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Abstract. In this paper, operator splitting scheme for dynamic reservoir charac-
terization by binary level set method is employed. For this problem, the absolute
permeability of the two-phase porous medium flow can be simulated by the con-
strained augmented Lagrangian optimization method with well data and seismic
time-lapse data. By transforming the constrained optimization problem in an un-
constrained one, the saddle point problem can be solved by Uzawas algorithms
with operator splitting scheme, which is based on the essence of binary level set
method. Both the simple and complicated numerical examples demonstrate that
the given algorithms are stable and efficient and the absolute permeability can be
satisfactorily recovered.
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1 Introduction

We consider the conversation of mass for two-phase, incompressible, immiscible, hor-
izontal flow in a porous medium with isotropic permeability:

Φ(x)
∂So

∂t
−∇ ·

(κ(x)κro(So)

µo
∇po

)

= fo(x), (1.1a)

Φ(x)
∂Sw

∂t
−∇ ·

(κ(x)κrw(Sw)

µw
∇pw

)

= fw(x), (1.1b)

where (x, t) ∈ Ω × [0, T], Ω ⊂ R2 is a bounded reservoir, and the subscripts o and
w refer to the phases, oil and water, respectively. Also Si denotes the saturation, µi
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the viscosity, pi the pressure, fi the external volumetric flow rate and κri is the relative
permeability, where i is the fluid phase. The porosity and the absolute permeability
are given by Φ(x) and κ(x), respectively, see, e.g., [7, 24].

Closuring the system is obtained through an assumption of a completely saturated
medium

So + Sw = 1 (1.2)

and an assumed known function Pc defining the capillary pressure,

po − pw = Pc. (1.3)

The quantities Φ, κ, κri and Pc are all depended of the porous medium and are not
accessible through direct measurements.

The considered problem is how to estimate an absolute permeability κ(x), when Φ

and κri are assumed to be known, and Pc is set to zero. For recovering the permeability,
we need utilize information from the wells together with seismic data. Unfortunately,
we cannot get any direct information of permeability. However, through the Eqs. (1.1)-
(1.3), we can use the indirect information to estimate the permeability on a coarse scale.
Generally, such a problem can be called an inverse problem, or more specific referred
to as a history matching problem [1, 27, 28]. In order to overcome the ill-posedness,
regularization methods are always applied with different regularized terms.

The forward model (the solution of Eqs. (1.1)-(1.3) for a given function κ(x)) is
solved by applying an in-house reservoir simulator. The simulator is using a standard
block-centred grid with upstream weighting and Euler backwards in time discrete.
Some numerical techniques can also cited in [9, 10].

In this work, we will use binary level set method [13, 17, 18] to recover the per-
meability. One of the essence of binary level set method is that we can constrain the
solution to be a piecewise constant. And the geometries of the discontinuity of curves
are allowed to be arbitrary, but with some constraint regularity achieved by a total
variational regularization. For binary level set functions, the change of sign will show
the discontinuity of the curves. From [14], we know that level set method can produce
piecewise constant solution with a predefined number of constant levels. Practically,
it can represent the sought solution with a few number of regions than the predefined
number, which causes that one or more regions are empty [13]. Thus, we only need
an upper bound of the number of regions in the piecewise constant solution.

This paper is based on the framework of [19]. The authors described the reservoir
characterization using a binary level set approximation. They solved this problem by
the augmented Lagrangian method, and used the gradient steepest descent method to
get the next level set function values in their Uzawa algorithm. In [18], the authors also
utilized data from wells and spatially distributed data with prior information about
the sought solution to re-estimate the permeability. From the lights of work in [15,
16, 25], we can see that a better result can be obtained if operator splitting method is
applied to inverse problem approximated with piecewise constant level set method
without difficulties.
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In our algorithm, we use the augmented Lagrangian method [5, 8] to regularize
the inverse problem of dynamic reservoir characterization. Finding a proper time-step
with linear search, minimizing binary level set function by operator splitting scheme
and minimizing the piecewise constants by steepest gradient descent method, we can
obtain good results of recovering the variation of permeability. Numerical example
shows that it is more stable than the previous gradient steepest descent method be-
cause of smaller error measurements. And the computation cost is also reduced.

