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Abstract. In this paper, the collocation methods are used to solve the boundary
integral equations of the first kind on the polygon. By means of Sidi’s periodic
transformation and domain decomposition, the errors are proved to possess the
multi-parameter asymptotic expansion at the interior point with the powers h? (i=
1,...,d), which means that the approximations of higher accuracy and a posteriori
estimation of the errors can be obtained by splitting extrapolations. Numerical ex-
periments are carried out to show that the methods are very efficient.
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1 Introduction

By using the single layer potential theory, the plane Dirichlet problem

Au =0, (Q or OF,
{ W= (T) (1.1)
can be converted into a boundary integral equation of the first kind
1
—%/g(P) In|P — Q|dSq = h(P), VPeT, (1.2)
r

where Q) is a polygon, and T is its boundary. The Dirichlet problem on QO = R?/Q) is
called an exterior problem.
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We all know that the mathematical theory of the first kind of boundary integral
equations is usually more difficult than the second kind due to lack of Fredholm al-
ternative theorem. Although from the viewpoint of the calculation, the work of the
discrete matrix generation and the accuracy of the approximation of the first kind of
boundary integral equations are better than the second kind, but the mathematical
theory of the first kind boundary integral equations is developed only by Sloan and
Spence in [1] until 1988. They proved that if the capacity Cr # 1, then there was a
unique solution in (1.2). Once g(P) was solved, the solution of the interior problem
(or exterior problem) can be expressed by

u(P) = —% /rln IP— Q|g(Q)dSo, VP € RA\T. (1.3)

Sloan and Spence also used Galerkin method to solve the first kind boundary equa-
tions, and proved that using the Galerkin method, the accuracy of the interior-point
approximations had superconvergence. However, the computational complexity of
Galerkin method was too huge. Yan and other authors in [2] used the constant ele-
ment collocation method to solve (1.2) and got the error estimate at the interior point
with O(hf*3/2), where B = (1 — &) /& and a7t were the largest interior angle of T. This
means that the accuracy reduces on concave regions. Thus, Yan in [3] recommended
getting the high accuracy by mesh grading, which undoubtedly increased the diffi-
culty of calculating. By using the mechanical quadrature method Lu Tao and Huang
Jin in [4] proved the convergence of approximate solutions and the asymptotic expan-
sions of the error, which can be used to accelerate the convergence by Richardson’s
extrapolation.

Splitting extrapolation method (SEM) based on a multivariate asymptotic expan-
sion of the error is an effective parallel algorithm, which possesses high order of accu-
racy and high degree of parallelism (see [6]). By means of SEM, a large problem can
be turned into many smaller discrete problems involving several grid parameters. If
the errors of approximations of the problems have the multivariate asymptotic expan-
sions, then after solving these small subproblems in parallel, the higher accuracy is
computed by SEM.

In this paper, the collocation methods are used to solve the boundary integral equa-
tions of the first kind on the polygons. By means of Sidi’s periodic transformation (see
[5]) and domain decomposition, the errors are proved to possess the multi-parameter

asymptotic expansion at the interior point with the powers h3(i = 1,--- ,d), which
means that the approximations of higher accuracy and a posteriori estimation of the
errors can be got by SEM.

In section 2, we will discuss the collocation method for the first kind of boundary
integral equations on a circle. It will show that the error at the interior point have
the asymptotic expansion. Based on section 2, further analysis for solving the first
kind of boundary integral equations on a polygonal domain will be carried out. In
section 3, using the results of the circle and the midpoint trapezoidal formula, the
multi-parameter asymptotic expansion of the error at the interior point with the pow-
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ers h3(i = 1,--- ,d) will be obtained, which means that by using the splitting extrap-
olation, high accuracy order O(h°) can be proposed. Some examples will be shown in
section 4.

2 Collocation on a circle

In this section, let Q) be a circle with radius e 1’2 , where the boundary I is de-
scribed by a 27-periodic function y(s) = (71(s), 72(s)) with [7/(s)| = [(71(s))* +
(74(s))?]*/2 > 0. Then Eq. (1.2) can be written as

where
T
Aw = / A(s —o)w(o)do, (2.2a)
—TT
As—0) = —%1n|2e%l sin> 7. (2.2b)

To derive the collocation equation for (2.1)-(2.2), we take the step h = 271/N , and set
O"j:—ﬂ—i—hj, for j=0,1,---,N,

.

1 .
J+%:Uj+§h’ for j=0,1,--- ,N—1.

Then, divide the interval [—7, 7] uniformly. Suppose that S" is a piecewise constant
function space with break points {c; ]Zi , and Q" is an interpolation projection defined

by

where

{ Xi(s) =1, se€lo,0541),
X](S) = 0, S % [O'j,O']’+1].

