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Abstract. In this paper, the collocation methods are used to solve the boundary
integral equations of the first kind on the polygon. By means of Sidi’s periodic
transformation and domain decomposition, the errors are proved to possess the
multi-parameter asymptotic expansion at the interior point with the powers h3

i (i =
1, ..., d), which means that the approximations of higher accuracy and a posteriori
estimation of the errors can be obtained by splitting extrapolations. Numerical ex-
periments are carried out to show that the methods are very efficient.
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1 Introduction

By using the single layer potential theory, the plane Dirichlet problem{
△u = 0, (Ω or Ωc),
u = h, (Γ)

(1.1)

can be converted into a boundary integral equation of the first kind

− 1
π

∫
Γ

g(P) ln |P − Q|dSQ = h(P), ∀P ∈ Γ, (1.2)

where Ω is a polygon, and Γ is its boundary. The Dirichlet problem on Ωc = R2/Ω is
called an exterior problem.
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We all know that the mathematical theory of the first kind of boundary integral
equations is usually more difficult than the second kind due to lack of Fredholm al-
ternative theorem. Although from the viewpoint of the calculation, the work of the
discrete matrix generation and the accuracy of the approximation of the first kind of
boundary integral equations are better than the second kind, but the mathematical
theory of the first kind boundary integral equations is developed only by Sloan and
Spence in [1] until 1988. They proved that if the capacity CΓ ̸= 1, then there was a
unique solution in (1.2). Once g(P) was solved, the solution of the interior problem
(or exterior problem) can be expressed by

u(P) = − 1
π

∫
Γ

ln |P − Q|g(Q)dSQ, ∀P ∈ R2\Γ. (1.3)

Sloan and Spence also used Galerkin method to solve the first kind boundary equa-
tions, and proved that using the Galerkin method, the accuracy of the interior-point
approximations had superconvergence. However, the computational complexity of
Galerkin method was too huge. Yan and other authors in [2] used the constant ele-
ment collocation method to solve (1.2) and got the error estimate at the interior point
with O(hβ+3/2), where β = (1− α)/α and απ were the largest interior angle of Γ. This
means that the accuracy reduces on concave regions. Thus, Yan in [3] recommended
getting the high accuracy by mesh grading, which undoubtedly increased the diffi-
culty of calculating. By using the mechanical quadrature method Lu Tao and Huang
Jin in [4] proved the convergence of approximate solutions and the asymptotic expan-
sions of the error, which can be used to accelerate the convergence by Richardson’s
extrapolation.

Splitting extrapolation method (SEM) based on a multivariate asymptotic expan-
sion of the error is an effective parallel algorithm, which possesses high order of accu-
racy and high degree of parallelism (see [6]). By means of SEM, a large problem can
be turned into many smaller discrete problems involving several grid parameters. If
the errors of approximations of the problems have the multivariate asymptotic expan-
sions, then after solving these small subproblems in parallel, the higher accuracy is
computed by SEM.

In this paper, the collocation methods are used to solve the boundary integral equa-
tions of the first kind on the polygons. By means of Sidi’s periodic transformation (see
[5]) and domain decomposition, the errors are proved to possess the multi-parameter
asymptotic expansion at the interior point with the powers h3

i (i = 1, · · · , d), which
means that the approximations of higher accuracy and a posteriori estimation of the
errors can be got by SEM.

In section 2, we will discuss the collocation method for the first kind of boundary
integral equations on a circle. It will show that the error at the interior point have
the asymptotic expansion. Based on section 2, further analysis for solving the first
kind of boundary integral equations on a polygonal domain will be carried out. In
section 3, using the results of the circle and the midpoint trapezoidal formula, the
multi-parameter asymptotic expansion of the error at the interior point with the pow-
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ers h3
i (i = 1, · · · , d) will be obtained, which means that by using the splitting extrap-

olation, high accuracy order O(h5) can be proposed. Some examples will be shown in
section 4.

