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Abstract. A hybridization of a high order WENO-Z finite difference scheme and a
high order central finite difference method for computation of the two-dimensional
Euler equations first presented in [B. Costa and W. S. Don, J. Comput. Appl. Math.,
204(2) (2007)] is extended to three-dimensions and for parallel computation. The
Hybrid scheme switches dynamically from a WENO-Z scheme to a central scheme
at any grid location and time instance if the flow is sufficiently smooth and vice
versa if the flow is exhibiting sharp shock-type phenomena. The smoothness of the
flow is determined by a high order multi-resolution analysis. The method is tested
on a benchmark sonic flow injection in supersonic cross flow. Increase of the order
of the method reduces the numerical dissipation of the underlying schemes, which
is shown to improve the resolution of small dynamic vortical scales. Shocks are
captured sharply in an essentially non-oscillatory manner via the high order shock-
capturing WENO-Z scheme. Computations of the injector flow with a WENO-Z
scheme only and with the Hybrid scheme are in very close agreement. Thirty per-
cent of grid points require a computationally expensive WENO-Z scheme for high-
resolution capturing of shocks, whereas the remainder of grid points may be solved
with the computationally more affordable central scheme. The computational cost
of the Hybrid scheme can be up to a factor of one and a half lower as compared to
computations with a WENO-Z scheme only for the sonic injector benchmark.
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1 Introduction

Conservative Weighted Essentially Non-Oscillatory finite difference schemes (WENO)
have been developed in recent years as a class of high order (resolution) method for
solutions of hyperbolic conservation laws (PDEs) in the presence of shocks and small
scale structures in the solution (for a detail review of WENO schemes, see [1] and ref-
erences contained therein). WENO schemes owe their success to the use of a dynamic
set of substencils where a nonlinear convex combination of lower order polynomials
adapts either to a higher order polynomial approximation at smooth parts of the so-
lution, or to a lower order polynomial approximation that avoids interpolation across
discontinuities. The upwinding of the spatial discretization provides the necessary
dissipation for shock capturing.

The local computational stencils of (2r − 1) order WENO schemes are composed
of r overlapping substencils of r points, forming a larger stencil with (2r − 1) points.
The scheme yields a local rate of convergence that goes from order r at the non-smooth
parts of the solution, to order (2r − 1) when the convex combination of local lower or-
der polynomials is applied at smooth parts of the solution. The nonlinear coefficients
of WENO’s convex combination, hereafter referred to as nonlinear weights ωk, are based
on lower order local smoothness indicators βk, k = 0, · · · , r − 1 that measure the sum
of the normalized squares of the scaled L2 norms of all derivatives of r local interpo-
lating polynomials. An essentially zero weight is assigned to those lower order poly-
nomials whose underlining substencils contain high gradients and/or shocks, aiming
at an essentially non-oscillatory solution close to discontinuities. At smooth parts of
the solution, the formal order of accuracy is achieved through the mimicking of the
central upwind scheme of maximum order, when all smoothness indicators are about
the same size. Several techniques have been devised to design the nonlinear weights
such as the original weights given in WENO-JS [1], the mapped weights given in
WENO-M [3] and the optimal order weights given in WENO-Z [7, 8]. It has been
shown that the new set of nonlinear weights of WENO-Z provided less dissipation
than WENO-JS and yielded comparable resolution of smooth solution and captured
sharp gradients as WENO-M [9–11]. In this study, we will employ the WENO-Z for
our numerical experiments.

Following [7, 8], the hyperbolicity of the Euler equations admits a complete set of
right and left eigenvectors for the Jacobian of the system. The approximated eigen-
values and eigenvectors are obtained via the Roe averaged Jacobian. The first order
global Lax-Friedrichs flux is used as the low order building block for the high order
reconstruction step of the WENO scheme. After projecting the positive and negative
fluxes on the characteristic fields via the left eigenvectors, the high order WENO re-
construction step is applied (first/second) to obtain the high order approximation at
the cell boundaries using the surrounding cell-centered values, which are then pro-
jected back into the physical space via the right eigenvectors and added together to
form a high order numerical flux at the cell-interfaces. The conservative difference
of the reconstructed high order fluxes then determines the divergence of the inviscid
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Euler fluxes.

