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Abstract. In this paper, we investigate the numerical performance of a family of
P-stable two-step Maruyama schemes in mean-square sense for stochastic differ-
ential equations with time delay proposed in [8, 10] for a certain class of nonlinear
stochastic delay differential equations with multiplicative white noises. We also
test the convergence of one of the schemes for a time-delayed Burgers’ equation
with an additive white noise. Numerical results show that this family of two-step
Maruyama methods exhibit similar stability for nonlinear equations as that for lin-
ear equations.
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1 Introduction

We consider numerical schemes for stochastic delay differential equations (SDDEs),
which have been increasingly used to model the effects of noise and time delay on
various types of complex systems, such as delayed visual feedback systems [5], control
problems [14,24], the dynamics of noisy bi-stable systems with delay [26], etc. SDDEs
are also used in modeling diseases [4, 6] and in models of stock markets [15].

Some one-step numerical schemes for SDDEs and their convergence and stability
properties have been established recently [3,13,17,20,27]. Here we focus on stochastic
multi-step methods for SDDEs, which can be treated as an nontrivial extension of the
multi-step methods of stochastic ordinary differential equations (SODEs), i.e., with no
time delay. For an early review of multi-step methods for SODEs, see [16, 22]. Some
more recent studies on SODEs can be found in [9] (two-step Maruyama methods), [12]
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(stochastic Adams-Bashforth scheme), [7] (Adams-type schemes), and also [11] (even
high order multi-step methods).

Numerical methods for SDDES can also be considered as extension from determin-
istic delay differential equations (DDEs). A review of numerical methods and their
stability for DDEs can be found in [2]. The stability of SDDEs is a bit different from
the SODEs, as we may require some conditions on the size of delay and time step size
of the numerical methods. For example, P-stability introduced by Barwell [1] refers
that the numerical solution of the delay differential equation y′(t) = ay(t) + by(t − τ)
goes to zero when time goes to infinity for any step size h and the time delay τ = mh
(m is an integer), provided that |b| < −Re(a); see also [25], where Tian and Kuang
considered the P-stability of linear multistep methods for DDEs. We will also adopt
this concept for the stability of numerical methods for a linear scalar SDDE.

Inspired by [8, 10], we investigate the numerical performance in this paper of a
family of two-step Maruyama schemes for a class of the following scalar equation

dX(t) = f
(

t, X(t), X(t − τ)
)

dt + g
(

t, X(t), X(t − τ)
)

dW(t), t ∈ J, (1.1a)

X(t) = ξ(t), t ∈ [−τ, 0], (1.1b)

where τ is a positive fixed delay, J = [0, T], W(t) is a one-dimensional standard Wiener
process and the functions f : J × R × R → R, g : J × R × R → R. In [8], multi-step
methods are proposed for m-dimensional systems of Itô SDDEs with d driving Wiener
processes and multiple delay, and their properties are studied concerning consistency,
numerical stability and convergence. In [10], a series of conditions of parameters of the
two-step Maruyama method for SDDEs are given. Under these conditions the family
of two-step Maruyama schemes are proved to be P-stable in mean-square sense for a
linearized equation of (1.1) as follows:

dX(t) = [aX(t) + bX(t − τ)]dt + [cX(t) + dX(t − τ)]dW(t), t ≥ 0, (1.2a)

X(t) = ξ(t), t ∈ [−τ, 0], (1.2b)

where a, b, c, d ∈ R, τ is a positive fixed delay, W(t) is a one-dimensional standard
Wiener process and ξ(t) is a C([−τ, 0]; R)-valued initial segment. Here we aim to
test the aforementioned stability and convergence of two-step Maruyama methods for
some scalar or system of nonlinear stochastic differential equations with time delay.