2 Collocation on a circle

In this section, let Ω be a circle with radius e−1/2 , where the boundary Γ is de-
scribed by a 2π-periodic function γ(s) = (γ1(s), γ2(s)) with |γ′(s)| = [(γ′

1(s))
2 +

(γ′
2(s))

2]1/2 > 0. Then Eq. (1.2) can be written as

Aω = f , (2.1)

where

Aω =
∫ π

−π
Λ(s − σ)ω(σ)dσ, (2.2a)

Λ(s − σ) = − 1
π

ln |2e
−1
2 sin

s − σ

2
|. (2.2b)

To derive the collocation equation for (2.1)-(2.2), we take the step h = 2π/N , and set

σj = −π + hj, for j = 0, 1, · · · , N,

σj+ 1
2
= σj +

1
2

h, for j = 0, 1, · · · , N − 1.

Then, divide the interval [−π, π] uniformly. Suppose that Sh is a piecewise constant
function space with break points {σj}N

j=0 and Qh is an interpolation projection defined
by

Qhv =
N−1

∑
j=0

v(σj+ 1
2
)Xj(s),

where {
Xj(s) = 1, s ∈ [σj, σj+1],
Xj(s) = 0, s /∈ [σj, σj+1].

Then the collocation equation of (2.1) is to find wh ∈ Sh satisfying

Aωh|σ
j+ 1

2
= f (σj+ 1

2
), j = 0, · · · , N − 1. (2.3)

Once {ωh(σj+1/2), j = 0, · · · , N − 1} is solved, from (1.3) the approximation solution
uh(z) of u(z) can be derived by

uh(z) = − h
π

N−1

∑
j=0

ln |z − γ(σj+ 1
2
)|ωh(σj+ 1

2
), ∀z ∈ Ω.
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The collocation equation (2.3), in operator form, is expressed as follows

Ahωh = Qh f , (2.4)

where Ah = Qh AQh. After ω is solved in (2.1), then

u(z) =< ω, Tz >=
∫ π

−π
ln |γ(s)− z|ω(s)ds, z ∈ Ω.

Since z /∈ Γ , we have Tz = ln |γ(s) − z| is smooth. Moreover, once ωh is solved in
(2.4), then

uh(z) =< ωh, Tz >,

where

< f , g >=
∫ π

−π
f (s)gds.

Below we assume that Hr(2π) is a Sobolev space with 2π-periodic functions. The
following lemmas can be seen in [2].

Lemma 2.1. If f ∈ Hr, then f has a Fourier expansion

f (s) =
1√
2π

∞

∑
j=−∞

∧
f je

ijs, i =
√
−1,

where
∧
f j = 1/

√
2π

∫ π
−π f (s)e−ijsds and ∃c > 0, such that |

∧
f j| ≤ c/|j|r.

Lemma 2.2. The eigenvalues of operator A are given by{
µj = 1, j = 0,
µj =

1
|j| , j ̸= 0,

and the corresponding eigenfunctions are e±ijs.

Lemma 2.3. The eigenvalues of the collocation operator Ah = Qh AQh : Sh → Sh are given
by  λp = 1, p = 0,

λp = N
π sin π|p|

N

∞
∑

k=0
(−1)k( 1

(kN+|p|)2 +
1

(kN+N−|p|)2 ), p ∈ Λ∗
h,

and the corresponding eigenfunctions are

ep
h(s) =

N−1

∑
j=0

eihjpXj(s), p ∈ Λh,

where Λh = {p : |p| ≤ (N − 1)/2}, Λ∗
h = Λh \ {0}. Moreover, {ep

h , p ∈ Λh} constructs an
orthogonal basis of Sh satisfying

< ep
h , ep′

h >= 2πδpp′ , p, p′ ∈ Λh. (2.5)



Li Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 603-616 607

Since each 2π-periodic function f (s) has a Fourier expansion f (s) =
∞
∑

j=−∞

∧
f je

ijs,

we can let

PN f = ∑
j∈Λh

∧
f je

ijs.

Obviously PN is a projection operator on span {eijs, j ∈ Λh}.