Then the collocation equation of (2.1) is to find w € " satisfying

1
2

N

Once {wh(UjH 52),j=0,---,N —1} is solved, from (1.3) the approximation solution
u"(z) of u(z) can be derived by

B h N-1
u'(z) = - ) Injz—7(c,
=0
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The collocation equation (2.3), in operator form, is expressed as follows
A" = Qf, (2.4)
where A, = Q"AQ". After w is solved in (2.1), then

7T
u(z) =< w, T, >= / In|y(s) —zlw(s)ds, z€ Q.
7T

h

Since z ¢ T, we have T, = In|y(s) — z| is smooth. Moreover, once w" is solved in

(2.4), then
uh(z) =< ", T, >,
where

<fig>=[ fe)gds

Below we assume that H"(27r) is a Sobolev space with 27r-periodic functions. The
following lemmas can be seen in [2].

Lemma 2.1. If f € H', then f has a Fourier expansion

== L 5P, =V

=0

A 3 A
where f; =1/v2m [T f(s)e~"*ds and 3c > 0, such that fil <e/ljl"

Lemma 2.2. The eigenvalues of operator A are given by

pi=L 1=0
W= 170
and the corresponding eigenfunctions are e*'I*.

Lemma 2.3. The eigenvalues of the collocation operator A, = Q"AQ" : S" — S" are given
by

k 1 1 .
k:o(_l) ((kNHPDZ T (kN+N7|p|)2)/ p €A,

and the corresponding eigenfunctions are
NZL
eh(s) =) e"PXi(s), peAy,
j=0

where Ay = {p: |p| < (N —1)/2}, A} = Ay \ {0}. Moreover, {e], p € Ay} constructs an
orthogonal basis of S" satisfying

<e, ol >=215,,, pp €A (2.5)
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Since each 27r-periodic function f(s) has a Fourier expansion f(s) = OZO: ]A”]-eijs,
we can let . o
Pnf = Z fjeijs-
je€M
Obviously Py is a projection operator on span {e’’*,j € Ay}
Lemma 2.4. Let Qn =1 — Py, Yu € H". Then
I Qnu [le< ch™,
where || o || is the norm of H' .
Lemma 2.5. It holds that
Phe™ = ael",  w, = 2(mh)"!sin (mh)eim%, (2.6a)
Qe = Buelt, Bu=c L. (2.6b)

where P" is the orthogonal projection operator to S".

Since the collocation solution w" = A;lQh f= A;lQhAw, we can define an oper-
ator

=4,'Q"A
so that w" = Gyw. Lete, = ¢/, and Hy = {ej,j € Ay }. Obviously we have
PGy, : Hy — Hy.
Now we prove the following lemma

Lemma 2.6. It holds that
Pyel = wye'’s = 2(ph)~!'sin (pzh) MY gips, (2.7)

Proof. Since e} has a Fourier expansion

1 = g L
eZ:E'Z / el (s)e P dse'”,

jE—e T
we have
p 1 2/” P (s)e~ i dseli 1 Y <ol el > i
e — er(s)e se!lf = — e, e e
N o ) 27 h
]GA;,
i 1]s ijs — _— 1 P phijs ijs
Z >e Z <e,Ple” >e
27'( e T .
]EAh
1 i y y .
. . ]S Z]S _ W Z]S v plps
T Z <el, e’ >e —'Z Xjbie’l = wye'h?,
SV ]eAh
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where we have not only used Pye;, = e and the self-conjugate properties of P", but
also used Egs. (2.5) and (2.6).
Theorem 2.1. The following result holds:

ph

21 gin 22
PnGre, = 2 —2e
{ NCiep =~ ep P70,

PNGhep = 1, p = 0.
Proof. Since p = 0 is easy, we assume that p # 0, then

1

PnGrep = PyA, Q" Aey = mPNA,;lQhe,,
_ gy
Z&PNA,fle,’f _ By el = Br&p ips _ 2y sin 5 oiPs.
Pl pIAy pIAy pIAy

This completes the proof.

Theorem 2.2. If p # 0, the eigenvalue A, has the following asymptotic expansion

N . m 1 4 3
Ap = —sin Z’\f‘ (PZ — 11;2’77(0) + O(‘p’S)), (2.8)

where

Nl & 1 1
A, = — —1 . 2.9
P 7SN ,EO( )<(kN+|p|)2+(kN+N—]p|)2> (2.9)
Consequently,
© 1 1
—1)k +
LV oyt NN =)
1 © 1 1
=4 —1)k _
o T BV G~ =)
1 © k
= _4lpIN Y (=1)k
e AN B
1 4lp|  p?

