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Abstract. This paper deals with the application of a moving mesh method for ki-
netic/hydrodynamic coupling model in two dimensions. With some criteria, the
domain is dynamically decomposed into three parts: kinetic regions where fluids
are far from equilibrium, hydrodynamic regions where fluids are near thermody-
namical equilibrium and buffer regions which are used as a smooth transition. The
Boltzmann-BGK equation is solved in kinetic regions, while Euler equations in hy-
drodynamic regions and both equations in buffer regions. By a well defined moni-
tor function, our moving mesh method smoothly concentrate the mesh grids to the
regions containing rapid variation of the solutions. In each moving mesh step, the
solutions are conservatively updated to the new mesh and the cut-off function is re-
built first to consist with the region decomposition after the mesh motion. In such a
framework, the evolution of the hybrid model and the moving mesh procedure can
be implemented independently, therefore keep the advantages of both approaches.
Numerical examples are presented to demonstrate the efficiency of the method.

AMS subject classifications: 65M50, 76P05

Key words: Moving mesh method, kinetic/hydrodynamic coupling, the Boltzmann-BGK equa-
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1 Introduction

Hydrodynamic equations such as the Navier-Stokes or the Euler equations have
achieved successful applications in many areas of fluid dynamics, while there are
cases that this hydrodynamic equations do not provide a satisfactory description of
the physical system. Then we have to use a kinetic description by the Boltzmann
equation or a simplified version of it, i.e., the Boltzmann-BGK equation. However,
even nowadays the numerical solution for such microscopic models is too expensive
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to be solved. In most cases, we are primarily concerned about the macroscopic phe-
nomena of the problems rather than the microscopic state which need to be solved
through the microscopic model and the hydrodynamic equations can provide a suffi-
ciently accurate description of the problems only except in very local domain where
the hydrodynamic equations breakdown, such as shock wave and boundary layers.
In this situations, a coupled method of the kinetic/hydrodynamic model can be ex-
pected more efficient than the whole microscopic models and still provide the correct
representation of the physical phenomena. In the last few years many investigations
have been achieved in this direction, such as the coupling of different models and dif-
ferent implementation techniques (e.g., [1–6]). Our purpose of this paper is to study a
moving mesh adaptive method for the kinetic/hydrodynamic coupling model.

This paper is a further study of the kinetic/hydrodynamic coupling model intro-
duced in [2] on 2-dimensional domain. The Boltzmann-BGK equation is used as ki-
netic model on kinetic regions and the Euler equations as hydrodynamic model on
hydrodynamic regions respectively. We use Fig. 1 to illustrate the decomposition of
the domain. Since the two regions are connected by some fixed-width buffer zones and
both of the kinetic and hydrodynamic models are solved on not only their own regions
but also the buffer zones, the solutions are combined with both ingredients through a
cut-off function. As presented in [1,2], the use of the buffer zones and the cut-off func-
tion makes the coupling model can be solved quite smoothly without any interface
condition. When the time evolutions, the kinetic regions are automatically generated
based on some equilibrium criteria, which indicate the deviation from the current mi-
croscopic state to thermodynamical equilibrium if microscopic data are available, or if
not, the breakdown of the hydrodynamic model. With this moving zones technique,
the kinetic zones can be chosen as small as possible to speedup numerical simulations
while preserve the accuracy of the physical phenomena.

Because the solution of the kinetic/hydrodynamic coupling model have large vari-
ations over some local domain, it is benefit to use adaptive mesh methods to increase
the accuracy and decrease the computational time. In [3], an h-adaptive mesh method
is contributed and demonstrate its efficiency comparing to the uniform mesh methods.
Encouraged by their result and noticed that a smoothly mesh redistribution strategy

Figure 1: Domain decomposition.
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takes more advantages since all the computational regions are also changing their lo-
cation smoothly and continuously, we devote a moving mesh method for numerical
simulations of the kinetic/hydrodynamic coupling model in this paper. Furthermore,
due to the simple data structure of our mesh moving algorithm, the implementation
is suitable to deal with the problems containing shock waves and boundary layers.
Relevant works for the moving mesh method can be found in [7, 8, 10, 11, 30] and
books [12, 13].