The procedure of the WENO scheme for finding the divergence of the Euler fluxes
is computationally costly. Furthermore, in the physical regions where the solution is
sufficiently smooth, the WENO procedure is unnecessary and should be avoided if
and whenever possible. In smooth regions, a simple high order central finite differ-
ence scheme (C-FD) is computationally less expensive. Moreover, C-FD scheme has
a lower numerical dissipation as compared to the WENO scheme. The challenge in
adapting the solution solver from a high order WENO-Z in non-smooth regions to
a high order C-FD scheme in smooth regions and vice versa, is that it needs be done
dynamically at each grid point and each time step and in a robust, consistent and com-
putationally efficient manner. In order to maintain a good performance and high order
accuracy of the divergence operator in the smooth regions, the algorithm must also be
high order. In this study, we adopt the high order multi-resolution analysis algorithm
(MR) by Harten [2]. While similar hybridization techniques have been developed with
other finite difference/finite volume schemes, most of them were coupled with a low
(first/second) order smoothness measurement algorithms (see [4–6, 15–17, 20, 21] and
references contained therein for details) making them theoretically less efficient and
less accurate than hybridizations that employ the higher order smoothness indicator.

A high order Hybrid scheme that switches between high order WENO-Z scheme
and high order C-FD scheme based on the high order multi-resolution analysis was
developed in two-dimensions in Costa and Don [4]. In this paper, we extend this Hy-
brid scheme to three-dimensions and we assess the performance of the Hybrid scheme
in terms of speed and accuracy in parallel computations of a three dimensional circu-
lar sonic jet in supersonic cross flow following the benchmark experiment performed
by Schetz [22]. The flow field is rich with many important features that are typical for
sonic injection in supersonic cross stream (see Fig. 2) including shocks that form ahead
of the injector; a large scale expansion plume ending originating from the injector and
ending in a barrel shock and a reflected shock; and a highly unstable contact slip line
(shear layer) that emanates from the edges of the injector leading to the formation of
high-frequency small vortical structures. Hence, the flow contains all the flow struc-
tures and scales that the Hybrid scheme is particularly, ideally suited to compute in an
accurate and efficient manner. We investigate the performance of the Hybrid scheme
in terms of accuracy for long time integration and in terms of the efficiency measured
with CPU timing running on a parallel machine. The Hybrid scheme is shown to be
up to 40% more computationally efficient than the pure WENO scheme for the injector
benchmark. The results computed with various orders of the Hybrid scheme and dif-
ferent grid resolutions are in good agreement with those computed with a pure WENO
scheme. Since the dissipation and dispersion are slightly different, small differences
in the generation and evolution of the small scale structures are observed along the
unstable slip line between Hybrid scheme and pure WENO scheme computations.

In Section 2, a brief introduction to the Hybrid scheme and its algorithm is given.
The central finite difference scheme, WENO finite difference scheme and the Multi-
Resolution analysis are briefly described in Sections 2.1, 2.2 and 2.3 respectively. Sec-
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tion 3 discusses the application of the Hybrid scheme to the three dimensional circular
sonic jet injection into a supersonic cross flow. The computational results using both
the pure WENO scheme and Hybrid scheme are presented and the performance of the
Hybrid scheme is discussed. Conclusion and remarks are given in Section 4.

2 Hybrid Central-WENO finite difference scheme (Hybrid)

A hybrid scheme that hybridizes the high order non-dissipative central finite differ-
ence scheme (C-FD) and an improved high order weighted essentially non-oscillatory
scheme (WENO-Z) presented in [4] is presented for solution of the three-dimensional
Euler equations.

The well-known equations comprise a system of non-linear hyperbolic conserva-
tion laws that can be written compactly as

∂Q

∂t
+∇ · F(Q) = 0. (2.1)

The system is discretized on a Cartesian uniformly spaced mesh in a three dimen-
sional rectangular physical domain. The central finite difference scheme is employed
in regions where the flow solution is smooth. The WENO-Z finite difference scheme
is employed otherwise to capture discontinuities in the flow solution such as shocks
and contact discontinuities whose formation is closely related to the nonlinear nature
of (2.1). To determine the smoothness of solution in the computational domain and
to maintain the high order (resolution) nature of the Hybrid scheme, the high order
multi-resolution analysis (MR) by Harten [2] is employed to switch between C-FD and
WENO schemes. The temporal and spatial adaptation of the two high order (resolu-
tion) schemes allows one to take advantages of the fast non-dissipative C-FD solver
for an accurate and efficient long time simulations while sharp gradients and shocks
are captured in an essentially non-oscillatory manner by the WENO scheme.

We briefly review the three individual high order (resolution) components of the
Hybrid method, including the C-FD, WENO-Z, and MR schemes followed by a sum-
mary of the Hybrid algorithm. For a more detailed description, we refer to [4]. We
present the schemes in one space dimension. Following a method of lines, the one-
dimensional method extends naturally to multi-dimensions in Cartesian coordinates.

