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Abstract. This paper is the first contribution towards the rigorous justification of
asymptotic 1D models for the time-domain simulation of the propagation of elec-
tromagnetic waves in coaxial cables. Our general objective is to derive error esti-
mates between the ”exact” solution of the full 3D model and the “approximate”
solution of the 1D model known as the Telegraphist’s equation.
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1 Introduction

This work is a continuation of a previous article [4] devoted to the asymptotic model-
ing of electromagnetic waves propagations in a thin co-axial cable. By thin cable, we
mean a 3D elongated (infinitely long in this paper) cylindrical domain whose trans-
verse dimensions are small with respect to the considered wavelengths. By co-axial
cable, we mean that each transverse cross-section of the cable is not simply connected,
which is essential. Of course, as a cable is a thin structure whose transverse dimen-
sions are much smaller than the longitudinal one, one would like to use a simplified
1D model: this is even necessary for the effective efficiency of the computational tool
(one wants in particular to avoid using a 3D mesh for the thin cable).

In such a situation, electrical engineers use the well-known Telegraphist’s equa-
tions for “perfect” coaxial cables (homogeneous with circular cross-section), where
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the electric unknowns are reduced to an electric potential V(x3,¢) and an electric cur-
rent I(x3,t), where x3 denotes the abscissa along the cable, t is time and in absence of
source

ot 8X3 (1 1)
Ay SR A '
ot dx3 o

where the capacitance C, the inductance L, the conductance G and the resistance R
can be expressed it terms of the geometry of the cross-section. In [4], thanks to a for-
mal asymptotic expansions with respect to the small parameter § := diameter of the
cable/unit reference length, we derived a simplified 1D effective model under quite
general assumptions: the cross section is heterogeneous, slowly variable in the longi-
tudinal direction and possibly made of lossy media (i.e., with electric or magnetic con-
ductivities). To derive this effective model, we considered a family of problems posed
in domains that depend on a small geometric parameter 6 > 0. Of course, a given
cable corresponds to a given value of § but the effective model will be constructed by
an asymptotic analysis in 6.

The resulting model appears as an extension of the Telegraphist’s equation (1.1)
currently used in the engineering community [3, 8] (in particular, we show that the
presence of lossy media induces the apparition of time convolution terms in the limit
model). The coefficients of the homogenized model are given explicitly as the solu-
tions of two 2D scalar elliptic problems posed in the cable cross-section. Such models
can be used as an efficient tool for the time-domain numerical simulation of the propa-
gation of electromagnetic waves in coaxial cables, which is needed in many industrial
applications. In our case, we were motivated by the simulation of non-destructive
testing experiments by ultra-sounds [5], where coaxial cables are used for the electric
supply process for piezo-electric transducers [9].

The present paper is the first contribution towards the rigorous justification of the
results of [4]. More than a simple convergence theorem, the general objective is to
derive error estimates (in a sense that will be explained later) between the “exact” so-
lution of the full 3D model and the “approximate” solution of the 1D model. We focus
in this first paper on the (model) situation of a perfectly cylindrical cable (invariant
under translation in the longitudinal direction) whose cross-section is heterogeneous
(constitutive coefficients depend on transverse variables) but made of non-lossy me-
dia. A more general situation will be considered in a future work.

The paper is organized as follows. In Section 2, we present the considered model
problem and more precisely the family of /-dependent problems that we wish to ana-
lyze. In Section 3, we recall the main results of [4] in the simplified situation considered
in this paper. Then we give the main results of this work (Theorem 3.2), that provide
various error estimates under the only assumption that the data of the problem (the
source terms) are adequately “well-prepared”. Finally, in Section 4, we give a detailed
proof of Theorem 3.2, that relies on appropriate vector field decompositions, energy
estimates and adequate versions of Poincaré-Friedrichs inequalities (see Appendix).
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2 The homogenized 1D model in non-conductive
cylindrical coaxial cables

We consider a family of problems posed in cylindrical domains (cables) that depend
on a small geometric parameter § > 0 measuring the transverse dimensions of the
cables. The domain associated to the cables are denoted )°:

Q% =6S xR,

where S is a connected bounded and Lipschitz reference domain (of unit diameter) in
R? (see Fig. 1). In what follows, we shall denote by x = (x, x3) the 3D space variable
where x = (x1,x7) represents the transverse coordinates. An essential assumption is
that S is not simply connected:

S=0\T, Tcco,

where O and T (the hole) are simply connected, Lipschitz, open sets of R?. This cor-
responds to the case where the cable contains only one metallic (perfectly conducting)
wire. However, the extension to several holes (or several metallic wires) is rather
straightforward [4]. In this case, the boundary of S has two connected components,
the exterior one (dS") and the interior one (9S™):

95T : =90, 9S” :=9T.