In this paper, we employ the moving mesh strategy proposed in [14] by using har-
monic maps. The basic idea of the strategy is solving both the mesh equations and
physical equations directly in the physical domain and update the physical solution
after the mesh redistribution through a nonlinear interpolation. The method has been
applied in many fields by finite element method, e.g., [15–18] and has been general-
ized to discontinuous Galerkin method in [19]. Here in order to keep the conservation
of the numerical solutions of the kinetic/hydrodynamic coupling model, we adopt a
finite volume scheme instead of finite element part in the moving mesh procedure. We
also point out that there are other efficient methods for resolving the interface prob-
lems, e.g., interface-fitted finite element level set method [20] and anisotropic mesh
refinement algorithm [21].

The outline of this paper is as follows. In Section 2, we introduce the Boltzmann-
BGK equation, the coupling method and numerical schemes on a static mesh for the
hybrid model. In Section 3, we briefly outline the moving mesh method with a suit-
able monitor function together with the hybrid model. A complete algorithm for our
method is also presented in this section. Two numerical examples which demonstrate
the numerical efficiency and validation of the coupling model on moving mesh are
presented in Section 4. Some concluding remarks will be given in the last section.

2 The hybrid model and numerical method

2.1 The hybrid model

Let f represent the distribution of particles which have position x ∈ Ω ⊂ R
D and

velocity v ∈ R
D at time t > 0, where D is the dimension. Then the Boltzmann-BGK

equation (cf. [22]) is
{

∂t f + v · ∇x f = ν(M f − f ),
f (x, v, 0) = f0(x, v),

(2.1)

where ν is the collision frequency. Here M f is the Maxwellian distribution which gives
the distribution of velocity of particles in local thermal equilibrium. It is defined by

M f = M f [n, u, T](v) =
n

(2πθ)D/2
exp

(−|u − v|2
2θ

)

, (2.2)

where n, u and T are the density, mean velocity and macroscopic temperature respec-
tively and θ = RT with R the gas constant. These macroscopic values are related to f
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by its first three moments

n =
∫

RD
f dv, nu =

∫

RD
v f dv, E =

∫

RD

1

2
|v|2 f dv =

1

2
n|u|2 + D

2
nθ. (2.3)

The collision frequency ν is calculated as [3, 22, 23] by

ν =
8nT1−χ

5
√

πKn
, (2.4)

where χ is a constant for a given gas, Kn = λ∞/L is the Knudsen number with λ∞ the
mean free path of free stream and L some characteristic length.

For the kinetic/hydrodynamic coupling model, a continuous cut-off function has
been introduced in [1,2] for 1-dimensional case and in [3] for 2-dimensional case. Here
we will redescribe the method of [3] briefly for the completeness of the paper. One for
more details is referred to [3].

Let Ω1, Ω2, · · · , Ωm denote the kinetic regions and Bi denotes the buffer zone with
fixed width d around Ωi, i = 1, 2, · · · , m. A cut-off function h(x, t) is then defined as
follows

h(x, t) =















1, for x ∈ Ωi,

1 − 1

d
min

i=1,2,··· ,m
dist(x, Ωi), for x ∈ Bi,

0, other.