2.1 Central finite difference scheme (C-FD)

A central finite difference scheme (C-FD) of order n approximates the derivative of a
function at a grid point xi on a Cartesian uniformly spaced mesh as follows

d

dx
f (xi) =

1

∆x

n

∑
j=−n

wj fi+j, (2.2)

where wj are the Lagrangian weights of the first derivative [13].
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Whereas the C-FD scheme is non-dissipative, it does suffer from numerical disper-
sive errors that introduce artificial high-frequency waves in the solution. To prevent
these high-frequency oscillations from causing numerical instabilities, a high order
smoothing is required to remove them. For a given function f (x), discretized on a
uniformly spaced grid, a filtered function of order n, f̂ (x), at the grid point xi can be
expressed as

f̂i =
n

∑
j=−n

αj fi+j, (2.3)

where αj are the filtering weights which satisfy the symmetry property α−j = αj. The
coefficients αj are chosen in such a way that the first n moments of the filtered function
match exactly the first n monomials {1, x, · · · , xn} ensuring that the approximation
order of the filtered function is kept high. In addition to that, the αj are also required
to satisfy the condition

n

∑
j=−n

αj(−1)j = 0,

so that oscillations at high wavenumbers are attenuated to zero. Some of these high
order filtering weights αj can be found in [14].

2.2 Weighted essentially non-oscillatory scheme (WENO)

WENO captures discontinuities in the flow solution in an essentially non-oscillatory
manner and resolves the high frequency waves accurately. We consider the character-
istics based weighted essentially non-oscillatory conservative finite difference scheme
(WENO-Z) for the solution of the system of hyperbolic conservation laws of order,
(2r − 1). We present the explicit formula for a fifth (r = 3) order scheme. Extension to
higher order (r > 3) WENO scheme is straightforward as explained in [8].

Consider a uniform spaced grid defined by the points xi = i∆x, i = 0, · · · , N,
which are called cell centers, with cell boundaries given by xi+1/2 = xi + ∆x/2, where
∆x is the uniform grid spacing (see Fig. 1). The semi-discretized form of (2.1) is trans-
formed into the system of ordinary differential equations and solved by the method
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Figure 1: The computational uniformly spaced grid xi and the 5-points stencil S5, composed of three
3-points substencils S0, S1, S2, used for the fifth-order WENO reconstruction step.
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of lines

dQi(t)

dt
= −

∂ f

∂x

∣

∣

∣

x=xi

, i = 0, · · · , N, (2.4)

where Qi(t) is a numerical approximation to the cell-averaged value Q(xi, t). To form
the flux differences across the uniformly spaced cells and to obtain high-order nu-
merical fluxes consistent with the hyperbolic conservation laws, a conservative finite-
difference formulation is required at the cell boundaries. We implicitly define the
numerical flux function h(x) as

f (x) =
1

∆x

∫ x+ ∆x
2

x− ∆x
2

h(ξ)dξ, (2.5)

such that the spatial derivative in (2.4) is approximated by a conservative finite differ-
ence formula at the cell boundaries xi,

dui(t)

dt
= −

1

∆x

(

hi+ 1
2
− hi− 1

2

)

, (2.6)

where hi±1/2 = h(xi±1/2). High order polynomial interpolations to hi±1/2 are com-
puted using known cell-averaged values f j = f (xj), j = i − r + 1, · · · , i + r − 1.

The (2r − 1) order WENO scheme uses a (2r − 1)-points global stencil, which is
subdivided into r substencils {S0, S1, · · · , Sr−1} with each substencil containing r grid
points and a global stencils S2r−1 =

⋃r−1
i=0 Si. For r = 3, the 5-points global stencil,

hereafter named S5, is subdivided into three 3-points substencils {S0, S1, S2}.
The (2r − 1) degree polynomial approximation

f̂i± 1
2
= hi± 1

2
+O(∆x2r−1)

is built through the convex combination of the lower r degree polynomial f̂ k(x) in
substencils Sk at the cell boundary xi±1/2:

f̂i± 1
2
=

r−1

∑
k=0

ωk f̂ k
(

xi± 1
2

)

, (2.7)

where

f̂ k(xi+ 1
2
) =

r−1

∑
j=0

ckj fi−k+j, i = 0, · · · , N. (2.8)

The ckj are Lagrangian interpolation coefficients [1] and ωk are normalized nonlinear
weights (weights), which will be described below.