To define the effective model, we shall introduce an artificial cut in the cross-section,
namely a line I joining dS™ to dS~ so that the domain:

St:=S\T (2.1)

is simply connected.

Figure 1: Geometry of the coaxial cables.

The family of (thin) domains ()’ is related to the reference domain Q = S x R by
Q° = Gs(Q)

with the transverse scaling transformation Gs : (x1,x2,x3) — (dx1,0x2,x3). Along
00, the outward unitary normal vector n° satisfies

ae. Gs(x) €3, n’= (n(x),m(x),0), n=(n,m):35 =R, (22
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where 7 is the (2D) outward unitary normal vector to 9S.

Next, we assume that the material properties, namely the electric permittivity &°(x)
and magnetic permeability 4’ (x), do not depend on x3 and are obtained by a scaling
in x = (x1, x2) of fixed distributions over the reference domain Q):

& =¢o gé—l, y‘s =uo ggl (2.3)

and where (¢, ) are identified to (measurable) functions defined on S that satisfy the
usual positivity properties:

0<e_ <e(x)<er, O0<p_<pu(x)<ps, ae x€S. (2.4)

The equations governing the electric field E°(x,t) and the magnetic field H°(x, t) are
Maxwell’s equations (V x denoting the usual 3D curl operator)

5O S_ 1 i O
&— —VXxXH=]° in °, t>0,
ot
o (2.5)
y‘57+VxE‘5:O in %, >0,
with perfectly conducting boundary conditions
ECxn®=0 on 9Q’, t>0, (2.6)
the system being considered at rest at t = 0:
E°(x,0) = H°(x,0) =0, ae. x€ Q. 2.7)

To proceed in our analysis we shall assume that the source term, namely the cur-
rent density J°(x,t), has no longitudinal component, is divergence free, vanishes at
time t = 0 and is obtained by scaling in (x1,x2) of a fixed current density in Q (this
corresponds to what we call well-prepared data):

i 92 _ _
s + Fr 0, J(x,00)=0, ae xeQ. (28

J'=T0G;Y J=(]0),
For the analysis, it appears judicious to introduce the tangential components
Ep = <E5/ Eg)tl H% = (His/ Hg)t

of the electric and magnetic fields as well as the longitudinal components of these
fields: E and HS. We can rewrite the Eq. (2.5) with these new unknowns, using the
following notations: for all scalar functions u and 2D transverse vector fields v and w
with two components v, and v, or w; and w;, we define:

rotu =

Ju Ju >t, — (au ou >f, di du;  dvy Y= 00y Bvl.

Vi = (a—xl'E =0’ on



S. Imperiale and P. Joly / Adv. Appl. Math. Mech., 4 (2012), pp. 647-664 651
Moreover, for any v = (v1,v2) and w = (w1, w;), we shall set
VW = v1W1 + VW2, VX W= 0wy — VW, e3 x v = (—vy,0)".
We will also used the following properties,
B{u-Vﬁ:—r_d)cﬁ-Vu, e3><Vu:—Bzcu, Vuxv:—v-ﬁzm. (2.9)

Remark 2.1. In the sequel, we shall denote the L? scalar product in a domain D C R?
(with n the unit outgoing normal vector to dD) of two scalar functions u and # in
L%(D) or two vector fields v and 7 in L?(D)? as

<u,ﬁ)L2(D) :/ uﬁdx, <v,5)L2(D) :/ v - vdx
D D

and || - [|;2(p) this associated norm. We shall also use the following Green’s formula:
H
(v x n,u)s0 = (v, rotu) 2 — (rotv, u) 2 (2.10)

valid for any (u,v) € L?(Q) x L?(Q)? such that Totu € L*(Q)% and v € L*(Q) and
where (-, -) represents the duality product between H'/2(9Q)) and H~1/2(30)).