(2.5)

It is commented that each Ωi as well as the number of kinetic regions m might change
as time evolution. Multiplying (2.1) by h and 1 − h respectively leads to

∂t fR + hv · ∇x f = hν(M f − f ) + f ∂th, (2.6a)

∂t fL + (1 − h)v · ∇x f = (1 − h)ν(M f − f )− f ∂th, (2.6b)

with initial conditions

fR(x, v, 0) = h(x, 0) f (x, v, 0), fL(x, v, 0) = (1 − h(x, 0)) f (x, v, 0),

where fR = h f and fL = (1 − h) f . Multiplying (2.6b) by the vector of the collision
invariants m = (1, v, |v|2/2)T and integrate both sides with respect to v over R

D, we
have the following Euler equations

∂tρL + (1 − h)∇x ·
∫

RD
v ⊗ m f dv = −ρ∂th, (2.7)

where ρ = (n, nu, E)T is the first three moments of f and ρL = (1 − h)ρ. Then the
hybrid model is completed by (2.6a) and (2.7) with initial conditions

fR(x, v, 0) = h(x, 0) f (x, v, 0), ρL(x, 0) =
∫

RD
m(v) fL(x, v, 0)dv.
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2.2 Numerical methods on a static mesh

The hybrid model is first discretized in velocity space using the discrete velocity
model [24] and the resulting equations are then solved with finite volume schemes
in spatial domain. In the following of the paper, we introduce our method in two
dimensional case to simplify our discussion.

Suppose Σ ∈ R
2 to be a disc for velocity v with its center at origin and radius vmax,

i.e.,
Σ =

{

(r, ϕ)|0 ≤ r ≤ vmax, 0 ≤ ϕ < 2π
}

under polar coordinates (r, ϕ). The mesh to discrete velocity v on Σ is a uniform one
that all the mesh points form a set

V =
{

(i∆r, j∆ϕ)|i = 1, · · · , M; j = 1, · · · , N
}

∪
{

(0, 0)
}

with M∆r = vmax, N∆ϕ = 2π. Denoting each mesh point on Σ by vk and K the total
number of mesh points, i.e., K = MN + 1, we take the same numerical quadrature
formula as [3] over velocity space Σ by

∫

Σ
f (v)dv =

K

∑
k=1

ωk f (vk), (2.8)

where the weights ωk are chosen in order to be accurate for piecewise biquadratic
function. The following nine points formula

∫ r1

r0
dr

∫ ϕ1

ϕ0
r f (r, ϕ)dϕ =

(r1 − r0)(ϕ1 − ϕ0)

36

2

∑
i=0

2

∑
j=0

cicjr
i
2 f (r

i
2 , ϕ

j
2 ) (2.9)

is accurate for biquadratic function over a rectangle [r0, r1]× [ϕ0, ϕ1]. Here c0 = c2 = 1,
c1 = 4 and r1/2 = (r0 + r1)/2, ϕ1/2 = (ϕ0 + ϕ1)/2. Let both M and N be even, then
the weights ωk can be calculated through (2.9) and the following formula

∫

Σ
f (v)dv =

∫

Σ
r f (r, ϕ)drdϕ =

M/2

∑
i=1

N/2

∑
j=1

∫ 2i∆r

2(i−1)∆r
dr

∫ 2j∆ϕ

2(j−1)∆ϕ
r f (r, ϕ)dϕ. (2.10)

From the H-Theorem (cf. [25]) it is well known that the Maxwellian distribution
M f minimizes the entropy functional

H( f ) =
∫

R2
f log f dv, (2.11)

where f satisfies (2.3). As in [24], the discrete Maxwellian, denoting by Ek at vk, can be
defined to minimize the discrete entropy functional of (2.11)

EK = arg min
g∈RK

{ K

∑
k=1

ωkgk log gk : g ≥ 0, ρ =
K

∑
k=1

mkgkωk

}

, (2.12)



690 Z. Hu and H. Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 685-702

where mk = (1, vk, |vk|2/2)T and ωk is the weight of the quadrature formula (2.8). The
unique solution of (2.12) has the following form [24]

Ek = exp(α · mk), k = 1, 2, · · · , K, (2.13)

where α ∈ R
4 satisfying

K

∑
k=1

mk exp(α · mk)ωk = ρ. (2.14)