This paper is organized as the following: in Section 2, we describe the considered
inverse problem, give the objective function and some assumptions, including data
construction of reservoir modeling. In Section 3, we present a quickly recall on the
framework of binary level set method and transform the optimization problem. In
Section 4, we give numerical optimization formulation and deduce an operator split-
ting scheme. Uzawas algorithm is presented. In Section 5, we set up some prepara-
tions before our experiments. In Section 6, we give numerical experiment to show that
such a Uzawas algorithm is working and we can get better results seeing from the er-
ror measurements. Computation cost can be found from the iteration step number. In
Section 7, we summarize our work and give a conclusion. In Section 8, we give many
thanks to the supports.

2 Contributed data and inverse problem

It is much more proper to solve the considered problem with respect to the logarithm
of the permeability. Define

q(x) = log10 κ(x), (2.1)

we can solve this problem with respect to q(x). It can be seen that the transformation
from κ to q will not destroy the contour of the discontinuities.

Let dwell be a vector of well data, and dseis be a vector of seismic data, and assume
that all measurements have been transformed into pressures and saturations:

dwell =
{

po(xwell, t), Sw(xwell , t), for i = 1, 2, · · · , nwell, t ∈ [0, T]
}

, (2.2a)

dseis =
{

po(x, tj), Sw(x, tj), for x ∈ Ω, j = 1, 2 · · · , nseis

}

, (2.2b)

where nwell is the number of present wells in Ω and nseis is the number of seismic
surveys in the time domain [0, T].

From the existed experiments we know that it is much better to combine all kinds
of different data into one optimization for computation and analysis. From the meth-
ods of weighting the different kinds of data in [3,6], we apply an objective function to
measure the fit of the model to the data:

Jtot(q) =Jwell(q) + Jseis(q) =
1

2
(dwell − mwell(q))

TD−1
well(dwell − mwell(q))

+
1

2
(dseis − mseis(q))

TD−1
seis(dseis − mseis(q)). (2.3)
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Here mwell(q) and mseis(q) are the simulated values corresponding to the given mea-
surements. These values are calculated by the forward model (Eqs. (1.1a)-(1.3)) for
a given function q(x) (or corresponding permeability function κ(x)). The different
terms in Jtot are weighted by the inverse of the covariance matrices Dwell, Dseis. These
matrices are representing the uncertainties parts of the data and will in general not
be diagonal, see [6]. The first two terms of the objective function, Jwell and Jseis, will
measure the misfit between the measured and the corresponding simulated data.

We utilize a regularization method to strict the solution space when reconstructing
the function q(x) because of highly ill-posedness. A simple piecewise constant space
can be taken. From analysis shown in [12,20], we know that a total variational method
can be taken to regularize q(x). The actual applied regularization is

R(q) =
∫

Ω
|∇q|dx. (2.4)

Such a definition can control both the length of the interface and the jumps of q.
The functional to be minimized is defined as

F(q) = Jtot + βR(q), (2.5)

where β is a parameter weighting q(x). In the example q has two regions by finding
the optimal function q∗, which is the solution of the following minimization problem:

q∗ = arg min
q∈Q

F(q), (2.6)

where Q is a space of piecewise constant functions.

3 The binary level set method for the inverse problem

In the binary level set formulation, the level set functions are discontinuous, which
should take the values −1 or 1 at convergence. These functions can be used to partition
a domain Ω into a number of subdomains {Ωj} by requiring different sign of the level
set functions inside and outside the subdomains. In this way, the discontinuities of
the functions will represent the boundary of the subdomains.

Assume that Ω needs to be divided into two subdomains, Ω1 and Ω2, such that
Ω1

⋂

Ω2 = ∅ and Ω = Ω̄1
⋃

Ω̄2, where Ω̄j is the closure of Ωj, j = 1, 2. A representa-
tion of this domain can be given by