The Eq. (2.5) can be rewritten as (with 3 = (J¢, J5))

OL) oHY.
SOCT _ _ S Of
5a55 ) = Of
€ 5 —rotH7 =0 in Q°, t>0,
i OES o (2.11)
w +e3><—+rotE3—O in O°, t>0,
ot 0x3
oH}
u at3 + rotE} = 0 in Q, t>0.
Using (2.2), the boundary conditions (2.6) become
ESxn=0, ES=0 on 90’ t>0. (2.12)

Moreover, taking the divergence of the Egs. (2.11) and using (2.8), we get, after
time integration, the “hidden” divergence equations:

oS
dive’ ET +858— =0 in Q% t>0,
X3 (2.13)

1,0 IO 58H§ : 6
divy’HT + E:O in O°, t>0.

Finally, from the Maxwell’s equations (2.11), the divergence equations (2.13) and the
boundary conditions (2.12), it is classical to derive an additional hidden boundary
condition for the magnetic field (see for instance [2]):

HS-n=0 on oQY, t>0. (2.14)
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We want to describe the behavior of (E°, H®) when ¢ tends to 0. For this, it is
useful to apply a change of variables in order to work in a fixed geometry. Doing

so, the parameter J appears only in the coefficients of the governing equations. We
introduce the rescaled fields (ES, ES, HS, H3) defined by:

Ef =ES0G;l, E§=E0G;!, H}=H}oG;!, H{=HoG;' (2.15)

We can write from (2.11), (2.12) the equations for (E‘%, E‘;, ﬁ%, ﬁg ) in the fixed domain
Q) (the 6! terms simply comes from derivatives in (x1,x2) and Js = (], J2)):

oES. oHY.

87—33X%—571QH§:]S in Q, t>0,
J: .
87*5 rotH7 =0 in Q), t>0,
- ~ 2.16
OHY, OB — _ (210
,M7+e3><y+(5 rotEs =0 in Q, >0,
3
OH; =5
],ta—t?’ + 6 rotES =0 in Q, t>0,
while from the divergence equations (2.13),
~5 . OE§
o 1diveES +€a—3 =0 inQ, t>0,
3 2.17)

- OH}
o~ YdivuHS + yw?’ =0 in Q, t>0.
3

The Egs. (2.16) are completed by zero initial conditions
ES(x,0) =0, E}(x,0)=0, H(x,0)=0, H(x0)=0, aexcQ, (218)
and boundary conditions easily deduced from (2.12), (2.14)
ESxn=0, E5=0, H-n=0 onoQ, t>0. (2.19)

To conclude this section, we recall (without proof) the standard existence, uniqueness
and regularity results (see [6] for instance) for the evolution problem (2.16), (2.18),
(2.19) together with a priori estimates that are obtained via standard energy tech-
niques. It is useful to introduce some notation. For integers (p, ), we set

P+
DPi .=
ax;’ oti

and for m a strictly positive integer, we introduce the Banach spaces

W Qx[0,T]) = {J € L'(0, T; L*(Q)?) /DP1] € L} (0, T; L*(Q)?), p+q <m}, (2.20a)
W Qx [0,T]) = {J e W"(Q x [0,T])/D*"](-,0) =0, g <m—1}. (2.20b)
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Theorem 2.1. Assuming that s satisfies
Js € WO(Q x [0,T]) := L'([0, T], L*(Q)?),

the problem (2.16), (2.18), (2.19) admits a unique solution E° = (E‘ST, Eg), H = (ﬁ%, ﬁg)
with
(E%, H%) € C°([0, T], L2(Q)?)?,

which satisfies the a priori estimate (with C > 0 depending only on € and p)

~ - t
VEST, IOl + 1Bl < C [ st @21)

Moreover if Js € W{'(Q) x [0, T]) then,

(DPIE, DPIEP) € CO([0,T), L2(Q)°)?, p+q<m

and foranyt <T,

~c ~ t
IDPIE ()l + DM D)l < € [ IDPs(e8)lids.  2:22)