With initial guess as

α(0) =
(

log
( n

(2πθ)D/2

)

− |u|2
2θ

,
u

θ
,−1

θ

)T
, (2.15)

the solution of (2.14) can be obtained in only a few steps of Newton iteration.
After discretized in velocity space, we employ the standard upwind finite volume

scheme for spatial space and the explicit Euler method for time integration, to make
our numerical simulations easier to be implemented. Additionally, the spatial dis-
cretization is applied on an unstructured triangular mesh for it is more applicable to
domains with complex shapes and the time step ∆t is computed to satisfy the CFL
condition by

∆t
(

max
i

(νi) + max
k

( |vk|
l

))

< 1, (2.16)

where l is the minimum length in all edges of the triangulation. As pointed out in [3],
a time unsplit method is more difficult to make it work on the adaptive meshes. Hence
we use the time-split scheme for our implementation. Finally, the scheme reads

f
n+ 1

2

k,i,R = hn+1
i f n

k,i, (2.17a)

f n+1
k,i,R = f

n+ 1
2

k,i,R − ∆t
[ 1

|∆i| ∑
j

hn+1
ij lijφi,j( f n

k,ij
, f n

k,i)− hn+1
i νn

i (Ek[ρ
n]− f n

k,i)
]

, (2.17b)

for the kinetic part and similarly

ρ
n+ 1

2
i,L = (1 − hn+1

i )ρn
i , (2.18a)

ρn+1
i,L = ρ

n+ 1
2

i,L − ∆t

|∆i|
K

∑
k=1

mkωk ∑
j

(1 − hn+1
ij )lijφi,j( f n

k,ij
, f n

k,i), (2.18b)

for the hydrodynamic part. Here |∆i| is the area of the ith element, lij is the length of
the jth boundary of element i and ij is the index of the jth neighbour of element i. The

cut-off function hn+1 for the n + 1 time step will be constructed before applying the
scheme and hi, hij are the mean values of the cut-off function on the ith element and
on its jth boundary, respectively. The numerical flux of upwind scheme is given by

φi,j( f L
k , f R

k ) =
1

2

[

(vk · ni,j)( f L
k + f R

k )− |vk · ni,j|( f L
k − f R

k )
]

, (2.19)
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where ni,j is the unit out normal on the jth boundary of ith element.
However, the computational cost of the hydrodynamic part of the scheme (2.18a)

and (2.18b) is no less than the scheme in kinetic zones. In the pure hydrodynamic
regions, where the fluids are close to the thermodynamical equilibrium, it is possi-
ble to use a more efficient method, while maintaining the same accuracy. We use the
Perthame scheme [26] in the pure hydrodynamic regions to obtain considerable ac-
celeration. Followed by [3], the Maxwellian M f is substituted by a simpler function
given by

M(v) =

{

α̃, |v − u| ≤ β̃,
0, others,

(2.20)

where α̃ = n/4πθ, β̃ =
√

4θ such that the Eqs. (2.3) still hold for f = M(v). Then in
the pure hydrodynamic regions where h = 0, the scheme reads

ρn+1
i = ρn

i −
∆t

|∆i| ∑
j

lij

∫

R2
mφi,j(Mn

ij
, Mn

i )dv

= ρn
i −

∆t

|∆i| ∑
j

lij

[

∫

R
2+
i,j

m(v · ni,j)Mn
i dv +

∫

R
2−
i,j

m(v · ni,j)Mn
ij
dv

]

, (2.21)

where R
2±
i,j = {v|v · ni,j ≷ 0}. The integral in (2.21) can be calculated analytically [3]

thus more faster than the scheme (2.18a) and (2.18b).
If the hydrodynamic part of the scheme (2.18a) and (2.18b) is used in the buffer

zones, numerical oscillations will be observed on the interface between pure hydro-
dynamic regions and buffer zones due to incompatible of the two hydrodynamic
schemes. To obtain a compatible scheme of the hydrodynamic part in the buffer zones
to the scheme (2.21) in the pure hydrodynamic regions, both hydrodynamic schemes
are applied in the buffer zones, which is reused as a transitional buffer between two
hydrodynamic schemes. The final hydrodynamic scheme in the buffer zones reads