The paper is outlined as follows. In Section 2, we provide some necessary nota-
tions and preliminaries on SDDEs, including some properties of analytical solutions to
Eq. (1.2). We also introduce in this section the two-step Maruyama methods and their
convergence properties and derive a family of P-stable two-step Maruyama methods
in mean square sense under certain conditions. Section 3 illustrates the P-stability of
these two-step Maruyama methods with numerical examples for a nonlinear delay
equation with multiplicative white noises and a stochastic delay differential system.
Before we conclude, we compute a Burgers’ equation with time delay and additive
white noise by some of the proposed schemes and show the mean-square convergence
of the scheme.
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2 Two-step Maruyama schemes for SDDEs

Let (Ω,F , P) be a probability space with a filtration (Ft)t≥0, which satisfies the usual
conditions (increasing and right-continuous; each {Ft}, t ≥ 0 contains all P-null sets
in F ).

Let W(t), t ≥ 0 in Eq. (1.2) be Ft-adapted and independent of F0. Assume ξ(t), t ∈
[−τ, 0] to be F0-measurable and right continuous, and E‖ξ‖2 < ∞. Here ‖ξ‖ is defined
by ‖ξ‖ = sup−τ≤t≤0 |ξ(t)| and | · | is the Euclidean norm in R. Throughout the paper,
Eqs. (1.2) and (1.1) are interpreted in the Itô sense. Under these assumptions, Eq. (1.2)
has a unique strong solution X(t) : [−τ,+∞) → R, which satisfies Eq. (1.2) and X(t)
is a measurable, sample-continuous and Ft-adapted process; see [18, 23]. We get the
following lemma from [19].

Lemma 2.1. If there is a positive constant δ such that ‖ξ‖ < δ and the condition

a < −|b| − (|c|+ |d|)2 (2.1)

holds, then the solution of Eq. (1.2) is exponentially mean-square stable, i.e., there exist the
constants λ > 0 and C > 0, such that

E|X(t, ξ)|2 ≤ CE‖ξ‖2e−λt, t ≥ 0. (2.2)

The inequality (2.2) implies limt→∞ E|X(t)|2 = 0 as we assume E‖ξ‖2 < ∞. Here
we extend the P-stability to the numerical method for SDDEs.

Definition 2.2. A numerical method is said to be P-stable in mean-square sense (or exponen-
tially stable in mean-square), if for all coefficients satisfy the condition (2.1), the numerical
solution Xn of Eq. (1.2) at the mesh tn = nh, n ≥ 0 satisfies

lim
n→∞

E(Xn)
2 = 0

for every stepsize h under the constraint h = τ/m, where m is an integer.

The two-step Maruyama methods in [8] for Eq. (1.1) read

1

∑
j=−1

αjXi−j =h
1

∑
j=−1

β j f (ti−j, Xi−j, Xi−m−j)

+
1

∑
j=0

γjg(ti−j, Xi−j, Xi−m−j)∆Wi−j, i = 1, 2, · · · , N, (2.3)

where αj, β j, γj (j ∈ {−1, 0, 1}) are parameters; h > 0 is the step size in time which
satisfies τ = mh for a positive integer m, and tn = nh, N = T/h. The increments
∆Wi := W(ti+1)−W(ti), are independent N (0, h)-distributed Gaussian random vari-
ables. Suppose that Xi is Fti

-measurable at the mesh-point ti. Then Xi is an approxi-
mation to X(ti), where for i ≤ 0, Xi are given by the initial condition.
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Lemma 2.3 (Consistency and convergence, see [8]). Assume that

• the coefficients f and g of the SDDE (1.1) are Lipschitz continuous and have first-

order continuous partial derivatives with respect to the first variable and second-order

continuous partial derivatives with respect to the second and third variables;

• these partial derivatives satisfy the linear growth condition;

• the characteristic polynomial of (2.3), ρ(λ) = α−1λ2 + α0λ + α1 has its roots lying

on or within the unit circle and the roots are simple if they are on the unit circle,

• and the consistency conditions

1

∑
j=−1

α j = 0, 2α−1 + α0 =
1

∑
j=−1

β j, α−1 = γ0, α−1 + α0 = γ1. (2.4)

Then the global error of the scheme (2.3) for (1.1) satisfies

max
i=2,··· ,N

(

E|X(ti)− Xi|
2
)

1
2 = O(h

1
2 ).