The regularity of the (r − 1) degree interpolation polynomial approximation f̂ k(x)
at the substencil Sk is measured by the lower order local smoothness indicators βk,
which are given by

βk =
r−1

∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

( dl

dxl
f̂ k(x)

)2
dx, k = 0, · · · , r − 1. (2.9)
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For r = 3, the βk in terms of the cell averaged values fi = f (xi) are given explicitly by

β0 =
13

12
( fi−2 − 2 fi−1 + fi)

2 +
1

4
( fi−2 − 4 fi−1 + 3 fi)

2, (2.10a)

β1 =
13

12
( fi−1 − 2 fi + fi+1)

2 +
1

4
( fi−1 − fi+1)

2, (2.10b)

β2 =
13

12
( fi − 2 fi+1 + fi+2)

2 +
1

4
(3 fi − 4 fi+1 + fi+2)

2. (2.10c)

The WENO-Z scheme makes use of the higher order information obtained from a
global optimal order smoothness indicator τ2r−1 which is built as a linear combination
of βk, that is,

τ2r−1 =
∣

∣

∣

r−1

∑
k=0

ckβk

∣

∣

∣
, (2.11)

where ck are given constants [7,8]. For r = 3, one has τ5 = |β0 − β2|, which is of order
O(∆x5).

The normalized and un-normalized nonlinear weights ωZ

k and αZ

k , respectively, are
defined as

ωZ

k =
αZ

k

∑
r−1
l=0 αZ

l

, αZ

k = dk

(

1 +
( τ2r−1

βk + ǫ

)p)

, k = 0, · · · , r − 1. (2.12)

The parameter ǫ (typically 10−12) is used to avoid the division by zero in the denom-
inator and power parameter p (typically p = 2) is chosen to increase the difference
of scales of distinct weights at non-smooth parts of the solution. The coefficients
{d0, d1, · · · , dr−1} are called the ideal weights since they generate the (2r − 1) order
central upwind scheme when the solution is smooth. For r = 3, the ideal weights are
{d0 = 3/10, d1 = 3/5, d2 = 1/10}.

Following [7, 8], the hyperbolicity of the Euler equations admits a complete set of
right and left eigenvectors for the Jacobian of the system. The approximated eigen-
values and eigenvectors are obtained via the Roe averaged Jacobian. The first order
global Lax-Friedrichs flux is used as the low order building block for the high order
reconstruction step of the WENO scheme. After projecting the positive and negative
fluxes on the characteristic fields via the left eigenvectors, the high order WENO re-
construction step is applied to obtain the high order approximation at the cell bound-
aries using the surrounding cell-centered values, which are then projected back into
the physical space via the right eigenvectors and added together to form a high order
numerical flux at the cell-interfaces. The conservative difference of the reconstructed
high order fluxes can then be computed for inviscid flux.

The resulting system of ordinary differentiation equations ODE (2.2) and (2.6) re-
main after the spatial discretization are advanced in time via the third order TVD
Runge-Kutta scheme [7]. The CFL condition is set to be CFL = 0.45 in the numerical
experiments performed in this study.
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2.3 Multi-Resolution analysis (MR)

The Multi-Resolution analysis (MR) measures the smoothness of the solution at each
grid point at a given time and quantifies the smoothness through a MR coefficient.
Since the WENO-Z and C-FD schemes are both high order schemes, the measure of
the smoothness of the solution must also be of high order in order to differentiate a
high frequency wave from a high gradient/shock so that the appropriate numerical
spatial scheme (C-FD for high-frequency wave or WENO-Z for shocks) can be applied
at a given spatial location and at a given time. To do so, the high order multi-level
Multi-Resolution (MR) algorithm by Harten [2] is employed to detect the smooth and
rough parts of the solution.

Given an initial number of the grid points N0 and grid spacing ∆x0, we shall con-
sider a set of nested dyadic grids up to level L < log2 N0,

Gk = {xk
j , j = 0, · · · , Nk}, 0 ≤ k ≤ L, (2.13)

where xk
j = j∆xk with ∆xk = 2k∆x0, Nk = 2−kN0 and the cell averages of function u at

xk
j :

ūk
j =

1

∆xk

∫ xk
j

xk
j−1

u(x)dx. (2.14)

Let ũk
2j−1 be the approximation to ūk

2j−1 by a unique polynomial of degree 2s that in-

terpolates ūk
j+l, |l| ≤ s at xk

j+l, where r = 2s + 1 is the order of approximation.

The approximation error (or multi-resolution coefficients) dk
j = ūk−1

2j−1 − ũk−1
2j−1, at

the k level and the grid point xj, has the property that if u(x) has (p − 1) continuous
derivatives and a jump discontinuity at its p derivative ([·] and (·) denote the jump
and the derivatives of the function respectively), then

dk
j ≈

{

[u(p)]∆x
p
k , p ≤ r,

u(r)∆xr
k, p > r.