ρn+1
i,L = KS(ρn

i,L, hn+1 f n)− ∆t

|∆i| ∑
j

(1 − hn+1
ij )2lij

[

∫

R
2+
i,j

m(v · ni,j)Mn
i dv

+
∫

R
2−
i,j

m(v · ni,j)Mn
ij
dv

]

, (2.22)

where KS is the kinetic Euler solver (2.18a) and (2.18b) with f n in it replaced by hn+1 f n.
Now the whole scheme becomes compatible and conservative.

We conclude this section by identifying the kinetic zones and constructing h at ev-
ery time step. In the kinetic zones at current time step. If the L1 norm of the difference
between the discrete distribution and discrete Maxwellian

βM,i = 1 − 1

n

K

∑
k=1

| fk,i − Ek[ρi]|ωk (2.23)

is not close enough to 1, which means the fluids are far away from the thermodynami-
cal equilibrium, the ith element is identified as kinetic at the next time step. And in the



692 Z. Hu and H. Wang / Adv. Appl. Math. Mech., 4 (2012), pp. 685-702

regions out of the kinetic zones, the hydrodynamic breakdown parameter proposed
in [27] takes the form

Knmax = max
{

Knn, KnT, KnV

}

, (2.24)

where

KnQ = λ
|∇Q|

Q
, Q ∈ {n, T, V}, (2.25)

with the mean free path λ and the magnitude of velocity V. If Knmax is bigger than a
problem dependent threshold, the corresponding element is marked as kinetic region
at the next time step. While all kinetic zones have been identified, the cut-off function
h can be constructed without any difficulty. In our implementation, h is approximated
by a piecewise linear and continuous function on the spatial mesh which can be ob-
tained very cheaply.

3 Coupled with moving mesh method

In this section, we couple the hybrid model in previous section with moving mesh
method to obtain a more efficient solver. We follow the moving mesh framework in-
troduced by [14, 28], in which moving mesh method is divided into two independent
parts, namely mesh redistribution and PDE evolution. we briefly outline the moving
mesh procedure and concentrate on several key ingredients, which will be encoun-
tered during our implementation for the hybrid model. we will conclude this section
with a complete algorithm of the numerical method for the final coupling system.

3.1 Moving mesh strategy

Denote Ω as the physical domain and Ωc as the logical domain. A one-to-one mapping
ξ = ξ(x) from Ω to Ωc can be achieved by solving the Euler-Lagrange system

∂

∂xi

(

Gij ∂ξ

∂xj

)

= 0, x ∈ Ω, (3.1a)

ξ|∂Ω = ξb ∈ K, (3.1b)

where M = G−1 = (Gij)−1 is the so-called monitor function and K is the admissible
set for the boundary mappings. If we choose Ωc such that its Riemannian curvature
is nonpositive and its boundary is convex, then existence and uniqueness of ξ(x) are
guaranteed. The inverse of ξ(x) determines a mesh on Ω from a regular mesh on Ωc.

Assume we have obtain the mesh x
(n) and the numerical solutions of PDEs under

consideration, i.e., ρ(n), f (n), at t = tn. The diagram of the moving mesh procedure
to obtain the new mesh x

(n+1) and solutions on it is given in Fig. 2. Here, ξ(0) is the
fixed initial mesh on Ωc, generated by solving the Poisson equation ∆ξ = 0 with some
Dirichlet boundary condition and η ∈ [0, 1] is a suitable ratio parameter to prevent
mesh tangling. The strategy is an iterative procedure which will be finished up until
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Figure 2: Moving mesh procedure.