:W - W”(ﬁ)’
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where
= k;(_l)ki(kz —p *€ (0,1).

Since #(x) is analytical, its Taylor expansion is

n(x) =n(0) +1'(0)x+---+

which yields

) : ! 1 4y PP
k;)(_l)k<(kN+ Ip])? + (kN + N — ‘p’)z) T2 W”(O) +O(ﬁ)~

Substituting (2.10) into (2.9), the proof of Theorem 2.2 is complete.

Theorem 2.3. For f € H",r > 3, we have
u(z) — uh(z) =Ty (w — wh) =Ch + O(hS),
where z can be any value outside I', and C € R.

Proof. Substituting (2.8) into (2.7), we obtain

ph

609

(2.10)

|P| 1 1 -1
PG 2 —
NGty = 26yt (15 sin A eyl

3N 3 3
:e”(”2<§24z'fs'"<0>+0<'}3'5>>) 1=ev(lf%n< o)
N3 N5 /)P p .

Since
XA

eo=1, PnGueo=ep, w(s)= ) wie;, ej=é”,

j=—00
using (2.11) we gives
PyGpw = Pyo' = Z 1+ |P|3 (0 )+O(w) P
NLpW = IN = —3 1 N5 NW.
pEAh
Notice that T; is smooth, then we have

T (w— Guw) =< w — W T, >=< w— Gy, T, >
=T.(Py(w — Gyw)) + T (Qn(w — Gyw)) = I + L.

Since T, € H°, from Lemma 2.4 we know that the accuracy of I is O(1/N®).

(2.11)

(2.12)
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Using (2.12) and some simple calculations ,we get

4|pl|3 A
Pyw — PNGpw = — Y Z‘\r])?! 17(0)wpep.
pPEA,
Therefore,
4+/27tn (0 A /
Tz(PNCU — PNth) = Z\]:?() Z wp]p\g’Tf
PEN,
42m(0) & A 5l 1
- N’? p; ‘UP|P|3T5+O(W)~
Let .
—V2r Y| c®p|p\3TZp =< w, AT, >,
pPENL
where

A
S f
ARf= L gl

j:*OO

Since f € H",r > 3, the error at the interior point is

where S = A73T, is independent of h. Therefore the approximation solution u"(z) has
the asymptotic expansion with 1> power. The proof is complete.

3 Collocation on a polygon

LetI = U;i:lfj be a domain decomposition for the boundary I' of a polygon ), where
Fj, j=1,---,d are smooth arcs and T]-, j=1,---,dbe corner points with the interior
angle 6; . We allow that 0; = 7, if T} is a smooth point of I';. Assume that I'; can be
described by parameter form

zj(s) = (x;(s),y;(s)) : [0,1] = T},
()] = ()2 + ()2 >0, j=1,- ,d.

Then under the change of variables Eq. (1.2) becomes the following boundary integral
equation system of the first kind

i1
Z_;/O In |zi(t) — z;(s)||2}(s)[oj(s)ds = fi(t), i=1,---,d, 3.1)

=1
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where vi(s) = g(z;(s)), fi(t) = h(z;(t)). Since vj(s) is singular at the integral end-
points, we should eliminate the singularity to improve the accuracy of the approxima-
tion solution. For example, we can use Sidi’s Sin-transformation

Pp(t) = 0,(t)/60,(1), 0,(t) = /Ot(sin(ns))lgds,

to eliminate the singularity, because its derivative y,(¢) has p-order zero pointat t = 0
and t = 1. For example,

Pi(t) = %(l — cos(m‘)),

and its derivative ¢ (t) = 71/2sin(mtt) with one order zero point at t = 0 and ¢+ = 1.
Hence, under the transformation ¢, (t), (3.1) becomes

Kw=F, (3.2)

where K = [Kl-j]f j—1 1s an integral operator matrix, and the kernel of the operator Kj; is

Ki(t5) = — = Inlz(p(8) — 2(Py(s))], 0<ts <1,
Letw = (wy, - - -, wy)T with
w(s) = oy (sl (Bp(sDIP) (), =1, d

be the unknown vector function of (3.2), and F = (F,- - -, F;)T with F;(t) = fi(,(t))
be the functions of the right hand side of (3.2).

Now we take steps 1j = 1/N;jonT;(j =1,---,d),and sett;; = ih;, i=1,--- ,N;,
which constructs a subdivision on T;

A]':O:tj0<t]'1<"'<t]',Nj:1.