(2.15)

The multi-resolution coefficient dk
j measures how close the data at the finer grid

{xk−1
j } can be interpolated by the data at the coarser grid {xk

j }. From (2.15) it follows

that
|dk−1

2j | ≈ 2− p̄|dk
j |, p̄ = min{p, r}, (2.16)

which implies that away from discontinuities, the MR coefficients {dk
j } diminish in

size with the refinement of the grid at smooth parts of the solution; close to discon-
tinuities, they remain the same size, independent of the order r = 2s + 1 and level k
of multi-resolution analysis. Since in this work, the first level (k = 1) MR coefficients
{d1

j } are more than sufficient in detecting high gradients and shocks, we will drop

the superscript 1 from the d1
j unless noted otherwise. Examples of the performance of
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the high order multi-level multi-resolution analysis in detecting discontinuities in the
solution of nonlinear system of hyperbolic PDE can be found in [4].

The computational overhead of the multi-resolution analysis, which comprises a
dot product of a two vectors of length equal to the order of the MR analysis at each grid
point in each dimension of a single flow quantity only once before the Runge-Kutta
time stepping scheme, is negligible. It is equivalent to doing three more derivatives
using C-FD scheme in each Runge-Kutta step and its cost is insignificant when com-
pared to the cost of finding a non-oscillatory representation of the derivative of the
flux by the WENO scheme. The enhanced solution is well worth the minor additional
CPU time.

2.4 Hybrid scheme

Algorithmically, the Hybrid scheme is implemented with the following essential steps:

Step 1 The multi-resolution analysis (MR) is performed in a given variable (usually density) only
once at the beginning of the Runge-Kutta TVD time stepping scheme.

A grid point is flagged as non-smooth based on the smoothness sensor

Flagi =

{

1, |di| > ǫMR,
0, otherwise,

(2.17)

where ǫMR is a user tunable parameter.

Step 2 A buffer zone is created around each grid point that is flagged as non-smooth.

If, for example, grid point, xi, is flagged as non-smooth, then its

m = β
1

2
max(Nc, Nw + 1),

where β ≥ 0, Nc and Nw are the buffer zone factor, the order of C-FD scheme and the
order of WENO scheme, respectively, neighboring points {xi−m, · · · , xi, · · · , xi+m} will
also be designated as non-smooth, that is, {Flagj = 1, j = i − m, · · · , i, · · · , i + m}. This
condition prevents computation of the divergence of the Euler fluxes by the C-FD scheme
using non-smooth functional values.

Step 3 The C-FD scheme, which is computationally more efficient than WENO scheme, will com-
pute the divergence of the flux over the full computational domain first. Then, the WENO
scheme is employed to overwrite the divergence of the flux at those grid points designated
as non-smooth by the flag.

Remark 2.1. Since the WENO coverage of the solution is USUALLY smaller than the
C-FD coverage, and since the C-FD can be vectorized in a cache efficient manner along
lines, it is logical to compute the redundant C-FD solution that is going to be discarded
and overwritten by the WENO scheme later. Moreover, ease of programming and
implementation should be considered. From experience, we know that the additional
program complexity and additional labor cost is too high and the gain is too small
to justify a more elaborate implementation. Of course, there are exceptions and those
cases should be evaluated on a case by case basis. At the end of the day, it is the WALL
clock time that should be improved.
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Remark 2.2. It is generally known that WENO scheme is approximately five times
more expensive than the corresponding C-FD scheme with similar order. According to
the paper by Johnsen et al. [12], they estimated the number of operations per grid point
for C-FD6, C-FD8, WENO5 and WENO7 are 1100, 1600, 3100 and 6200 respectively, in
computing the divergence of the convective fluxes. Since a WENO scheme is required
to perform substantially more computations such as those involved in forming of the
eigensystem, flux splitting and forward and backward characteristic projections, five
times more CPU time is a reasonable estimate. Of course, the actual efficiency of any
implementation of the scheme is also highly depended on the competency of the pro-
grammer and data structures.

Remark 2.3. The class of problems studied is restricted to those where the boundary
conditions do not present any complications with the ghostpoints, for instance, peri-
odic or freestream boundary conditions. In this work, we shall use as many ghost-
points as required for a given order of the C-FD scheme, the WENO scheme and the
MR analysis. Also, the parameters ǫMR = 1 × 10−4 and β = 1 are used typically.

3 Numerical results

The Hybrid scheme is tested on a three dimensional circular sonic jet injection in a
Mach 2.1 supersonic cross flow with air according to the benchmark experiment per-
formed by Schetz [22] and the computations performed later by Viti [23]. In the exper-
iment a circular nozzle connects to a flat plate that is mounted parallel to the incoming
supersonic flow. The flow field, as summarized in the schematic in Fig. 2, shows many
flow features that are typical for sonic injection in supersonic cross stream. They in-
clude a laminar boundary layer that forms along the flat plate and a bow shock that
forms ahead of the injector. The injected air at sonic speed expands rapidly into a
plume and forms a barrel shock and a reflected shock. A contact slip line (shear layer)
that emanates from the injector edge is highly unstable and leads to the formation of
small, unsteady vortex structures. The interaction between the bow shock and the
boundary layer further leads to form a local separation of the laminar boundary layer
underneath the bow shock.