‖ξ(n) − ξ(0)‖ is small enough. In general, this iterative procedure will be end up in
very small steps with a proper selected monitor function.

3.2 Monitor function

The monitor function plays an important role in moving mesh method and should be
selected carefully [29].

It is problem dependent and is usually chosen to involve solution information for
special consideration or an posteriori error.

The most advocated monitor function is first proposed by Winslow [32] with the
form of a scalar matrix function

M = mI,

where m = m(x) is a positive scalar function. The mesh generated from this monitor
function is isotropic since the eigenvalues of M are all equal. Due to our solutions of
the problem are piecewise constant functions on the mesh, the most general choice
of the arclength like monitor could not work here. Analogue to the choice in [19] for
moving mesh discontinuous Galerkin method, the following monitor is chosen in our
implementation

mi =
√

η̃ + αηi, (3.2)

where

ηi =
1

|∆i| ∑
e∈∂∆i

∫

e
|pi − pi,e|ds (3.3)
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is a reasonable indicator for the error of the numerical approximation on the ith ele-
ment and

η̃ =
1

|Ω|
∫

Ω
ηdx (3.4)

is the average of the indicator function η. Here pi, pi,e are the pressure on the ith
element and its neighbour with boundary e. The parameter α > 0 is a user-define
parameter to control the ratio of the maximal and minimal element sizes. Noticed that
the jump of the pressure across the edge of elements is about O(h) if the pressure is a
smooth function, the formal order of this monitor function is O(1), that is, our monitor
is mesh independent.

In practice, local (spatial) smoothing of the monitor function is necessary to en-
hance the quality of the mesh (see e.g., [29–31]). According to the experience, the
number of smoothing steps is set to be the largest integer not greater than

√
# nodes/5

such that the smoothing monitor is almost mesh independent [19].

3.3 Update solutions on the new mesh

After we obtain the new mesh, all numerical solutions need to be interpolated onto

the new mesh from the old one. Let u denote the solution of the general PDE and
−→
δx

is the vector representing the node-displacement between the new mesh and the old
mesh. We introduce a parameter τ ∈ [0, 1] such that the old mesh is transited into the

new mesh continuously with the velocity
−→
δx as τ from 0 to 1. That is, we introduce a

linear transformation X(τ) = Xold + τ
−→
δx with X(0) the old mesh and X(1) the new

mesh. Then the solution on the new mesh can be obtained by solving the following
linear convection PDE

∂u

∂τ
−−→

δx · ∇u = 0. (3.5)

With this PDE-based interpolation, the solution will preserve its L2 norm [33].
Similar to [19], the above equation will be solved by using the finite volume scheme

so that the solution conservation is preserved. The form of the upwind finite volume
scheme to (3.5) takes

un+1
i = un

i +
δτ

|∆i|
[

∑
e∈∂∆i

∫

e
un−→δx · nds −

∫

∆i

un∇ · −→δxdx

]

= un
i +

δτ

|∆i| ∑
j

lijFi,j(u
n
i , un

ij
)− δτun

i ∇ · −→δx, (3.6)

where the flux is

Fi,j(ui, uij
) =

1

2

[

(
−→
δx · ni,j)(ui + uij

)− |−→δx · ni,j|(ui − uij
)
]

. (3.7)

Both the hydrodynamic and microscopic quantities are updated by this upwind
scheme.
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Since the microscopic quantities are only well defined in the kinetic zones and
buffer zones, it is inefficient to update them in the whole domain. And another prob-
lem is for the mesh grids moving from the hydrodynamic zone into the buffer zone,
we still do not have the microscopic quantities to update. To solve those problems, we
update the cut-off function h to the new mesh first, then we can only update the mi-
croscopic quantities on the kinetic and buffer zones which are identified by the cut-off
function.