Lemma 2.4. Let QN = I − PN , ∀u ∈ Hr. Then

∥ QNu ∥t≤ chr−t,

where ∥ • ∥ is the norm of Ht .

Lemma 2.5. It holds that

Pheims = αmem
h , αm = 2(mh)−1 sin

(mh
2

)
e

imσ1
2 , (2.6a)

Qheims = βmem
h , βm = e

imσ1
2 . (2.6b)

where Ph is the orthogonal projection operator to Sh.

Since the collocation solution ωh = A−1
h Qh f = A−1

h Qh Aω, we can define an oper-
ator

Gh = A−1
h Qh A,

so that ωh = Ghω. Let ep = eips, and HN = {ej, j ∈ Λh}. Obviously we have

PNGh : HN −→ HN .

Now we prove the following lemma

Lemma 2.6. It holds that

PNep
h = αpeips = 2(ph)−1 sin

( ph
2
)
e
−imσ1

2 eips. (2.7)

Proof. Since ep
h has a Fourier expansion

ep
h =

1
2π

∞

∑
j=−∞

∫ π

−π
ep

h(s)e
−ijsdseijs,

we have

PNep
h =

1
2π ∑

j∈Λh

∫ π

−π
ep

h(s)e
−ijsdseijs =

1
2π ∑

j∈Λh

< ep
h , eijs > eijs

=
1

2π ∑
j∈Λh

< Phep
h , eijs > eijs =

1
2π ∑

j∈Λh

< ep
h , Pheijs > eijs

=
1

2π ∑
j∈Λh

αj < ep
h , αjeijs > eijs = ∑

j∈Λh

αjδjpeijs = αpeips,
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where we have not only used PNep
h = ep

h and the self-conjugate properties of Ph, but
also used Eqs. (2.5) and (2.6).

Theorem 2.1. The following result holds: PNGhep =
2 1

ph sin ph
2

|p|λp
ep, p ̸= 0,

PNGhep = 1, p = 0.

Proof. Since p = 0 is easy, we assume that p ̸= 0, then

PNGhep = PN A−1
h Qh Aep =

1
|p|PN A−1

h Qhep

=
βp

|p|PN A−1
h ep

h =
βp

|p|λp
PNep

h =
βpαp

|p|λp
eips =

2 1
ph sin ph

2

|p|λp
eips.

This completes the proof.

Theorem 2.2. If p ̸= 0, the eigenvalue λp has the following asymptotic expansion

λp =
N
π

sin
π|p|

N

( 1
p2 − 4|p|

N3 η(0) + O(
|p|3
N5 )

)
, (2.8)

where

η(x) =
∞

∑
k=1

(−1)k k
(k2 − x)2 .

Proof. It follows from Lemma 2.3 that if p ̸= 0, the eigenvalue λp can be written as

λp =
N
π

sin
π|p|

N

∞

∑
k=0

(−1)k
( 1
(kN + |p|)2 +

1
(kN + N − |p|)2

)
. (2.9)

Consequently,

∞

∑
k=0

(−1)k(
1

(kN + |p|)2 +
1

(kN + N − |p|)2 )

=
1

|p|2 +
∞

∑
k=1

(−1)k(
1

(kN + |p|)2 − 1
(kN − |p|)2 )

=
1

|p|2 − 4|p|N
∞

∑
k=1

(−1)k k

N4(k2 − p2

N2 )2

=
1

|p|2 − 4|p|
N3 η(

p2

N2 ),
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where

η(x) =
∞

∑
k=1

(−1)k k
(k2 − x)2 , x ∈ (0, 1).

Since η(x) is analytical, its Taylor expansion is

η(x) = η(0) + η′(0)x + · · ·+ ηm(0)
m!

+ · · · ,

which yields

∞

∑
k=0

(−1)k
( 1
(kN + |p|)2 +

1
(kN + N − |p|)2

)
=

1
p2 − 4|p|

N3 η(0) + O(
|p|3
N5 ). (2.10)

Substituting (2.10) into (2.9), the proof of Theorem 2.2 is complete.