Ma>1
Expansion
Plume

Barrel Shock

Reflected Shock

Refelected Shock

Boundary Layer Shock
Bounary
Layer
Interaction

Slip Line

Mi=1.0

Bow Shock

Slip line

x

y

Figure 2: Schematic of flow features in a sonic injection in supersonic cross stream air flow.



W. S. Don et al. / Adv. Appl. Math. Mech., 4 (2012), pp. 719-736 729

Since the viscous effects are relatively small and since we are primarily interested
in the performance of the Hybrid scheme in terms of accuracy and computational
speed in this work, we compute the Schetz injector with the Hybrid inviscid Euler
code. Since viscous effects are not accounted for, we are not able to capture the laminar
boundary layer on the plate and the shock-boundary layer interaction. These viscous
flow phenomena have only a minor influence on the large shock-expansion structures
(bow shock, barrel shock, reflected shock, expansion plume and slip lines or shear
layers). Moreover, with a high order Euler solver we are able to capture the more
important small scale mixing structures in the unstable shear layers.

We consider a three dimensional rectangular domain with a supersonic cross-
stream flow in x-direction and the sonic injection in y-direction. The rectangular
computational domain size in x-, y- and z-direction is (4cm × 1.5 × 1cm) with the
origin located at (x0, y0, z0) = (−2cm, 0cm,−0.5cm). The freestream Mach num-
ber, pressure and temperature are Ma∞ = 2.1, p∞ = 11.1KPa and T∞ = 159K,
respectively. The injection Mach number, pressure and temperature are Mai = 1,
pi = 364.8KPa, and Ti = 250K, respectively. The circular injector nozzle has a diam-
eter of dn = 0.389cm with the center located at (xc, yc, zc) = (0cm, 0cm, 0cm). Com-
putations were performed with non-dimensionalized variables based on a reference
time scale of tre f = 3.95 × 10−5s. The final non-dimensional time of Tf = 3 time units

or in dimensional units, Tf = 1.2 × 10−4s, is sufficiently long for the flow to reach a
quasi-steady state in which most large scale structures are statistically invariant.

Free-stream conditions are specified at the x faces of the computational domain ac-
cording to the supersonic cross-stream flow. In the z-direction, periodic boundary con-
ditions are specified. On the bottom and top y-planes, a symmetry or zero mass flux
condition is specified. The injector boundary condition is specified on ghost points
(similar to the free stream conditions) and on grid points that are located within the
circular injector region. The circular injector boundary geometry is hence an approxi-
mated through a staircasing approximation in the Cartesian grid.

Three grid sizes as described in Table 1 were considered. The variables Nx, Ny and
Nz denote the number of uniformly spaced grid points in the x-, y- and z-directions,
respectively. Computations are performed with the Hybrid scheme, with approxima-
tion orders of 2r − 1 = 3, 5 and 7 for WENO 4, 6 and 8 for C-FD. We shall denote
Hybrid-CnWmMkGi as an n order C-FD scheme, a m order WENO-Z scheme and a k
order MR analysis at a grid resolution case i in the following discussion. For example,
Hybrid-C8W7M8G3 means the Hybrid scheme with an eighth order C-FD scheme, a
seventh order WENO-Z scheme and an eighth order MR analysis at a grid resolution

Table 1: Grid sizes used in the computation of the jet interaction in a Mach 2.1 supersonic cross flow with
air.

Grids Nx Ny Nz

1 360 135 90
2 400 150 100
3 444 167 111
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(Nx, Ny, Nz) = (444, 167, 111). In general, for a given M = 2r − 1 order WENO-Z
scheme, we will set n = k = m + 1 in the computations performed in this study. An
n + 2 order smoothing of the solution in the smooth regions of the domain is per-
formed at the end of a Runge-Kutta TVD time stepping.

To avoid large and complicated three dimensional plots, that do not add signifi-
cantly to the performance assessment of the Hybrid scheme, we focus on the visual-
ization of flooded contour fields of relevant variables (mainly, density ρ, Mach number
Ma and vorticity ω) with a two dimensional x − y plane cut at the center z = z∗ = 0cm
of the three dimensional physical domain.