φ(x) = 1, ∀x ∈ Ω1, φ(x) = −1, ∀x ∈ Ω2 (3.1)

and the curve separating Ω1 and Ω2 is implicitly given as the discontinuity of φ. The
properties of φ can be used to construct a scalar function q(x) with distinct constant
values inside the two different subdomains. If we assume that the value of q(x) is
equal to c1 in Ω1 and equal to c2 in Ω2, then q can be written as

q =
1

2
[c1(φ + 1)− c2(φ − 1)]. (3.2)
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Multiple level set functions can be used to represent more than two regions. Fol-
lowing the terminology applied in [4], N binary level set functions can be combined
to produce a coefficient function with 2N different levels. Given {φi}N

i=1 and c =
(c1, c2, · · · , c2N ), the function q can be expressed as the sum

q(φ, c) =
2N

∑
i=1

cjψj(φ), (3.3)

where ψj are basis functions depended on φ. (3.2) is a special case of Eq. (3.3). For
example, ψ1 = (φ + 1)/2 and ψ2 = −(φ − 1)/2 in Eq. (3.2).

In the following, we let K(x) = x2 − 1. The level set functions are required to
satisfy the constraint

K(φi) = φ2
i − 1 = 0, ∀i = 1, · · · , N. (3.4)

This requirement will force the level set functions to take the values −1 or 1 at conver-
gence.

After defining a constraint vector function K(φ) = {K(φi)}N
i=1, the minimization

problem (2.6) can be reformulated by

(φ∗, c∗) = arg
{

min
φ,c

F(q(φ, c)), subject to K(φ) = 0
}

(3.5)

and the optimal function can be obtained by q∗ = q(φ∗, c∗) from the Eq. (3.3).

4 Numerical optimization and operator splitting scheme

We utilize the augmented Lagrangian method to solve problem (3.5) numerically. The
Lagrangian function L(φ, c, λ) concludes F and the constraint K:

L(φ, c) = F + W, (4.1)

where

F = F(q(φ, c)), W =
N

∑
i=1

∫

Ω
λiK(φi)dx + µp

N

∑
i=1

∫

Ω
|K(φi)|2dx

and µp is a penalization parameter which usually is fixed parameter chosen a priori,
or it can in some case be increased. Therefore, we usually solve the following mini-
mization problem instead of (3.5),

(φ∗, c∗) = arg
{

min
φ,c

L(φ, c, λ)
}

. (4.2)

At the minimizers of L(·, ·, ·), we should have

∂L

∂φ
=

∂F

∂φ
+ W

′
(φ) = 0,

∂L

∂c
= 0,

∂L

∂λ
= 0. (4.3)

In order to obtain minimizers, in generally, some stable methods such as steepest gra-
dient descent method will be used. A Uzawas type algorithm will be done like that:
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Algorithm 1. Choose initial values for φ0, c0 and λ0. For k = 1, 2, · · · , do

1. Find φk+1 such that

φk+1 = φk −△tφ
∂L

∂φ
(φk, ck, λk). (4.4)

2. Find ck+1 such that
ck+1 = arg min

c
L(φk, c, λk). (4.5)

3. Update λ
λk+1 = λk + µpK(φk+1). (4.6)

4. Iterate again if necessary.

From the previous experiments [15, 16, 25] using piecewise constant level set method
we know that one of the most difficult parts is to control the update of φ by minimizing
L(φ, ck, λk) with respect to φ. We can directly use gradient type methods with linear
search to determine the optimal step length. However, for our propose, we prefer
another approach. Instead of solving (4.3), we actually solve the following ordinary
differential equation to the steady state

φt +
∂L

∂φ
= 0. (4.7)

According to the operator splitting scheme [15, 16, 25], we can solve (4.7) in the
following way: For k = 1, 2, · · · , until convergence, do

φk+ 1
2 − φk

τ
+

∂F

∂φ
(ck, φk+ 1

2 ) = 0, (4.8a)

φk+1 − φk+ 1
2

τ
+W

′
(φk+1) = 0, (4.8b)

where τ is a pseudo time-step. Notice that (4.8b) can be rewritten as

φ − φk+ 1
2

τ
+ µpK(φ)K

′
(φ) = 0, (4.9)

or
φ − φk+ 1

2 + α2µpK(φ)K
′
(φ) = 0, (4.10)

where α2 is a parameter that should be chosen properly. If we take φk+1/2 as a constant,
at every interaction, the Eq. (4.10) will be a simple type equation of g(x) = 0. With the
help of selecting a proper α2, in generally α2 is larger than time-step, it is easy to get
the solution φ using Newton iteration solution.