Let S? be a piecewise constant function subspace under Ajand tj; 1/, = (i —1/2)h;,i =
1,---,Nj, ie., The mid-point t;;,1 /5 of the interval [t;;, t;; 1] are interpolation nodes.
Thus the collocation equation responding to the boundary integral equation (3.2) is to
find w]’?(s) € S;z,]' =1,--.,d satisfying

I"Kw" = I'F, (3.3)

w' = (wh, -, w)T € (57,

and I" : (C[0,1))¥ — (S?)d is an interpolation operator. Obviously (3.3) can be written

Lot .
‘ /t kij(ti/m+%,s)w;l(s)ds = Fi(ti,er%), i=1---,d;m=1,--- ,N;—1,
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or
d N tjit1 .
Zzwj,i—%/ kl](t1m+% S)dSZFi(tj/m+%)/ Z:l,-../d;m:l/.../N],_ll
j=li=1 tji
— .,k
where W1 = w],(t]l ). Let
= d Nj tj,r+1
Kijmr = E Z / kij(ti,m+%,s)ds_
j=1r=1" tir

Then the constant element collocation method becomes to solve the linear equations
Kw =F, (3.4)

where K = [Eij]fl,jzl is a matrix with block structure, and the block Izij is of size N; by
Nj . Moreover

~ T
F= (Fl(tl,l—&-%)/ e ‘/Fl(tllNﬁ-%)/ te /Fd(tl,l-i-%)/ T /Fd(tl,Nd+%)) ’

T
w = <w1,1+%/. . ./w1,N1+%/. . ./wd,1+%,. . "wd,Nd+%) X

Once (3.4) is solved, from (1.3) the approximation solution of the interior problem (or
exterior problem) at the point P(X,7) € R?\T can be obtained by

1 E Y

" 7 L L) / in (2= x0p0) + (7 - ) ]t @5)

For further analysis we consider the integral equations (3.2). Decompose K;; = A;; +
Bii ’ where

1 S
a(t,s) = —Eln ‘28 2 sin (7(pp(£) — ¥p(s))) |,
is the kernel of A;; and b;(t,s) = k;i(t,s) — a(t,s) is the kernel of B;;. Obviously
(

bi t,S 1 111 Zz(‘/’p( ))—zi 4’;7(5)) , t—s # 0/
(t:5) = ‘25» 2 sin(7(yp(t)—p(s )))‘
|,

bit;s) = —Linlezz;(y,(t))
If welet A = diag(Aq1,-- -, Agq) , then the operator K can be decomposed into K =

A+ B.
Consider the discrete equation (3.4) of the integral equations (3.2). Then the matrix

K can be decomposed as K = A + B,where

t—s=0.

A =diag(Ayy,- -, Ag),

A= —%czrle(h In ( hi

—=), hi 11‘1(262 sin(7th;)), -+,
me?

I
—_
N
\.
U

hiln (267 sin((N; — 1)7Th,'))>, i



Li Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 603-616 613

are circulant matrices.
Using the results of Section 2 and [3] we derive the following lemma.

Lemma 3.1. It holds that

1. The kernel b;(t,s) is a smooth function in [0,1]?, and its derivative of any order exists;
2. B;: H' — H'™7, t € R, v > 1is a bounded operator;

3. A;'Bj; is a compact operator from H! to H';

4. IfCr # 1, then K;; : H* — H'*1, t € R is a bijection, and we have

Aviiwhi + Eﬁwhi = Fl‘, Aviiwhi — Ailw = C”l? 4 O(l’l?),
where C € R is a constant.

The following lemma can be found in [6].

Lemma 3.2. If ¢ € C?**1[qa, b], then

M)~ [ sodx = Sl () — g'(a)] + SRl () (@) 4 -
+ (Eli];!th[ngl(b) _ngfl(a)] + O(h2k+1)’

where f(x) = (b—a)g(a+ (b—a)x), x € [0,1], and M, (f) is the midpoint trapezoidal
formula of f,

1 Y .
CZj = BZ](E) = —(1 —21 2])B2]', ] = 1,' . ,k,

and By; is the Bernoulli polynomial.

Corollary 3.1. For any EZ-]- € H’, we have
Eijwhf — Bi]-w = O(hjzr)

Using Theorem 2.3 and Corollary 3.1, we can directly obtain the following theo-
rem.

Theorem 3.1. Suppose that () is a polygon with piecewise smooth boundary I', and the capac-
ity Cr # 1. Then there exits a function ® = (¢y,- -+, ¢q)T, independent of h = (hy,- - -, hy),
such that the approximation solution derived from (3.5) has the following multi-parameter
asymptotic expansion

u"(P) — u(P) = diag(h3,--- ,h3)® + O(h3), (3.6)

where hy = max h;.
i=1,,d

Under the asymptotic expansion (3.6), the splitting extrapolation can be carried
out by the following algorithm.