The two-step Maruyama methods (2.3) for the linear equation (1.2) are

1

∑
j=−1

αjXi−j =h
1

∑
j=−1

β j[aXi−j + bXi−m−j]

+
1

∑
j=0

γj[cXi−j + dXi−m−j]∆Wi−j, i = 1, 2, · · · , (2.5)

for i ≤ 0, we have Xi = ξ(ti). By choosing the parameters that satisfy the consistency
condition (2.4) in (2.5) and

α−1 = 1, −1 ≤ α0 < 0, β0 = β1 = 0, (2.6)

we get

α1 = −1 − α0, β−1 = 2 + α0, γ0 = 1, γ1 = 1 + α0 (2.7)

and thus we obtain a family of two-step Maruyama schemes [10]

Xi+1 + α0Xi + (−1 − α0)Xi−1 =h(2 + α0)(aXi+1 + bXi−m+1) + (cXi + dXi−m)∆Wi

+ (1 + α0)(cXi−1 + dXi−m−1)∆Wi−1 (2.8)

from (2.5). We again suppose that X1 is Ft1
-measurable at the mesh-point t1. The

schemes (2.8) have the following mean-square asymptotic stability.

Theorem 2.4 (see [10]). If the condition (2.1) holds and the parameters of the two-step
Maruyama method (2.5) satisfy the conditions (2.4) and (2.6), then the method is P-stable
in mean-square sense.
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3 Numerical results for nonlinear equations

We list in Table 1 five two-step Maruyama schemes with different parameters un-
der test in this section. Note that the schemes in bold (TS2 and TS4) satisfy the re-
quired conditions in Theorem 2.4 and hence are P-stable in mean-square sense; while
the other two-step Maruyama schemes TS1, TS3 (Milne-Simpson scheme) and TS5
(Adams-Bashforth 2 scheme) satisfy consistency conditions (2.4), but not the condi-
tion (2.6) and they are not P-stable in mean-square sense as we show later on.

Table 1: Parameters for different two-step Maruyama schemes [10].

scheme α−1 α0 α1 β−1 β0 β1 γ0 γ1

two-step method 1 (TS1) 1 −1/2 −1/2 1/4 5/4 0 1 1/2
two-step method 2 (TS2) 1 -1/2 -1/2 3/2 0 0 1 1/2

Milne-Simpson (TS3) 1 0 −1 1/3 4/3 1/3 1 1
two-step method 4 (TS4) 1 -2/3 -1/3 4/3 0 0 1 1/3

Adams-Bashforth 2 (TS5) 1 −1 0 0 3/2 −1/2 1 0

In all our numerical examples, the second-order moment

E(X2
n) =

1

2000

2000

∑
i=1

|Xn(ωi)|
2

are the sampled average over 2000 trajectories implemented in Matlab. For better
mean-square stability, we compute X1 up to time t1 using implicit Milstein method,
which is mean-square stable for every h = τ/m and of order one (O(h)) in the mean-
square sense.

Example 3.1. We consider the nonlinear model with two multiplicative white noises

dX(t) = [−5X(t) + 2 sin(X(t − τ))]dt +
1

2
X(t − τ)dW1(t)

−
3

2
X(t − τ) cos(X(t − τ))dW2(t), t ≥ 0, (3.1a)

X(t) = t + τ, t ∈ [−τ, 0]. (3.1b)

By Corollary 2.4, Chapter 6 in [21] (see also Appendix), Eq. (3.1) is exponentially stable
in mean-square. Here we test this stability of the two-step Maruyama schemes in Table
1 for Eq. (3.1).