For solving (4.8a), notice that (4.8a) equals to

min
φ

{ 1

2τ
‖φ − φk‖2 + F

}

= min
φ

{1

2
α1‖φ − φk‖2 + F

}

. (4.11)
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So we can apply a gradient like method with linear search to determine the optimal
step length, where α1 = 1/τ should be chosen properly.

Furthermore, in order to find the minimizer of L with respect to φ, the original
energy function L is decomposed into two parts: L = F + W, which can be solved
one by one, and by using operator splitting scheme, the two parts are incorporated
together in a harmonious way.

The energy function L can be decomposed into two parts coincides in the nature
of our model problem. In fact, our model problem consists of two stages: recovering
of q(x), which means the output-least-square, and image segmentation approximating
q(x) by a binary level set function. We just need the level set formulation in the second
stage, which introduces the constraint part. So the problem is clear, and we can write
our algorithm to find a minimizer of L as following:

Algorithm 2. (Uzawa algorithm and Operator splitting scheme).

Determine the number of level set function, N and the initial level set function φ0 to use.

Choose time step for △tφ.

Choose search interval for each cj, cj ∈ [aj, bj].

Initialize: φ0, c0, also set k = 0.

1. Find φk+1,

(a) Get q by formula (3.3).

(b) Compute φk+1/2 by

φk+ 1
2 = φk − σk

∂F

∂φ
(ck, φk).

(c) Compute φk+1 by (4.10) with a proper parameter α2, or else set φk+1 = φk+1/2.

2. Update c (after a fixed number of iterations because of ill-posedness). For each cj, j =

1, 2, · · · , 2N :

(a) Get q by formula (3.3).

(b) Define:

αk
c j
=

∂L

∂cj
(φk+1, ck).

(c) Define the search interval: Let M ⊂ R be all the values of △t such that ck
j −△tαk

c j
∈

[aj, bj].

(d) Find the optimal time step: △tc j
= arg min

△t∈M
L(φk+1, ck −△tαk

c j
ej), where ej is the

j-th unit vector.

(e) Update the constant: ck+1
j = ck

j −△tαk
c j
.

3. Iterate again if necessary.

k := k + 1.
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Derived from the ill-posedness of our model problem and q updated implicitly
using the most recently calculated values of φ and c, in this algorithm, we can not use
Step 2 and Step 3 in every step. Otherwise, the algorithm will be unstable if φ and c are
updated too often. In principle we can have run Step 1 to convergence before doing
other steps. Therefore, we can update c and λ after a fixed number of iterations. To
further stabilize Step 2, we have applied a predefined search interval [aj, bj] for each
constant such that there will be no risk of producing values completely out of range.

We have found that it is difficult to find any suitable stopping criterion which stop
the iterations before the solution is strictly piecewise constant. In this work, we will
run the algorithm to a fixed number of iterations.

5 Setup for numerical tests

In this section, we will present a complicated example to demonstrate the analysis of
our model problem and the efficiency of the given algorithm. The utilized example
is synthetic case where the true permeability field consists of two distinct permeabil-
ity values. And in this case it is sufficient with one level set function to represent
the field. The considered reservoir is square and horizontal with constant thickness
and non-flow outer boundary. Except for the absolute permeability, the fluid and rock
properties are held fixed through the simulations. And in the field we have one injec-
tor positioned in the lower left corner and one producer positioned in the upper right
corner.

The relative permeability functions are defined by Corey models:

κrw = κ̂rw

( Sw − Swr

1 − Swr − Sor

)ew

, κro = κ̂ro

( So − Sor

1 − Sor − Swr

)eo

,

where the Corey exponents, ew and eo, the residual saturations, Swr and Swo, and the
endpoint permeability, κ̂rw and κ̂ro, are assumed known. The numerical values for
these properties are, together with the rest of the properties for the simulations, listed
in Table 1.

The forward model (1.1)-(1.3) is solved by applying an in-house reservoir simula-
tor. In this simulator the equation error is minimized by applying Newton iterations,
and the linear solver of choice is GMRES. The gradient ∂F/∂q is solved from the solu-
tion of the adjoint system of equations [22].