3 Main results

Before stating the main results of this article, we briefly recap the results from [4] in
the particular context of Section 2. To characterize the limit behavior of the electric and
magnetic fields (E°, H’), we need to introduce ¢ (x) and ¢5(x) solutions of particular
2D electro-static and magneto-static problems posed in S.
More precisely, we define 5 € H!(S) as the unique solution of the problem
{ diveV; =0 in S, . (3.1)
ps=0 on dSt, ¢;=1 on 9S

and s € H'(Sr) as the unique solution of the problem ([-]r denoting the jump of a
quantity through I')

divuVy, =0 in st / Psdx =0,
st (3.2)
[VVl/Js‘HLIO, [l/Js]rzl on I, V¢s-n=0 on 9S.

Remark 3.1. As already emphasized in [4], s depends on the cut I' but not its gradi-
ent. More precisely, even though s is not in H!(S), its gradient Vi, defined in the
sense of distribution in Sy defines a vector field in L?(S)? which does not depend on
I.
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Remark 3.2. In the forthcoming analysis we will used the following property proven
in [4]:
— —
( 1'Ot1IJS, Vq)s)LZ(S) - _( I'th)s, vws)LZ(S) - 1. (3.3)

The limit model corresponding to the 3D equations (2.16) will be a 1D wave equa-
tion with coefficients, called homogenized coefficients, that are obtained by some kind
of "weighted averages” of the original physical coefficients. More precisely we define
the capacitance C and the inductance L of the cable as coefficients (C, L) as

C:= /Ss(x)\Vgos(x)\zdx, L:= /Sy(x)|V1ps(x)|2dx. (3.4)

At the (formal) limit § — 0, the electromagnetic field becomes purely transverse:

_ t
E°(x,x3,t) ~ E%(x, x3,t) = (E(%(x, X3,t),0)t = <E%(§,x3, t),O) ,  (6—=0), (35a)

- t
H®(x,x3,t) ~ H(x, x3,t) = (HM(x, X3,t),0)t = (Hg(g,xg, t),O) , (6—0), (3.5b)

where the limit transverse electric field E(% and the limit transverse magnetic field ﬁ%
are given by (this means in particular that one has asymptotically separation of vari-
ables between x and x3)
E(%(x, x3,t) = V(x3,1)Vs(x), (3.6)
HY(x,x3,t) = I(x3,t) Vips(x),

where V(x3,t) and I(x3, t) are the solutions of

1% ol .
CE(Xg,t) + a—x3(x3,t) =Is(x3,t) inRR, t>0,

ol 1% .
Lg()@,t) + %(x;;,t) =0 in R, t>0,

with (C, L) defined by (3.4) and where I is defined by

(3.7)

Is(x3,t) = /SIS(X’t) - Vs (x)dx. (3.8)
The Egs. (3.7) are naturally completed with zero initial conditions
V(x3,0) =1I(x3,0) =0, x3€R. (3.9)

We now state for the limit 1D problem, the equivalent of Theorem 2.1 (existence,
uniqueness, regularity).

Theorem 3.1. Assuming that g satisfies

Js e WO (Q x [0,T)),
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then the problem (3.7), (3.8), (3.9) admits a unique solution
Ve C’0,T;L*(R)), I€C(0,T;L*(R)),

which satisfies the a priori estimate (C > 0 depends only on (S, ¢, 1))

VBl + 17D ) < € [ WsCo9)lizqods

If, moreover, |s satisfies
Js € WHQ x [0,T)),

then (V,1) € (C1(0, T : L2(R)) N C°(0, T : L2(R))” and for any t < T:

50 ey * 50 < L[5 0N,0
2 € 125
We set
s = |2 (s) e
LY(0,T;L2(Q 8x3 LlOTLZ( )

and more generally, for arbitrary integer p > 1and g > 1

Jslp.q1 := HDP L]g

L0 T2 +HDM Ysllwiorz))-

We are now in position to give the main results of this article.