The three dimensional simulations of this problem capture the evolution of the
small scale eddies along the unstable slip line that plays an important role in the for-
mation of transverse vortex tubes around the injecting jet. In Fig. 3, the temporal
evolution of the density ρ(x, y, z∗ , tn) and Mach number Ma(x, y, z∗, tn) are shown via
a two dimensional x − y plane cut with z = z∗ = 0cm as well as the three dimensional
two levels iso-surfaces of the Mach number Ma, from early times t until the final time
t = 3, as computed by the Hybrid-C8W7M8G3 scheme. The Hybrid scheme cap-
tures the long time evolution of the large scales structures (bow shock, barrel shock,
reflected shock and expansion plume) as well as the small scales eddies structures
(vortical rollups along the slip line) in an accurate and efficient manner as we will
discuss in detail below. The instabilities near the base of the injector jet lead to the
formation of coherent structures between the bow shock and the expansion plume.

To justify the use of the high order (resolution) Hybrid scheme, we plot, in Fig. 4,
the two dimensional density contour fields with increasing grid resolutions in the x-
direction by 100 grid points and with increasing order of the WENO-Z scheme from
the m = 2r − 1 = 3, 5 and 7 with corresponding order of the C-FD scheme and the MR
analysis as discussed above. The low order and low grid resolution Hybrid scheme
fails to capture the small scales eddies along the unstable slip lines but perform much
better with increasing order and grid resolution. For low order scheme, the high nu-
merical dissipation inherited in the underlying scheme requires a significant grid re-
finement to capture the small scales eddies. However, the increasing of grid resolution
imposes a severe stress on the computational hardware in terms of memory and CPU
time. It is recommended that high order scheme should be used whenever possible
for accurate capturing of small scales structures in a long time flow evolution.

In Fig. 5, the density ρ, Mach number Ma and vorticity ω contours are visualized
at t=3 as computed via a pure WENO-Z scheme and the Hybrid scheme with various
orders with a fixed grid resolution (Nx, Ny, Nz) = (444, 167, 111). The large scales
structures in Hybrid and pure WENO computations are in good agreement except for
minor differences in the small scales structures along the unstable slip lines between
the bow shock and the expansion plume. The minor differences are a result of the
slightly different level of dissipation in the WENO and C-FD schemes at the same
grid location and time. This translates in a slightly different flow behavior of the small
scales structures even if they are evolved in time by the same time stepping scheme.
Similar results and remarks are obtained with other grid resolutions (not shown).
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Figure 3: Temporal evolution of density ρ (left column) and Mach number Ma (middle column) at the center
z∗ = 0cm are shown at various times as computed by the Hybrid-C8W7M8G3 scheme. The iso-surfaces of
the Mach number (right column) are also given.

Computations were performed on an eight nodes cluster with 8 Intel Xeon cores
per node at a clock speed of 2.5GHz. All computations were run on eight cores. The
computational domain with uniform grid spacing was partitioned using Cartesian
domain decomposition. The parallel speed-up for this code and case up to eight pro-
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Figure 4: The two dimensional x − y plane cut of the density fields as computed by the Hybrid scheme with
various orders and grid resolutions at time t = 3.
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Figure 5: The two-dimensional x − y plane cut of density ρ, Mach number Ma and vorticity ω as computed
by a pure WENO-Z scheme and the Hybrid scheme with various orders at time t = 3. The grid resolution
is (Nx, Ny, Nz) = (444, 167, 111).
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Table 2: Timing in hours of the simulations at t = 1 with a pure WENO-Z scheme and a Hybrid scheme of
various orders and grid resolutions. The speed up in percentage is also given inside the parenthesis.

2r − 1 = 3 2r − 1 = 5 2r − 1 = 7
Cases WENO Hybrid WENO Hybrid WENO Hybrid

(a) 360 × 135 × 90 2.8 2.2 (27%) 3.6 2.6 (38%) 4.5 3.1 (45%)
(b) 400 × 150× 100 4.2 3.3 (27%) 5.4 3.7 (46%) 6.8 4.5 (51%)
(c) 444 × 167 × 111 6.5 4.9 (33%) 8.2 5.6 (46%) 10.3 6.6 (56%)

cessors is ideal. The CPU timing of the runs to time t = 1 is shown in Table 2.

On average the Hybrid scheme is 40% faster than the pure WENO-Z scheme. The
Hybrid scheme, on average, has a 35% coverage of WENO-Z scheme and hence a
65% coverage of the C-FD scheme. With an increase of grid size from the coarse grid
(a) to the fine grid (c) in Table 2, the percentage of WENO-Z coverage reduces as
shown in the bar-plot in Fig. 6. The reduced WENO-Z coverage lowers the normalized
computational cost as shown versus the normalized grid size for different order 2r −
1 = 3, 5 and 7 in Fig. 6. At large orders, 2r − 1, the reduction in WENO-Z coverage
leads to a relatively larger increase in efficiency of the Hybrid as compared to the
pure WEN0-Z. At 2r − 1 = 7 and for the finest grid (c), the Hybrid improves the
computational efficiency by 56%.
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Figure 6: Comparison of timing results and percentage of WENO coverage used by the Hybrid scheme.