Theorem 2.3. For f ∈ Hr, r > 3, we have

u(z)− uh(z) = Tz(ω − ωh) = Ch3 + O(h5),

where z can be any value outside Γ, and C ∈ R.

Proof. Substituting (2.8) into (2.7), we obtain

PNGhep = 2ep
sin ph

2
|p|h

(
|p|N

π
sin

π|p|
N

∞

∑
k=0

(−1)k(
1

(kN + |p|)2 +
1

(kN + N − |p|)2 )
)−1

=ep

(
p2(

1
p2 − 4|p|

N3 η(0) + O(
|p|3
N5 ))

)−1
= ep

(
1 − 4|p|3

N3 η(0) + O(
|p|3
N5 )

)−1

=
(

1 +
4|p|3
N3 η(0) + O(

|p|3
N5 )

)
ep, ∀p ∈ Λ∗. (2.11)

Since

e0 = 1, PNGhe0 = e0, ω(s) =
∞

∑
j=−∞

∧
ωjej, ej = eijs,

using (2.11) we gives

PNGhω = PNωh = ∑
p∈Λh

(
1 +

4|p|3
N3 η(0) + O(

|p|3
N5 )

)
PNω. (2.12)

Notice that Tz is smooth, then we have

Tz(ω − Ghω) =< ω − ωh, Tz >=< ω − Ghω, Tz >

=Tz(PN(ω − Ghω)) + Tz
(
QN(ω − Ghω)

)
= I1 + I2.

Since Tz ∈ H5, from Lemma 2.4 we know that the accuracy of I2 is O(1/N5).
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Using (2.12) and some simple calculations ,we get

PNω − PNGhω = − ∑
p∈Λh

4|p|3
N3 η(0)

∧
ωpep.

Therefore,

Tz(PNω − PNGhω) =
4
√

2πη(0)
N3 ∑

p∈Λh

∧
ωp|p|3

∧
Tp

z

=
4
√

2πη(0)
N3

∞

∑
p=−∞

∧
ωp|p|3

∧
Tp

z + O(
1

N5 ).

Let

−
√

2π ∑
p∈Λh

∧
ωp|p|3

∧
Tp

z =< ω, A−3Tz >,

where

A−3 f =
∞

∑
j=−∞

∧
f j

|j|−3 eijs.

Since f ∈ Hr, r > 3, the error at the interior point is

Tz(ω − ωh) =
−4η(0)

N3 < ω, S > +O(
1

N5 ),

where S = A−3Tz is independent of h. Therefore the approximation solution uh(z) has
the asymptotic expansion with h3 power. The proof is complete.

3 Collocation on a polygon

Let Γ = ∪d
j=1Γj be a domain decomposition for the boundary Γ of a polygon Ω, where

Γj, j = 1, · · · , d are smooth arcs and Tj, j = 1, · · · , d be corner points with the interior
angle θj . We allow that θj = π, if Tj is a smooth point of Γj. Assume that Γj can be
described by parameter form

zj(s) =
(
xj(s), yj(s)

)
: [0, 1] → Γj,

|z′j(s)| = [(x′j(s))
2 + (y′j(s))

2]1/2 > 0, j = 1, · · · , d.

Then under the change of variables Eq. (1.2) becomes the following boundary integral
equation system of the first kind

d

∑
j=1

− 1
π

∫ 1

0
ln |zi(t)− zj(s)||z′j(s)|vj(s)ds = fi(t), i = 1, · · · , d, (3.1)
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where vj(s) = g(zj(s)), fi(t) = h(zi(t)). Since vj(s) is singular at the integral end-
points, we should eliminate the singularity to improve the accuracy of the approxima-
tion solution. For example, we can use Sidi’s Sinl-transformation

ψp(t) = θp(t)/θp(1), θp(t) =
∫ t

0
(sin(πs))pds,

to eliminate the singularity, because its derivative ψ′
p(t) has p-order zero point at t = 0

and t = 1 . For example,

ψ1(t) =
1
2

(
1 − cos(πt)

)
,

and its derivative ψ′
1(t) = π/2sin(πt) with one order zero point at t = 0 and t = 1.