Theorem 3.2. Assuming that Js € WE(Q x [0, T]) (cf. (2.20)), then
HEgHL“’(O,T;Hl(Q)) + ||H§HL°°(O,T;H1(Q)) < Co|Jshar
and for the transverse fields
=5 = ~5 7 1
IES — E}llio(o,rr2(2)) + I1HF — Bl o (0,7:12(00)) < €92 (62 +T2)|Js|i1,1-

If, in addition, Js € W3(Q x [0, T]) then

IES = E}l| o (o,rr2(0)) + I1HS — Bl oo, 70200y < COUTs a1 + Tlsl2,7)-

Finally, if Js € W3(Q x [0, T]), then

|E§ — E(%HL“’(O,T;LZ(Q)) + || Hf - IjI(I)"HL‘X’(O,T;LZ(Q))
SC(Sz(Us‘l,Z,T +Jsl2a,r + T(|Jsl22,r + Us’3,1,T))-

655

(3.10)

(3.11a)

(3.11b)

(3.12)

(3.13)

(3.14)

(3.15)
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4 Proof of the main theorem

We decompose the proof in several steps. As usual, in what follows, C will denote a
generic positive scalar that may change from one line to the other. Unless specifically
mentioned, C depends only on (S, ¢, ). Note that, with the regularity assumption on
the source term [s, we deduce from Theorem 2.1 and the Egs. (2.5) that the solution of
the full 3D problem has the regularity:

(B, H%) € C1(0, T; 12(Q))?, (V x E°,V x H’) € C°(0, T; L2(Q)%)*.

Step 1 Proof of the estimate (3.12) for the longitudinal fields.

This step is quite immediate. Using the first and the third equations of (2.16), we
immediately get

BE‘S aH‘S
< .
IVE (Bl < CO(|FHCD 0 + [T m), 4
. 8E‘5
o/, < T . .
IVEC )z < Cé(H—at ] e O] N P
so that, using the stability estimates (2.22) of Theorem 2.1
IVEHS || 10702000 + IVES (0 702(00)) < COlTsla,t- (4.3)

To conclude, it suffices to use Poincaré’s type inequalities.

For the electric field, (3.12) results from the classical Poincaré’s inequality since by
(2.19) (second equation) E5(+, x3, t) belongs to H}(S) for each t > 0 and almost ev-
ery x3 € R. For the magnetic field, we can use a (generalized) Poincaré-Wirtinger's
inequality since:

/y(x)ﬁg(x, x3,t)dx =0, VO<t<T, ae x3€R. 4.4)
S

This is obtained by integrating over () the fourth equation of (2.16), after multi-
plication by a smooth 1D test function with compact support ¢(x3). This gives,
using Green's formula,

;t(/ ;4H3godx :—5 / /rotED X, X3, )dx>q)(x3)dx3
=" / ES x n, ¢(x3))sdxs = 0, (4.5)

thanks to the boundary condition (2.19) (first equation). (4.4) follows easily since
Hg vanishes at time t = 0.

It is then easy to obtained analogous estimates for derivatives in x3 and f of these
longitudinal fields. Indeed, since all coefficients in Egs. (2.16) are independent of
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Step 2

x3 and £, it is clear that the fields DP4E® and DP9H? are related to DP4Jg by
the same partial differential equations that the ones which link E% and H’ to Ts
Moreover, since the domain () is a cylinder, they satisfy the same homogeneous
boundary condition. Finally, provided that time derivatives of Js or order less or
equal to g — 1 vanish, these fields vanish at time £ = 0. From this remarks, the
reader will easily check that, if

Js e Wi'(Q2 < [0, T]),
then for any p+g < m

IDPAES || oo, 7111 (0)) + IDPAES || Lo (0,7;1102) < COIDPs|1,7- (4.6)

decomposition of the transverse fields and related Poincaré-Friedrichs inequalities.