From Fig. 1(a), we observe that TS1 is not mean-square stable for the large step size
h = 1/2 but is stable for a smaller step size, h = 1/6; while in Fig. 1(b), we observe that
TS2 is mean-square stable for both step sizes, h = 1/2 and h = 1/6 and is damping
more faster than TS1 for h = 1/6. We observe similar effects from TS3 and TS4 in
Fig. 2. From Fig. 2, we notice that TS3 is only stable up to time t = 3 when h = 1/4 is
relatively small.

Fig. 3 show that the mean-square stability of the AB2 scheme (TS5) is much better
than the implicit two-step schemes TS1 and Milne-Simpson scheme (TS3) even up
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Figure 1: Simulations with TS1 and TS2. (a) h = 1/2; (b) h = 1/6.
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Figure 2: Simulations with TS3 and TS4. (a) h = 1/2; (b) h = 1/16.
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Figure 3: Simulations with TS1, TS3 and TS5.
h = 1/4.
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Figure 4: Simulations with TS2, TS4 and TS5.
h = 1/4.

to very large time. Note that this is contrary to what we observed for the scheme
(2.8) for a linear equation, Example 1 in [10]. Compared to the schemes TS2 and TS4,
numerical solutions by TS5 converge to zero more slowly than those by TS2 and TS4
when h = 1/4, see Fig. 4.
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Example 3.2. We test the proposed two-step Maruyama methods for the following
nonlinear stochastic delay differential system:

(

dX1(t)
dX2(t)

)

=

[

A

(

X1(t)
X2(t)

)

+ B

(

sin(X1(t − τ))
cos(X2(t − τ))

)]

dt

+ C

(

X1(t − τ)
X2(t − τ)

)(

dW1(t)
dW2(t)

)

, (3.2)

where

A =

(

−28 0
0 −30

)

, B =

(

2 −1/2
1/4 1

)

, C =

(

1 3/2
5/2 −1/2

)

.

The initial condition is given by X1(t) = t + τ and X2(t) = et when t ∈ [−τ, 0]. The
solution of system (3.2) is exponentially mean-square stable by Corollary 2.4 [21] (see
also Appendix).

From Fig. 5, we observe that TS1 blows up for both h = 1/4 and 1/8 ((a) and (c))
and the P-stable scheme TS2 is mean-square stable, see Figs. 5(b) and (d). It is shown
from Fig. 6 that the Milne-Simpson scheme TS3 is not mean-square stable even for
small step size h = 1/64.

In Fig. 7, we test the P-stable (only proved for linear equations as in Theorem 2.4)
schemes TS2 and TS4. With very large step size h = 1/2 and h = 1, the schemes TS2
and TS4 are maintaining their P-stability in mean-square sense for nonlinear stochastic
delay differential system (3.2).

We compare solutions obtained by the schemes TS3 and TS5 in Fig. 8. Fig. 8(a)
shows that neither of them are mean-square stable for h = 1/4, and the solution from
the explicit scheme TS5 blows up faster than that from implicit scheme TS3. On the
other hand, the explicit scheme TS5 performs better than the scheme TS3 when h =
1/16 as we can see from Fig. 8(b) that TS5 is mean-square stable for h = 1/16 but
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Figure 5: Simulations with TS1 and TS2. (a) TS1, h = 1/4; (b) TS2, h = 1/4; (c) TS1, h = 1/8; (d)
TS2, h = 1/8.
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Figure 6: Simulations with TS3. (a) h = 1/8; (b) h = 1/64.
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Figure 7: Simulations with TS2 and TS4. (a) TS2, h = 1/2; (b) TS2, h = 1; (c) TS4, h = 1/2; (d) TS4,
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Figure 8: Simulations with TS3 and TS5: (a) h = 1/4 and (b) h = 1/16.

TS3 is not. Fig. 8 indicates that the explicit scheme TS5 requires less restricted time
step size h for mean-square stability than the implicit scheme TS3 does. This effect is
exactly what we observe in Example 3.1.