In numerical experiments, it is desirable to replace φ̃i by a smoothed approxima-
tion. The chosen approximation is

φ̃i ≈
φi

√

φ2 + ǫ
, (5.1)

where ǫ is a small positive number which has to be chosen.
For each reference permeability field we calculate the true values of saturation

(Sw) and pressure (po) for the applied timesteps on the given grid. Thereafter syn-
thetic measurements are constructed by adding noise to the calculated true values.
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Table 1: Numerical values for simulations.

Reservoir dimensions: 1000× 1000× 40 meter
Simulation grid: 16 × 16 × 1 cells
Porosity: 0.2
Viscosity: µw = 0.5 × 10−3Pa·s, µo = 0.5 × 10−3Pa·s
Endpoint relative permeability: κ̂rw=0.1, κ̂ro=0.1
Residual saturations: Srw = 0.2, S∗

or = 0.2
Corey exponents: ew = 1.5, eo = 2.5
Initial saturations: Sw = 0.2, So = 0.8
Capillary pressure function: Pc(Sw) ≡ 0KPa
Injector rate: 8% of total pore volume per year
Production rate: constant BHP= 200.0bar
Number of timesteps: 192
Total production time: 3000 days
Number of seismic surveys: 16 (i.e., approximately every 6 months)

Table 2: The standard derivations.

Well data Seismic data
Pressure σp,well = 1.0bar σp,seis = 2.5bar

Saturation σS,well = 0.025 σS,seis = 0.050

The noise is assumed to be uncorrelated Gaussian noise with zero mean. In Table 2
the standard derivations which give the amount of added noise are listed. Notice that
the uncertainties are larger for the seismic measurements than for the measurements
in the wells. When calculating Jtot(q) we use the correct uncertainties, according to the
added noise, for constructing Dwelland Dseis.

The penalization parameter µp is increased slowly through the iterations. If k is

the number of iteration, µp = 0.05 × 1.01k up till it reaches an upper bound (equal
to 4) where we keep it fixed. Regarding the regularization parameter β, we have for
each example first tried with a value of 5 × 10−3. If this causes large oscillations in the
solution, then the weight on the regularization is increased and a new optimization is
preformed. The value of ε used to calculate φ̃ is initially equal to 0, 1, and is decreased
by a factor of 0.98 until it reaches a lower bound equal 10−7. The cj-values are updated
each 10th iteration. Also we can choose a larger parameter α2 than time-step in (4.10) in
order to control the convergence by adding constraint function and penalty function.
Here, we take α2 = 0.1.

For each test case we start with φ0 in the entire domain except in the cells where we
have wells. In the cells with a penetrating well, we assume that the approximating the
permeability value is known. The value of φ is therefore fixed equal to its correction
value (1 or −1 dependent of the initial c-values) in the cells.

For each of the constant values we define an interval [aj, bj] within cj can be es-
timated. The length of this interval will be associate to the prior uncertainty of the
permeability value for corresponding domain. Because there are abilities for direct
measurements of the permeability in the wells, we have applied a lower uncertainty
for cj in the regions where there is at least one well present, than for the regions with
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no wells. For the studied case we have applied interval [aj, bj] with length equal 50%
(no wells) and 30% (wells) of the difference between the two true values of q. The
center of the intervals are chosen equal to the true values. For example, if we assume
the following: c1 and c2 are the true values, the domain corresponding to c1 has no
wells present and there are one or more wells penetrating a region with permeability
approximately equal to c2. Then the bounds will be

a1 = c1 − 0.25 · |c2 − c1|, b1 = c1 + 0.25 · |c2 − c1|

and

a2 = c2 − 0.15 · |c2 − c1|, b2 = c2 + 0.15 · |c2 − c1|.

In this paper, we start with initial cj−values on the lower and upper bound of the
two intervals. We use the lower bound for the smallest cj values and the upper bound
for the highest cj value, that is, if c1 < c2, then c0

1 = a1 and c0
2 = b2. Other approaches

for choosing the initial values are also possible.
The algorithm is stopped after 1000 iterations if φk and ck have not converged, in

the sense of stopped changing, before this.
For each considered example, we have plotted measurements of the errors and the

convergence. One of the measurements is the equation error. We define eo(q, po, Sw)
and ew(q, po, Sw) to be the equation residual for (1.1a) and (1.1b), respectively, and let
the equation error

E(q, po, Sw) = ∑
i=o,w

‖ei(q, po, Sw)‖L2(Ω×[0,T]). (5.2)

Since Eqs. (1.1a) and (1.1b) are solved exactly, in the forward model, the residual
E(qk, m(qk)) should be zero or below a numerical error bound.