The decomposition we shall use is related to the following orthogonal decomposition
of spaces of square integrable 2D vector fields in S. Concerning the transverse
electric field, we first define the Hilbert spaces:

V(e) = L2(S)? equipped with the inner product (i, v)e := / eu - vdx, (4.7a)
S
W(e) = {u € L*(S)?/diveu € L*(S), rotu € L*(S), uxn=0 on 3S}. (4.7b)

V(e) can be decomposed as (the decomposition is orthogonal with respect to

(1,0)e)
V(e) = U(e) @ U(e)*, where Ul(e) := span[Vgs]. (4.8)

In [4], it has been shown that U(e) is characterized by
U(e) = {u € W(e)/diveu =0, rotu =0}, (4.9)

a result which is related to the following Poincaré-Friedrichs inequality (see the
appendix for the proof), is:

Proposition 4.1. There exists C > 0 depending only on () such that,
Vue Wie), |lulli2s) < C(||rotu|\Lz(5) + || diveul| 2 (s) + |(u,Vq)s)£D. (4.10)

In the same way, for the transverse magnetic field, we first define the Hilbert spaces:

V(u) = L*(S)? equipped with the inner product (1,v), = / pu - vdx, (4.11a)
S

W(u) = {u € L*(S)?/divuu € L*(S), rotu € L>(S), u-n=0 on 3S}. (4.11b)

V(u) can be decomposed as (the decomposition is orthogonal with respect to

(1, 0) )
V(p) =U(p) @ U(u)*, where U(p) := span[Vs). (4.12)
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In [4], it has been shown that U(yu) is characterized by
U(p) = {u e W(p)/divuu =0, rotu =0}.

It is possible to show the following Poincaré-Friedrichs inequality (that we assumed
here but can be rigorously proven).

Proposition 4.2. There exist C > 0 depending only on (S, i) such that,

Vu e W), Julles < C(HrotuHLz(s) + || divp 2 s) + \(u,wsm). (4.13)

According to the orthogonal decompositions (4.8) and (4.12), for each (x3,t), the
transverse fields E‘%(-,x&t) and H%(~,x3,t) will be splitted as follows:

ES(, x3,t) = Vo(x3,t) Vs + E?"S(o,x&t), E?"s(-,x&t) celU(e)t, (4.14a)

HS (-, x3,t) = P (x3, ) Vips + HRO (-, x5,8),  HRO(-,x3,1) € U(p)t,  (4.14b)

where, from the orthogonality of the decompositions, the definitions (3.4) and equal-
ities (4.14), the scalar quantities I°(x3,t) and V°(x3,t) are given by

VO(x3,t) = C H(EF(, x3,t), Vs)e, (4.15a)

I(x3,t) = L Y (H (-, x3, 1), Vips) . (4.15b)

According to (3.5), (3.6), we expect that the "residual” transverse fields E?"S and
ITIITW converge to 0 when 6 — 0 while V°(x3,t) and I°(x3,t) converge to V(x3,t)
and I(x3,t) (the solutions of (3.7), (3.8), (3.9)). This is exactly the way the error
estimates (3.13) and (3.14) will be proven in the next two steps, using the triangular
inequality:
IES — E(I)"HL""(O,T;LZ(Q)) < HE¥’6HL°"(O,T;L2(Q)) + (V- V(S)VQDSHL"“(O,T;LZ(Q))r (4.16a)
|HE — H%HL‘X’(O,T;LZ(Q)) < HH?‘SHLW(O,T;LZ(Q)) + (I = I‘S)VIPSHL”(O,T;LZ(Q))r (4.16b)

which yields by a straightforward calculation exploiting the separation of variables:
- ~R5 A
IEF — Ed |0 r12(0)) < IET? (o rr2()) + CIV = V)l oo rr2ry),  (4172)

|Hs - ﬁ%HLw(o,T;U(Q)) < HFI]IS'(SHLW(O,T;LZ(Q)) +CI|(I - I(S)HL""(O,T;LZ(]R))- (4.17b)

estimates of the residual transverse fields.

First note that, from the boundary conditions (2.12), (2.14) and the definitions of
(¢s, s) we deduce the boundary equations

R,6 _ TR0 _
E;*xn=0, Hy"-n=0.
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Thus as consequences of Poincaré-Friedriches inequalities (4.10) and (4.13), we

deduce that
1ER] 2y < C(IIr0tER| 2y + [|diveER |2y ), (4182)

IHF|| 20y < C(HrOthI?éHLZ(Q) + ”divﬂﬁ¥’5!!L2(0)>- (4.18b)

Moreover, from the definitions of E?"s and ﬁITz"S given by (4.14), as well as from the
definition of @5 and 5 given by (3.1), (3.2) we have
rotE?"S = rotE‘S, diveER"s = diveE‘s, (4.19a)
rothIITz"s — rotH?, dlvyHR d = divuHS. (4.19b)