As h is an artificial function to identify the domain decomposition, it does not
require an accurate and complicated calculation. Instead, we compute the value of h
on node Xj of the new mesh by the following formula

hj =

∫

Ω
holdφjdx

∫

Ω
φjdx

, (3.8)

where hold represents the cut-off function on the old mesh and φj is the piecewise linear
basis function satisfying φj(Xi) = δij with Xi the node of the new mesh. With formula

(3.8), the cut-off function on the new mesh can be obtained cheaply while keep its L1

norm. And this has been implemented in the open source package AFEPack [34].
For the mesh grids moving into buffer zones from hydrodynamic zones, the mi-

croscopic quantities is unknown at τ = 0. As these grids are located in hydrody-
namic zones before mesh movement, where the distribution f is close to the local
Maxwellian, we can employ its Maxwellian as the initial values of the microscopic
quantities at τ = 0.

We conclude this section with a full algorithm for the hybrid model coupled with
the moving mesh method. The diagram of the algorithm is shown in Fig. 3.

4 Numerical examples

In this section, we present two numerical examples to illustrate the efficiency of our
method using the open source package AFEPack [34]. The initial uniform meshes
on the space domain are generated by the software Easymesh [35]. For simplicity,
Maxwell gas is considered, i.e., χ = 1 in (2.4) and the gas obey the gamma law with
γ = 2 in these examples so that the Maxwellian distribution satisfies (2.2).

The parameter to compute the monitor function (3.2) is α = 2 for the first example
and α = 5 for the second. In practice, the moving mesh works well when the logical
domain is identical with the physical domain, although there is no theoretical guar-
antee. And in the following examples, we take the physical domain and the logical
domain be the same.

4.1 Shock diffraction around a cylinder

This problem was studied by Yang and Huang [22] and has been used as a benchmark
problem. It has been investigated for the hybrid model on the fixed mesh in [1] and on
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Input domain Ω, boundary condi-
tion, initial state f0, ρ0, h0 = 0

and end time T . Let t = 0, n = 0

Prepare the initial mesh ξ(0)

t < T

Compute time step ∆t based
on the CFL condition (2.16)

Identify kinetic zones
and construct hn+1

Apply (2.17a), (2.17b) Apply (2.17a), (2.17b) and (2.22) Apply (2.21)

Post process to obtain the first moments of fn+1

Moving mesh strategy

The computation is finished

YES

kinetic zones

buffer zones

hydrodynamic zones

set t := t+∆t, n := n+ 1

NO

Figure 3: The hybrid model solver coupled with the moving mesh method.

the h-adaptive mesh in [3]. The data of this example are taken from [3]. The computa-
tional domain is set to be [−3, 5]× [−5, 5]. The circular cylinder is centered at (0.5, 0),
with radius be 0.5. The shock is located at x = −1 in initial time and transferred to
right with the Mach number be 2.81. The initial conditions of the undisturbed right
state are

n = 1, u = (0, 0)T, θ = 1,

and the left state ahead of the shock are computed by the Rankine-Hugoniot condition.
The Knudsen number is Kn = 0.005.

Ghost cells are employed for the boundary conditions. On the edge of the outer
rectangle, the states in ghost cells and the area of the ghost cells are set to be identi-
cal with the corresponding boundary cells. The pure specularly reflective boundary
conditions are used on the wall of the cylinder. The velocity mesh is on the disc with
the radius vmax = 8 and M = N = 40. Due to the symmetry, only the half plane is
computed and symmetry boundary conditions are enforced on the artificial boundary.

Fig. 4 shows the initial uniform mesh for the example, which has 6044 grids.

It is compared with [3] and much less than that in [1, 22]. However, the numerical
results are compared to the figures in [3] and more closer to that in [22] than in [1].
This indicates the efficiency of our method.