Hence, under the transformation ψp(t), (3.1) becomes

Kw = F, (3.2)

where K = [Kij]
d
i,j=1 is an integral operator matrix, and the kernel of the operator Kij is

kij(t, s) = − 1
π

ln |zi(ψp(t))− zj(ψp(s))|, 0 ≤ t, s ≤ 1.

Let w = (w1, · · ·, wd)
T with

wj(s) = vj(ψp(s))|z′(ψp(s))|ψ′
p(s), j = 1, · · · , d

be the unknown vector function of (3.2), and F = (F1, · · ·, Fd)
T with Fj(t) = f j(ψp(t))

be the functions of the right hand side of (3.2).
Now we take steps hj = 1/Nj on Γj(j = 1, · · · , d), and set tj,i = ihj, i = 1, · · · , Nj,

which constructs a subdivision on Γj

Λj : 0 = tj0 < tj1 < · · · < tj,Nj = 1.

Let Sh
j be a piecewise constant function subspace under Λj and tj,i−1/2 = (i− 1/2)hj, i =

1, · · · , Nj, i.e., The mid-point tj,i+1/2 of the interval [tji, tj,i+1] are interpolation nodes.
Thus the collocation equation responding to the boundary integral equation (3.2) is to
find ωh

j (s) ∈ Sh
j , j = 1, · · · , d satisfying

IhKωh = IhF, (3.3)

where
wh = (wh

1, · · · , wh
d)

T ∈ (Sh
j )

d,

and Ih : (C[0, 1])d → (Sh
j )

d is an interpolation operator. Obviously (3.3) can be written
as

d

∑
j=1

Nj

∑
i=1

∫ tj,i+1

tji

kij(ti,m+ 1
2
, s)ωh

j (s)ds = Fi(ti,m+ 1
2
), i = 1, · · · , d; m = 1, · · · , Nj − 1,
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or

d

∑
j=1

Nj

∑
i=1

ωj,i− 1
2

∫ tj,i+1

tji

kij(ti,m+ 1
2
, s)ds = Fi(ti,m+ 1

2
), i = 1, · · · , d; m = 1, · · · , Nj − 1,

where ωj,i− 1
2
= ωh

j (tj,i− 1
2
). Let

K̃ij,mr =
d

∑
j=1

Nj

∑
r=1

∫ tj,r+1

tjr

kij(ti,m+ 1
2
, s)ds.

Then the constant element collocation method becomes to solve the linear equations

K̃w̃ = F̃, (3.4)

where K̃ = [K̃ij]
d
i,j=1 is a matrix with block structure, and the block K̃ij is of size Ni by

Nj . Moreover

F̃ =
(

F1(t1,1+ 1
2
), · · ·, F1(t1,N1+

1
2
), · · · , Fd(t1,1+ 1

2
), · · · , Fd(t1,Nd+

1
2
)
)T

,

w̃ =
(

w1,1+ 1
2
, · · ·, w1,N1+

1
2
, · · ·, wd,1+ 1

2
, · · ·, wd,Nd+

1
2

)T
.

Once (3.4) is solved, from (1.3) the approximation solution of the interior problem (or
exterior problem) at the point P(x, y) ∈ R2\Γ can be obtained by

uh(P) = − 1
2π

d

∑
j=1

Nj

∑
i=1

wj,i+ 1
2

∫ tj,i+1

tji

ln
[(

x − xj(ψp(t))
)2

+
(

y − yj(ψp(t))
)2]

dt. (3.5)

For further analysis we consider the integral equations (3.2). Decompose Kii = Aii +
Bii, where

a(t, s) = − 1
π

ln
∣∣∣2e

−1
2 sin

(
π(ψp(t)− ψp(s))

)∣∣∣,
is the kernel of Aii and bi(t, s) = kii(t, s)− a(t, s) is the kernel of Bii. Obviously bi(t, s) = − 1

π ln | zi(ψp(t))−zi(ψp(s))

2e
−1
2 sin(π(ψp(t)−ψp(s)))

|, t − s ̸= 0,

bi(t, s) = − 1
π ln |e 1

2 zi(ψp(t))|, t − s = 0.