To measure the data fit we plot RMS values of J, Jwell and Jseis versus the iteration
number. The RMS value of a function Jα is defined as

√
2Jα/nα, where nα is the number

of measurements included in Jα and α = tot, well or seis.
Other measurements applied to check the convergence are ‖K(φk)‖L2

and ‖K(φ̃k)‖L2
.

The difference between these two measurements is that the first one indicates how fast
φk reaches the convergence values −1 and 1, and the second one is a measure of how
close q̂k is from being piecewise constant with only two levels.

6 Numerical examples

Example 6.1. S-shape Channel.
In this example, we take a S-shape channel as a true field with high permeability

from the injector to the producer. From the discussion in [18,19] we know that we can
use one level set function to identify three distinct piecewise constant region since two
of the regions have the same constant value. And also we know the authors gave some



790 C. H. Yao / Adv. Appl. Math. Mech., 4 (2012), pp. 780-798

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−1−flat

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−50−flat

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−150−flat

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−250−flat

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−350−flat

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Computed−phi−500−flat

Figure 1: Show φ at 1-th, 50-th, 150-th, 250-th,350-th,500-th iteration using Algorithm 2.
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Figure 2: Show qk and the signal change of qk at 1-th, 50-th,150-th,250-th,350-th,500-th iteration using

Algorithm 2, respectively. In the upper two rows, qk is given. In the lower two rows, the solid line shows

the discontinuities of the recovered qk and the dotted line shows the true discontinuity of q.
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results by using Algorithm 1. Here we will not recite all the results made by them and
only give the comparison with the two algorithms.

Firstly, Fig. 1 gives the convergence procedure of level set function φ. From this
figure, we can see that Algorithm 2 will give a good convergence for φ after 250-th it-
eration. Fig. 2 can also make a similar conclusion from the signal change of qk. Both the
two figures show that there is few error when we recover qk by using Algorithm 2 after
250-th iteration. However, there were 1.17% errors on the same considered field [19]
(Fig. 4h) and 0.39% errors after modifying the Algorithm 1 in [19]. Fig. 3 presents a
comparison of signal change using Algorithm 2 and 1 in the left two figures. The error
rate is 0 and 0.39%, respectively. The right three figures show the comparison the exact
q with the computed q. In Fig. 4, we put our issues on the comparison the error mea-
surements with the two algorithms. The red line is plotted by the results obtained by
Algorithm 1 and the black line is plotted by the results obtained by Algorithm 2. From
this figure we know that the recovered permeability qk has less error using Algorithm
2 than Algorithm 1, though the piecewise constant values and RMS has the similar
errors, respectively. Fig. 5 show the measures of convergence of constraint functions
K(φ), K(φ̃). From this comparison we know that the modified φ̃ will have much more
stability and less oscillation. In Fig. 6, we give the comparison of E(qk+1, m(qk)) using
Algorithm 2 and Algorithm 1. The red curve is an average of E(qk+1, m(qk)) for the
last 15 iterations. The curves indicate convergence after 250 iterations for Algorithm 2
and after 400 iterations for Algorithm 1. In Fig. 7, using Algorithm 1 and Algorithm
2, pressure and saturation are plotted at the end of simulation (3000 days), c = (0, 0.3)
and injection rate is equal to 8% of the total pore volume per year. Here, the complete
field is flooded by water at the simulation.
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Figure 3: The left two figures show sign change of φ compared Algorithm 2 with Algorithm 1.The error rate
is 0 and 0.39%, respectively. The right three figures show the comparison the exact q with the computed q
using Algorithm 2 and Algorithm 1, respectively.
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Figure 4: The left three fig-
ures show error measurements of
|c1 − c1,true|, |c2 − c2,true|, q(x)
and the right two show RMS us-
ing Algorithm 2 and Algorithm
1, respectively. The blue, green
and black line stands for RMS of
tol, well and oil, respectively.
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Figure 5: Show the comparison ‖K(φ)‖L2 and ‖K(φ̃)‖L2 using Algorithm 2 and Algorithm 1.
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Figure 6: E(qk+1, m(qk)) with Algorithm 2 and 1. The red curve is an average of E(qk+1, m(qk)) for the
last 15 iterations.