Example 3.3. Consider a time-delayed Burgers’ equation with an additive noise [28]

ut(x, t) + u(x, t − τ)ux(x, t)− uxx(x, t) = σẆ(t), (x, t) ∈ (−π, π)× (0, T], (3.3a)

u(−π, t) = u(π, t), t ∈ [0, T], (3.3b)

u(x, t) = sin(x + t), (x, t) ∈ (−π, π)× [−τ, 0]. (3.3c)
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Table 2: Convergence test of the scheme (3.4) for Eq. (3.3).

M h e(h) O
(

log2
e(h)

e(2h)

)

64 1/64 0.0076 –
64 1/128 0.0039 0.9625
64 1/256 0.0020 0.9635
64 1/512 0.0010 1.0000
64 1/1024 0.0005 0.9979

The parameters in the Eq. (3.3) are τ = 1, σ = 0.01. We adopt the Fourier collocation
method with M points in physical space and the two-step Maruyama scheme (2.8) in
time. That is, we solve the problem

~uk+1 + α0~uk − (1 + α0)~uk−1 =h(2 + α0)[D
2
~uk+1 − ~uk−m+1 ◦ (D~uk+1)]

+ σ(∆Wk + (1 + α0)∆Wk−1), (3.4)

where D is the Fourier spectral differential matrix, ”◦” denotes the Hadamard product
of matrix and ~uk = (uk

1, · · · , uk
M)T ≈ (u(x1, tk), · · · , u(xM, tk))

T, tk = kh.
In (3.4), we take α0 = −0.8 and measure the error of the scheme (3.4) in the follow-

ing sense:

e(h) = max
k

max
i

∣

∣

∣

1

1000

1000

∑
l=1

uE(xi, tk, ωl)−
1

1000

1000

∑
l=1

uk
i (ω̃l)

∣

∣

∣
.

The ”exact” solution uE(xi, tk) is obtained by the Monte Carlo method with 103 re-
alizations and the Fourier collocation method with M = 64 points and the Euler-
Maruyama method with h = 10−5.

We obtain first-order convergence in weak sense of the two-step Maruyama scheme
(3.4) as shown in Table 2. Fig. 9 shows the error curves with different time step sizes
at t = 0.5 and t = 1 and Fig. 10 shows the numerical solution by (3.4) with h = 1/64
and the ”exact” solution at t = 0.5 and t = 1.
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Figure 9: Variances of numerical solutions by (3.4) with different step sizes. (a) t = 0.5; (b) t = 1.
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4 Conclusions

We have tested numerically a family of P-stable two-step Maruyama schemes in mean-
square sense for a class of nonlinear SDDEs. We tested three cases of nonlinear SD-
DEs: scalar equation with multiple noises, a system of equation with multiple noises,
and a time-delayed Burgers’ equation with an additive noise. Numerical simulations
show that this family of schemes exhibits mean-square stability for nonlinear stochas-
tic delay differential system. For the time-delayed Burger’s equation, we also tested
the convergence of our scheme, which is of order one in the weak sense. Numeri-
cal results suggest further stability and convergence study of numerical methods for
exponentially mean-square stable nonlinear stochastic delay differential system.

As we adopt Monte Carlo method to compute the numerical solution, we always
have so-called statistical error, which is proportional to one over the number of sample
path. A possible solution to resolve this issue is to adopt stochastic collocation meth-
ods or quasi-Monte Carlo methods [29] if numerical solution is required at moderate
time. Our future work will also be in this direction.