If we let A = diag(A11, · · · , Add) , then the operator K can be decomposed into K =
A + B.

Consider the discrete equation (3.4) of the integral equations (3.2). Then the matrix
K̃ can be decomposed as K̃ = Ã + B̃,where

Ã = diag(Ã11, · · · , Ãdd),

Ãii = − 1
π

cirle
(

hi ln
( hi

πe
1
2

)
, hi ln

(
2e

−1
2 sin(πhi)

)
, · · · ,

hi ln
(
2e

−1
2 sin((Ni − 1)πhi)

))
, i = 1, · · · , d
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are circulant matrices.
Using the results of Section 2 and [3] we derive the following lemma.

Lemma 3.1. It holds that

1. The kernel bi(t, s) is a smooth function in [0, 1]2, and its derivative of any order exists;
2. Bii : Ht → Ht+γ, t ∈ R, γ ≥ 1 is a bounded operator;
3. A−1

ii Bii is a compact operator from Ht to Ht;
4. If CΓ ̸= 1, then Kii : Ht → Ht+1, t ∈ R is a bijection, and we have

Ãiiω
hi + B̃iiω

hi = Fi, Ãiiω
hi − Aiiω = Ch3

i + O(h5
i ),

where C ∈ R is a constant.

The following lemma can be found in [6].

Lemma 3.2. If g ∈ C2k+1[a, b], then

Mn( f )−
∫ b

a
g(x)dx =

C2

2!
h2[g′(b)− g′(a)] +

C4

4!
h4[g′′′(b)− g′′′(a)] + · · ·

+
C2k

(2k)!
h2k[g2k−1(b)− g2k−1(a)] + O(h2k+1),

where f (x) = (b − a)g
(
a + (b − a)x

)
, x ∈ [0, 1], and Mn( f ) is the midpoint trapezoidal

formula of f ,

C2j = B2j
(1

2
)
= −(1 − 21−2j)B2j, j = 1, · · · , k,

and B2j is the Bernoulli polynomial.

Corollary 3.1. For any B̃ij ∈ Hr, we have

B̃ijω
hj − Bijω = O(h2r

j ).

Using Theorem 2.3 and Corollary 3.1, we can directly obtain the following theo-
rem.

Theorem 3.1. Suppose that Ω is a polygon with piecewise smooth boundary Γ, and the capac-
ity CΓ ̸= 1. Then there exits a function Φ = (ϕ1, · · · , ϕd)

T, independent of h = (h1, · · · , hd),
such that the approximation solution derived from (3.5) has the following multi-parameter
asymptotic expansion

uh(P)− u(P) = diag(h3
1, · · · , h3

d)Φ + O(h5
0), (3.6)

where h0 = max
i=1,··· ,d

hi.

Under the asymptotic expansion (3.6), the splitting extrapolation can be carried
out by the following algorithm.
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Algorithm (SEM):

Step 1 Let h(0) = (h1, · · ·, hd), h(i) = (h1, · · ·, hi/2, · · ·, hd) , then solve the equations (3.4) to get

the solutions u(i)
j (tjm), j = 1, · · ·, d; m = 1, · · ·, Nj parallelly;

Step 2 Calculate the value of the splitting extrapolation u∗ on the coarse grid point by the formula

u∗
j (tjm) =

8
7

[ d

∑
i=1

u(i)
j (tjm)−

(
d − 7

8
)
u(0)

j (tjm)
]
, j = 1, · · · , d; m = 1, · · · , Nj; (3.7)

Step 3 From (3.7) we can easily derive an important asymptotic posterior estimation

∣∣uj(tjm)−
1
d

d

∑
i=1

u(i)
j (tjm)

∣∣
≤
∣∣∣u(tjm)−

8
7

[ d

∑
i=1

u(i)
j (tjm)− (d − 7

8
)u(0)

j (tjm)
]∣∣∣+ (

8
7

d − 1)
∣∣∣ 1
d

d

∑
i=1

u(i)
j (tjm)− u(0)

j (tjm)
∣∣∣

≤(
8
7

d − 1)
∣∣∣ 1
d

d

∑
i=1

u(i)
j (tjm)− u(0)

j (tjm)
∣∣∣+ O(h5

0), (3.8)

which can be used to check the accuracy promptly in the process of the actual calculation.

