0
3 | 0.0031883 2.8 | 0.021423 2.6 | 0.50960 1.8
4 1 0.0003534 3.2 | 0.002805 2.9 | 0.14026 1.9
5 | 0.0000309 3.5 | 0.000324 3.1 | 0.03780 1.9
6 | 0.0000023 3.8 | 0.000043 2.9 | 0.01138 1.7
7 | 0.0000002 3.8 | 0.000008 2.4 | 0.00424 1.4

element solution converges at the possible highest order, in all norms, shown in Tables 7.6-7.8.
For this problem, the error of the P; 4+ 2B, element is about the same as that of the P + 285
element, much smaller than that of the P; + 6Bg element.

7.2. Numerical results in 3D

We compute the 3D biharmonic solution of (1.1), where the exact solution is
u =231 — 21)%23(1 — x2)%23(1 — 23)?, (7.3)

on the unit square domain (0, 1)3.

In the computation, the level one grid is the one shown in Fig. 7.1, cutting the unit cube
into 6 tetrahedra. Each grid is refined into a half-sized grid uniformly, to get a higher level
grid, shown in Fig. 7.1. In Table 7.9, the error and the convergence order in various norms are
listed for the true solution (7.3), by the P enriched P; nonconforming finite element (6.2). The
optimal order of convergence is achieved in Table 7.9, in all norms, confirming the theorem.

Fig. 7.1. The initial grid for (7.1), and its level 2 refinement.



Nonconforming Finite Elements for 4th Order Elliptic Problems 221

Table 7.9: The error e, = u — up and the order of convergence, for (7.3), by the P + 8B4 element.

Tk llenllo  R" lenli,n R lenl2,n  R™
0.0463092 0.0 | 0.3918927 0.0 | 3.9317928 0.0
0.0203641 1.2 | 0.1970587 1.0 | 4.5723947 0.0
0.0015314 3.7 | 0.0267813 2.9 | 1.3978501 1.7
0.0000774 4.3 | 0.0033902 3.0 | 0.3961007 1.8
0.0000036 4.4 | 0.0004229 3.0 | 0.1030880 1.9

T W N =
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