Using the second and the fourth equations of (2.16), this implies that for any t < T,

~ 0 ~ 0
|mmﬁammo=%“fﬁf <Co [ 5205 g s 4200
IrotER? (-, ) [|2(q0) = ‘SH"at 9 / Hafs 5 (4200
Moreover, using the "hidden” equation (2.17):
. a]s

|diveER?| 2 ) = 5H 8x3 < Cé / |52 T () (4.21a)
|divp R[] 2 _5Hyax3 cs / H8x3 s @21b)

Substituting (4.20) and (4.21) into (4.183), we easily deduce that
IEF HLw 0,T;L2()) T HITI?(SHLW(O,T;LZ(Q)) < ColJsli,r- (4.22)

Moreover, with one more degree of regularity on the source, namely if one assumes
that Js € WZ2(Q x [0, T]), such estimate is easily extended into analogous estimate
about the x3-derivatives of the residual transverse fields (the details are left to the
reader):

< Cé . 4.23
Lo (OTL2Q)) = Isloa,T (4.23)

H dx3 lIL=(0,T;L2(Q) H 0x3 ‘
We can improve these estimates. Indeed, if Js € W3(Q x [0, T]), we can apply
the estimate (4.6) with (p,q) = (1,0) and (p,q) = (1, O) to obtain O(6) upper
bounds for first order derivatives in x3 and t of E‘S and H3 Then, the reader will
easily verify that substituting these inequalities into (4.20) and (4.21) and finally

into (4.18a) leads to

IEX om0 + T I mz2yy < C8* (st + 1sliar).  (4.24)
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Finally, with one more degree of regularity on the source, namely Js € WS(Q X
[0, T]), this estimate can extended, as before, into estimate about the x3-derivatives
of the residual transverse fields:

< C&(|Jslapr + Jslaar). (425

H d0x3 IIL=(0,T;L2(Q) H 0x3 ‘L“OTLZ(Q))

proof of the error estimate (3.13).
We first write an equation in (v°,i) defined by
=V —Vandi®=1"-1.

Multiplying the first equation of (2.16) by V¢, and the third one by Vi and
integrating over the section S, we obtain (the details are left to the reader)

oV’ or° ~
Ca— + ( I’Otlps, VQDS)LZ( )ﬁ -0 ( rOtHéS, ngS)LZ(S)
dARS
:( T ,rot(ps) + g in R, t>0,
dx3 L2(S)
S ) e (4.26)
L— —( r°t¢s/v¢s)L2(s)— + 067 (rotEs, Vips)12(s)
ot 5 8x3
. BET’ — .
= 7( s rotlps)Lz(S) in R, t>0.

Some important simplifications now occur. First, one can use Green's formula (2.10)
and the fact that V¢ x n = 0 along 0(2, to obtain

(E{ ﬁg,V(ps)Lz(s) = (ﬁg, I‘Othl)S)LZ(S) + <V§l)s X n, ﬁ§5>as =0.

Next, again using Green's formula (2.1(1)! where S is replaced by St, as well as the
boundary condition (2.19), which gives E§ = 0 along () we get, with an appropriate
orientation of the normal vector n along T',

(rotES, Vips)12(s) = (‘rotES, Vips) 12(sp)
=(ES, 10tVps) 205,y + (Vs X nlr, E§)r + (Vips x m, Eg)as =0, (4.27)

which implies

(mEg,VlPs)LZ(S) =0,
since [s]r = 1 induces [V¢s x n]r = 0. Finally, we use (3.3), to end up with

) %) af_jR,lS
VL or (—T,r_o%gos) +Is in R, t>0,
ot X3 12(S) (4.28)
La_I‘S Vo B _(6E§'5 — > .
(S)

o P in R, t>0.
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Subtracting (3.7) to (4.28), we find that (v°,i%) are solution of

o 9 OHF .
Cg a—x3 = ( a_‘}C3 P rotgos)Lz(S) n ]R, t> 0,
o’ 9’ IEN® *29)
ot 99 _ _ T — .
5t + s ( I rotlps)Lz(S) in R, t>0.