The evolution of the density contours, meshes and corresponding kinetic zones at
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Figure 4: The initial uniform mesh.
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Figure 5: The density, mesh and decomposition of the physical domain at t = 0.4.
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Figure 6: The density, mesh and decomposition of the physical domain at t = 0.5.

different times are shown in Figs. 5-11, where the kinetic, buffer and hydrodynamic
zones are black, gray and white, respectively. We can see that the primary incident
shock, the reflected bow shock and the Mach shock can all be identified. The results
are similar with that based on h-adaptive method and the full kinetic results given
in [3]. The reflected bow shock is also not identified as kinetic, since both high density
and temperature on the shock leads its distribution much closer to the Maxwellian
than the other two shocks.

4.2 Mach 3 flow past a forward facing step

In this section, we consider flow in a wind tunnel containing a step which begin with
uniform Mach 3 flow. The wind tunnel is set to have width 1 and length 3. The step
is located 0.6 from the left end of the tunnel with height 0.2. The tunnel is filled with
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Figure 7: The density, mesh and decomposition of the physical domain at t = 0.6.
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Figure 8: The density, mesh and decomposition of the physical domain at t = 0.7.
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Figure 9: The density, mesh and decomposition of the physical domain at t = 0.8.
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Figure 10: The density, mesh and decomposition of the physical domain at t = 0.9.

an equilibrium gas, i.e., (n, u1, u2, p) = (1.4, 3.0, 0.0, 1.0), at the beginning time. On the
left and right boundary, the states are set to satisfy the inflow and outflow conditions,
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Figure 11: The density, mesh and decomposition of the physical domain at t = 1.0.

respectively. Along the walls of the tunnel, specularly reflective boundary conditions
are used. Nothing special is treated at the step corner. Additionally, the Knudsen
number is Kn = 0.01 and the gamma law is γ = 2.

This problem was studied by Woodward and Colella [36] and has become a com-
monly used test problem for fluid algorithms since then. The conditions stated above
agree with [36] except that we set γ = 2.0 instead of γ = 1.4. This makes our results
can not compare with which presented in [36]. Hence, we compare our results with
that in [3], which use the package AMROC’s results [37] to validate their algorithm.

We prepare our initial adaptive mesh based on the solution after one small time
step. The resulting mesh is presented in Fig. 12 with the logical mesh given in Fig. 13.
In practice, it is better than the solution begin with the uniform mesh, because the
solution dramatically change at the beginning time from the uniform state. The mesh
preserves 8517 grids during time evolutions. Figs. 14-16 present the evolution of the
density contours, meshes and corresponding kinetic zones at different times, i.e., t =
0.4, 0.8, 1.2, where the kinetic, buffer and hydrodynamic zones are black, gray and
white, respectively.

These show that the structures of the shock agree with [3] perfectly. The first re-
flecting shock and the part above the step and near the corner are always identified as
kinetic.

5 Conclusions

In this paper, we develop a moving mesh method for kinetic/hydrodynamics cou-
pling model in two dimensions. In the hybrid model, the domain is decomposed into
three parts and different schemes are used in each part, then all three parts are cou-
pled automatically with a cut-off function without any internal boundary conditions.
Driven by the numerical solutions of this model, with a well defined monitor function,
our mesh grids are smoothly redistributed by solving an elliptic boundary problem at
each time step to concentrate the grids near to the singularity of the numerical solu-
tion, which are always corresponding to the kinetic zones. To keep the total algorithm
conservative, a finite volume scheme is employed in both the time evolution step of
the physical equations and solution update step of the moving mesh procedure. The
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Figure 12: The initial mesh for forward facing step.
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Figure 13: The logical mesh for forward facing step.

Figure 14: The density, mesh and decomposition of the physical domain at t = 0.4.

Figure 15: The density, mesh and decomposition of the physical domain at t = 0.8.

Figure 16: The density, mesh and decomposition of the physical domain at t = 1.2.

whole algorithm framework shows the advantages of our moving mesh strategy in
deal with the complex physical models and the well performs of the numerical simu-
lations in Section 4 demonstrated the validation and the efficiency of our method. An
extension of the algorithm to three dimensions is in our future research.
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