4 Numerical experiments

In this section we shall give two numerical experiments to show the methods in this
paper are very efficient.

Example 4.1. Consider the equation (1.1), here Ω = (−1, 1)2 \ (0, 1)× (0,−1). Take
the exact solution as u(r, θ) = r3/2 cos(3θ/2) under the polar coordinate, i.e., the origin
point is a singular point of the boundary integral equation. Using SEM, The error at
the interior point (−0.5,−0.5) is as follows

Table 1: The error at the interior point (-0.5,-0.5).

N = (N1, N2, N3, N4, N5, N6) u(−0.5,−0.5)− uh(−0.5,−0.5)
(8,8,8,8,8,8) 3.5133 e-05
(16,8,8,8,8,8) 3.9814e-05
(8,16,8,8,8,8) 3.5308e-05
(8,8,16,8,8,8) 5.6309e-06
(8,8,8,16,8,8) 1.001e-04
(8,8,8,8,16,8) 4.5369e-05
(8,8,8,8,8,16) 5.9794e-05

posteriori error estimation 5.7433e-06
splitting extrapolation error 4.25e-06
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Example 4.2. Consider the equation (1.1),

Ω = (0, 1)2, Ωc = R2\(0, 1)2, u|Γ = x2 + y2.

Obviously the interior problem is on a convex region, however, the exterior problem
is on a concave region, where the singularity at the concave point is (s − s0)

−1/3 . Us-
ing Galerkin method, the approximate solution at (0.6, 0.6) for the interior problem
and the approximate solution at (1.2, 1.2) for the exterior problem are given in [1], and
some numerical results have been shown in Table 2. Using the collocation method in
this paper, the results of the splitting extrapolation method and the posteriori error
estimation are shown in Table 3 under transformation ψ1(t) and Table 4 under trans-
formation ψ3(t).

Table 2: Numerical results in [1].

N u(1.2, 1.2)− uh(1.2, 1.2) u(0.6, 0.6)− uh(0.6, 0.6)
16 2.13e-02 1.0657e-02
32 7.23e-03 1.599e-03
64 2.61e-03 2.33e-04
128 1.01e-03 1.8e-05
256 4.2e-04 7.0e-06
512 1.9e-04 1.22e-06

Exact solution 0.6122 0.994977

Table 2 shows that the convergence speed is slow for Galerkin method. Tables 3
and 4 show that using SEM and Sidi’s Sinl-transformation, the collocation method in
this paper is with high accuracy and low computational complexity.

Table 3: The error at (0.6,0.6) for interior problem.

N = (N1, N2, N3, N4) u(0.6, 0.6)− uh(0.6, 0.6)
(8,8,8,8) 2.42e-04
(16,8,8,8) 1.7179e-04
(8,16,8,8) 2.1404e-04
(8,8,16,8) 2.1404e-04
(8,8,8,16) 1.7179e-04

posteriori error estimation 4.9281e-05
splitting extrapolation error 1.6917e-05

Table 4: The error at (1.2,1.2) for exterior problem.

N = (N1, N2, N3, N4) u(1.2, 1.2)− uh(1.2, 1.2)
(8,8,8,8) 9.0355e-04
(16,8,8,8) 9.1626e-04
(8,16,8,8) 4.5293e-04
(8,8,16,8) 4.5293e-04
(8,8,8,16) 9.1626e-04

posteriori error estimation 2.1896e-04
splitting extrapolation error 9.7394e-05
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