We note that with an increase in approximation order from 2r − 1 = 3 to 7, the
WENO-Z coverage increases by approximately 10% (bar-plot in Fig. 6). This means
that the Hybrid scheme is relatively less efficient with increasing order because of the
increased WENO coverage.

Remark 3.1. The overall efficiency of Hybrid scheme is highly problem dependent, in
some particular problems at a given time when the WENO coverage of the solution is
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highly fragmented such as the problem studied here, one cannot expect high compu-
tational efficiency due to the lack of vectorization, frequent cache dump and memory
reload. This is an active area of research to alleviate this aspect of Hybrid scheme by
the authors.

4 Conclusions

The high order Hybrid WENO-Central finite difference Euler Solver is extended from
two to three dimensions. The parallelized Hybrid scheme was tested on a sonic injec-
tor benchmark flow in supersonic cross stream.

The Hybrid scheme uses the WENO-Z scheme in regions of the physical domain
where the flow is not smooth and contains discontinuities such as contact discontinu-
ities and shocks, whereas in smooth regions it uses a central finite difference scheme.
The smoothness of the solution is quantified with a multi-resolution coefficient that is
determined through a high order multi-resolution analysis on a single solution vari-
able. Based on the multi-resolution coefficient, the Hybrid scheme switches dynam-
ically between the computationally efficient central finite difference scheme and the
computational more expensive WENO-Z scheme at each grid point and at each time
step. The computational overhead of the multi-resolution analysis, which comprises
a dot product of a two vectors of length equal to the order of the MR analysis at each
grid point in each dimension of a single flow quantity before each Runge-Kutta time
stepping scheme, is negligible as compared to the cost of finding a non-oscillatory rep-
resentation of the derivative of the flux by the WENO scheme. The Hybrid scheme is
hence more computationally efficient.

To illustrate the accuracy and efficiency, the Hybrid scheme was tested by means
of computations of the benchmark flow problem of the sonic injection of fluid into a
supersonic cross stream flow. The computations focused on a near injector flow region
which features rich interaction between both large-scale shocks and expansions and
the growth of small scale flow instabilities. In the initially uniform supersonic flow,
the curved cross stream jet increasingly blocks the flow and as a result instabilities and
shocks develop ahead and along of the curved cross-stream jet. Since the pressure of
the jet is higher than the pressure in the cross stream, the jet expands and accelerates
creating additional instabilities downstream, until it reaches a quasi-steady state.

For this flow computation 30% of the computational domain requires the use of
WENO-Z scheme. With this a relatively large percentage of WENO-Z usage, the com-
putation is up to 1.56 times faster with the Hybrid scheme than the one with a pure
WENO-Z scheme. With increasing grid resolution, the WENO-Z coverage becomes
relatively smaller, and the Hybrid scheme becomes relatively more efficient. For large
computational domains, the lesser WENO-Z coverage is needed and hence computa-
tional cost should decrease further. On average the speed up with Hybrid scheme is
40% for the cases considered in this paper.

The flows computed with a Hybrid scheme and with a pure WENO-Z scheme are
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in very good agreement. Hence, while the Hybrid scheme improves computational
efficiency over the high order WENO-Z scheme, it does not reduce the accuracy. If
anything, it is expected that the Hybrid scheme is more accurate, since the numerical
dissipation and dispersion of the central difference schemes are smaller than WENO-Z
scheme.

With an increasing order of underlying schemes, the capturing of the growth of
small scale instabilities improves. With a third order scheme, the shear layer ema-
nating from the injector jet is stable whereas at the fifth and seventh order scheme,
the shear layer is unstable. Effectively, a lesser grid resolution is required with an in-
creased order of approximation to obtain the same result. The lesser grid resolution
reduces computational cost, which reduces the computational time by a factor that is
dependent on the problem as well as choice of parameters of the numerical scheme.
For the injector cases, with an increase of the order of approximation by two orders,
similar results are obtained for grid resolution that require only half the computational
time, i.e., another factor 2 of relative increase in computational efficiency.

In near future work, we plan to develop the Hybrid scheme for the solution a full
three-dimensional Navier-Stokes equations to include the viscous and heat conduc-
tion effects in this class of problems. The Hybrid scheme for Navier-Stokes equations
will enable the study of viscous effects, such as shock-boundary layer interaction, on
the sonic injection in supersonic cross stream.
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