614 Li Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 603-616

Algorithm (SEM):

Step 1 Let B0 = (hy,-- -, hy), h®D = (hy, -  hisa, -+, hg) , then solve the equations (3.4) to get
the solutions u](.l)(t]-m),j =1--,dm=1,-- Njparallelly;

Step 2 Calculate the value of the splitting extrapolation ©#* on the coarse grid point by the formula

N 8, 7 .
uj(tjm):7{;14](.)(1?]«,")—(d—g)u](o)(tjm)], j=1-,dm=1,--- ,N; (37)

Step 3 From (3.7) we can easily derive an important asymptotic posterior estimation

1 4 (i
|”](t]m)_ai=21”] (t]m)|
87 (i 7 8 1&g
<Juttim) = 5[ o tim) = @ = G| [+ G = D3 L i) = )|
8 1y ) © 5
<G =1)|3 1w () = 1" ()| + O(H5), (3)

I
—

which can be used to check the accuracy promptly in the process of the actual calculation.

4 Numerical experiments

In this section we shall give two numerical experiments to show the methods in this
paper are very efficient.

Example 4.1. Consider the equation (1.1), here Q = (—1,1)?\ (0,1) x (0, —1). Take
the exact solution as u(r, 8) = r3/2 cos(30/2) under the polar coordinate, i.e., the origin
point is a singular point of the boundary integral equation. Using SEM, The error at
the interior point (—0.5, —0.5) is as follows

Table 1: The error at the interior point (-0.5,-0.5).

N = (N1, Nz, Ng, N4, N5, N6) u(—0.5, *0.5) — uh (*0.5, *0.5)
(8,8,8,8,8,8) 3.5133 e-05
(16,8,8,8,8,8) 3.9814e-05
(8,16,8,8,8,8) 3.5308e-05
(8,8,16,8,8,8) 5.6309e-06
(8,8,8,16,8,8) 1.001e-04
(8,8,8,8,16,8) 4.5369e-05
(8,8,8,8,8,16) 5.9794e-05
posteriori error estimation 5.7433e-06
splitting extrapolation error 4.25e-06
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Example 4.2. Consider the equation (1.1),
Q=(0,1)7% O =R\(0,1)?% ulr=x>+12

Obviously the interior problem is on a convex region, however, the exterior problem
is on a concave region, where the singularity at the concave point is (s — s¢) “13 Us-
ing Galerkin method, the approximate solution at (0.6,0.6) for the interior problem
and the approximate solution at (1.2, 1.2) for the exterior problem are given in [1], and
some numerical results have been shown in Table 2. Using the collocation method in
this paper, the results of the splitting extrapolation method and the posteriori error
estimation are shown in Table 3 under transformation ¢, (¢) and Table 4 under trans-
formation 5(t).

Table 2: Numerical results in [1].

N u(1.2,1.2) —u"(1.2,1.2) | u(0.6,0.6) — u"(0.6,0.6)
16 2.13e-02 1.0657e-02
32 7.23e-03 1.599¢-03
64 2.61e-03 2.33e-04
128 1.01e-03 1.8e-05
256 4.2¢-04 7.0e-06
512 1.9e-04 1.22e-06
Exact solution 0.6122 0.994977

Table 2 shows that the convergence speed is slow for Galerkin method. Tables 3
and 4 show that using SEM and Sidi’s Sin'-transformation, the collocation method in
this paper is with high accuracy and low computational complexity.

Table 3: The error at (0.6,0.6) for interior problem.

N = (N1, Ny, N3, Ny) 1(0.6,0.6) — u"(0.6,0.6)

(8,8,8,8) 2.42e-04
(16,8,8,8) 1.7179e-04
(8,16,8,8) 2.1404e-04
(8,8,16,8) 2.1404e-04
(8,8,8,16) 1.7179e-04

posteriori error estimation 4.9281e-05

splitting extrapolation error 1.6917e-05

Table 4: The error at (1.2,1.2) for exterior problem.

N = (N1, N2, N3, Ny) u(12,1.2) —u"(1.2,1.2)
(8,8,8,8) 9.0355e-04
(16,8,8,8) 9.1626e-04
(8,16,8,8) 4.5293e-04
(8,8,16,8) 4.5293e-04
(8,8,8,16) 9.1626e-04
posteriori error estimation 2.1896e-04
splitting extrapolation error 9.7394e-05
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