To prove the convergence result of Theorem 3.2, we will proceed using energy
techniques. We define the energy

5‘5(16) = C/ v‘s(x3,t)2dX3 —l—L/ i‘s(x3,t)2dx3, (4.30)
R R

where, thanks to the zero initial data, we have 5‘5(0) = 0. Next, we apply standard
energy analysis: we multiply the two equations of (4.29) respectively by v° and i,
we integrate along the x3 axis. After integration by parts (in the left hand sides)
and summation, we obtain

5%5 —/]R< 913 S rotq)s)Lz(S)dx3—/]R( 913 ,0 rotlpS>L2(S)dX3. (4.31)

Then, we integrate by parts the right hand side to get

1d 5 =R,6 81‘5 —_— "IR,6 av‘s—>
520 = /}R (ES e rotlps>L2(S)dX3 /IR (i e rotq)s)Lz(S)dX3. (4.32)

Using Cauchy-Schwarz inequality, we obtain

o B 1200 +H VI o 1 12y 439)

Zdt - H 8x3v¢s

On one hand, thanks to the orthogonal decomposition (4.14), we have

aE‘S av<5 aER 2
H ax3 H ax3 S + H 9x3 t) e
which yields
H ?)Z: 95 12(0) CH ax3 1) () < ClJsli1,1/ (4.34)

where we have used the stability estimate (2.22). On the other hand, using separa-
tion of variables and the a priori estimate (3.1), we also have

< ClJsliir- (4.35)

H ax3 LZ(Q)
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Finally, by (4.34), (4.35) and the triangular inequality, we get

< C|Jslia,7- (4.36)

H ax3 LZ(Q)

In the same way, one has

< . .
Hax3 2q) = Cllslr (4.37)

Then, substituting (4.36), (4.37) and (4.22) into (4.33), we get

d -
€ < Co < ColJsliy
which yields

. 1
19| 1o 0,7:02(R)) + 118 220, ms22R)) < C(8T)2 [Js |1 (4.38)

Finally, the error estimate (3.13) is obtained by regrouping (4.17), (4.22) and (4.38).
proof of the error estimate (3.14).

To improve the estimate (4.38) when more regularity is assumed for the source term,
we restart from (4.31) but do not integrate by part the right hand side. Instead, we
apply directly Cauchy-Schwartz inequality to obtain

v@)

g < ceEd! (H

aJC3 L2(Q) H aJC3

which gives, after using Gronwall’s lemma:

(H aJC3

Then, if Js € W3(Q x [0, T]), we can use the inequality (4.23) to get

Nl'd

(4.39)

LY(0,T;L2(0 H oxz llLi(o,m;12(0 )))'

g < Cé(|Jsl2n,1),

and if Js € W3(Q x [0, T]) we can use (4.25) to obtain

& (t)% < 52(US|3,1,T+ |Js|22,7)-

A Appendix

In this section, we prove the Proposition 4.1. The Proposition 4.2 may be proven in a
very similar way. We recall the proposition:
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Proposition A.1. There exist C > 0 depending only on (S, €) such that,
Vue W(e), |lullizs) < C(HrotuHLz(S) + [|diveul| 25y + |(u,V(ps)€|).

The proof will be done in a classical way using contradiction arguments and the
compactness properties proven in (see [1,7]):

Property A.1. W(e) (as defined by (4.9)) is compactly embedded in L*(S)>.

Proof. Assuming the Proposition 4.1 is not true, we can construct a sequence {u, }
such that

. 1
[xotu || 12(s) + || diveuy || 2(s) + | (un, Vs), | < -
and

[unllr2s) =1, unxn=0.

From the compactness property of W(e), we know that there exist u € W(e) such that
u, — u in L%(S)> with rotu = diveu =0, (su,Vgos)Lz(S) =0 (A1)
and the limit u also satisfy
[ull25) =1, uxn=0.

From the Eq. (A.1) and the definition of U(e) given by (4.9), we know that u € U(g)*
which means, from the decomposition property (4.8) : u = «, Vs with a, € R. And
SO

(u,Vq)s)S:O:>rxu:0:>u:0,

which contradicts the fact that we expected [|u[| 25y = 1. O
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