Appendix

The following lemma assures that Eqs. (3.1) and (3.2) are exponentially stable in mean-
square.

dX(t) = f
(

t, X(t), X(t − τ)
)

dt +
∞

∑
k=1

gk

(

t, X(t), X(t − τ)
)

dWk(t), t ≥ t0, (A.1a)

X(t0 + s) = ξ(s), s ∈ [−τ, 0], (A.1b)

where τ is a positive fixed delay, Wk(t), k ≥ 1 is a sequence of independent Brownian
motions and f : R

+×R
d ×R

d → R
d, gk : R

+×R
d ×R

d → R
d. Assume the equation

has a unique solution that is denoted by X(t, t0, ξ).
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Lemma A.1 (Corollary 2.4, see [21]). Let c1, c2, c3, c4 be positive constants. Assume for all
x, y ∈ R

d and t ≥ 0

1) 2xT f (t, x, 0) ≤ −c1|x|
2,

2) | f (t, x, y) − f (t, x, 0)| ≤ c2|y|,

3)
∞

∑
k=1

|gk

(

t, X(t), X(t − τ)
)

|2 ≤ c3|x|
2 + c4|y|

2,

if c1 > 2c2 + c3 + c4, then Eq. (A.1) is exponentially stable in mean square. That is, there
exist constants λ, C > 0, such that

E|X(t)|2 ≤ CE‖ξ‖2e−λ(t−t0), t ≥ t0.
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[12] B. D. EWALD AND R. TÈMAM, Numerical analysis of stochastic schemes in geophysics, SIAM
J. Numer. Anal., 42 (2005), pp. 2257–2276.

[13] Z. FAN, Waveform relaxation method for stochastic differential equations with constant delay,
Appl. Numer. Math., 61 (2011), pp. 229–240.

[14] M. GRIGORIU, Control of time delay linear systems with Gaussian white noise, Prob. Eng.
Mech., 12 (1997), pp. 89–96.

[15] D. G. HOBSON AND L. C. G. ROGERS, Complete models with stochastic balatility, Math.
Fina., 8 (1998), pp. 27–48.

[16] P. E. KLOEDEN AND E. PLATEN, Numerical Solution of Stochastic Differential Equations,
Springer, Berlin, 1992.

[17] R. LI, Convergence and stability of numerical solutions to SDDEs with Markovian switching,
Appl. Math. Comput., 175 (2006), pp. 1080–1091.

[18] X. MAO, Stochastic Differential Equations and Applications, Horwood, 1997.
[19] X. MAO, Razumikhin-Type theorems on exponential stability of stochastic functional differential

equations, Stochastic Proc. Appl., 65 (1996), pp. 233–250.
[20] X. MAO, Numerical solutions of stochastic differential delay equations under the generalized

Khasminskii-type conditions, Appl. Math. Comput., 217 (2011), pp. 5512–5524.
[21] X. MAO, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, INC.,

New York, 1994.
[22] G. N. MILSTEIN, Numerical Integration of Stochastic Differential Equations, Kluwer

Academic Publishers Group, Dordrecht, 1995.
[23] S. E. A. MOHAMMED, Stochastic Functional Differential Equations, Research Notes in

Mathematics, Pitman, London, 99 (1984).
[24] M. D. PAOLA AND A. PIRROTTA, Time delay induced effects on control of linear systems under

random excitation, Prob. Eng. Mech., 16 (2001), pp. 43–51.
[25] H. J. TIAN AND J. X. KUANG, The numerical stability of linear multistep methods for delay

differential equations with many delays, SIAM J. Numer. Anal., 33 (1996), pp. 883–889.
[26] L. S. TSIMRING AND A. PIKOVSKY, Noise-induced dynamics in bistable systems with delay,

Phys. Rev. Lett., 87 (2001), pp. 250602-1–25062-4.
[27] S. ZHOU AND F. WU, Convergence of numerical solutions to neutral stochastic delay differential

equations with Markovian switching, J. Comput. Appl. Math., 229 (2009), pp. 85–96.
[28] W. LIU, Asymptotic behavior of solutions of time-delayed Burgers’ equation, Dis. Cont. Dyn.

Syst. Series B, 2 (2002), pp. 47–56.
[29] Z. ZHANG, B. ROZOVSKII AND G. E. KARNIADAKIS, Stochastic collocation methods for

stochastic differential equations driven by white noise, Submitted to SISC.