Example 6.2. Complicated field-crossing channel.

In this example, we demonstrate a complicated field in [18] where two channels
are crossing each other. And we also assume that the two channels have the same
permeability value and they produce a connected region with high permeability from
the injector to the producer.

First, we show the convergence procedure of level set function φk using Algorithm
2 in Fig. 8. We can see that level set function φk has almost converged to two piecewise
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Figure 7: The left two figures are saturation run by Algorithm 2 at the end of simulation. The right two
figures are pressure run by Algorithm 1 at the end of simulation.
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Figure 8: In the upper two rows, Show φ at 50-th, 150-th,250-th,350-th,650-th,1000-th iteration using
Algorithm 2. In the lower two rows, the solid line shows the discontinuities of the recovered q and the
dotted line shows the true discontinuity of φ.
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Figure 9: Sign change of q with respect to Algorithm 1 and Algorithm 2. And the error rate is 7.42% and
5.46%, respectively.
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Figure 10: The comparison with exact φ and computed φ using Algorithm 2 and Algorithm 1.
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Figure 11: The comparison with exact q and computed q using Algorithm 2 and Algorithm 1.

constant after 350-th iteration. In Fig. 9, the result (error rate 5.46%), obtained by
Algorithm 2, not only has less error than that obtained by Algorithm 1, error rate is
7.42%, but also it has less computation cost compared with at lest 500 iterations in [19].
Fig. 10 and Fig. 11 show the comparison φ and q respectively obtained by Algorithm
1 and Algorithm 2.
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Figure 12: The left three fig-
ures show error measurements of
|c1 − c1,true|, |c2 − c2,true|, q(x),
and the right two show RMS us-
ing Algorithm 2 and Algorithm
1, respectively. The blue, green
and black line stands for RMS of
tol, well and oil, respectively.
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Figure 13: Comparison ‖K(φ)‖L2 and ‖K(φ̃)‖L2 using Algorithm 2 and Algorithm 1. The red line shows
the error computed by Algorithm 1 and the black line shows the error computed by Algorithm 2.
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Figure 14: E(qk+1, m(qk)) is the norm of the equations residual, where the red curve is an average of

E(qk+1, m(qk)) for the last 15 iterations.

Fig. 12 show the error measurements for the piecewise constant values c, q and
RMS. The five subfigures tell us that Algorithm 2 can cause much less error and
oscillation. Fig. 13 show that the L2 norm of the modified level set function φ̃ defined
by (5.1). Obviously, the right subfigure has less oscillation.

Fig. 14 shows the equations residual of E(qk+1, m(qk)). The red curve is an average
of E(qk+1, m(qk)) for the last 15 iterations. The curves indicate convergence after 350-th
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Figure 15: The left two figures are saturation obtained by Algorithm 2 at the end of simulation. The right
two figures are pressure obtained by Algorithm 1 at the end of simulation.

iteration for Algorithm 2 and after 500-th iteration for Algorithm 1. In the last figures,
we give the pressure and saturation. They are plotted at the end of simulation (3000
days), c = (0, 0.3) and injection rate is equal to 8% of the total pore volume per year.
Here, the complete field is flooded by water at the simulation.

7 Conclusions

We have applied a binary level set formulation for solving inverse two-phase porous
media flow problems. Both well data and seismic time-lapse data are used in the opti-
mization process. The method is searching a piecewise constant solution of the inverse
problem and it is regularized by a total variational norm. In this process, the perme-
ability estimation can be solved by the augmented Lagrangian optimization method.
After adding the constraint function to the augmented Lagrangian optimization func-
tion, the saddle point can be found by operator splitting scheme based on the essence
of binary level set method.

The numerical test focuses on piecewise constant permeability fields with two dif-
ferent constant level. The example shows that the method can recover the main struc-
tures of permeability even with rather complicated system of channels. The figures
demonstrate that the given algorithm is stable and efficient.
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