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Abstract. In this paper, we consider the numerical stability of gravity-capillary
waves generated by a localized pressure in water of finite depth based on the
forced Korteweg-de Vries (FKdV) framework and the polynomial chaos. The sta-
bility studies are focused on the symmetric solitary wave for the subcritical flow
with the Bond number greater than one third. When its steady symmetric solitary-
wave-like solutions are randomly perturbed, the evolutions of some waves show
stability in time regardless of the randomness while other waves produce unstable
fluctuations. By representing the perturbation with a random variable, the govern-
ing FKdV equation is interpreted as a stochastic equation. The polynomial chaos
expansion of the random solution has been used for the study of stability in two
ways. First it allows us to identify the stable solution of the stochastic governing
equation. Secondly it is used to construct upper and lower bounding surfaces for
unstable solutions, which encompass the fluctuations of waves.

AMS subject classifications: 65C20, 65C30
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1 Introduction

We investigate two-dimensional gravity-capillary waves in this paper. The analysis of
properties of those waves such as the stability analysis has been one of main research
areas in fluid mechanics, see [1–6] and the references therein. The Froude number F
and the Bond number τ are important variables for the description of those waves.
When F is close to unity and τ > 1/3, the gravity-capillary waves can be modeled
by the Korteweg-de Vries (KdV)-type equations. When the waves are generated by a
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localized pressure distribution or when the interfacial waves are considered in a spa-
tial domain with bumps, forced KdV-type equations can be derived. Shen et al. in [7]
derived a forced Korteweg-de Vries (FKdV) equation asymptotically. They found sym-
metric steady-state solitary-wave-like solutions and studied their stabilities. Choi et
al. extended the study to derive a forced modified Korteweg-de Vries (FMKdV) equa-
tion in [8] and found symmetric steady-state solutions. The stability analysis of a
damped KdV equation in a quarter plane was performed by Bona et al. in [9]. Larkin
performed a mathematical analysis in [10] to prove the existence and uniqueness of
strong and weak global solutions for the FMKdV equation in a bounded domain, and
Pava and Natali [11] studied periodic traveling wave solutions for the critical KdV
equation. Camassa and Wu [12, 13] performed the analysis of the stability for steady
solitary-wave solutions and confirmed their analytical findings with accurate numer-
ical computations. Grimshaw et al. [14] also performed the stability analysis on two-
dimensional localized solitary waves from the steady forced KdV equation. Recently
Chardard et al. derived solutions of the stationary forced KdV equation in [15] and
Kim et al. computed the solutions of the forced modified KdV equation in [16].

Maleewong et al. derived the forced Korteweg-de Vries equation (2.1) in Section 2
in [17] and performed a stability analysis in [14]. In this study, we observe the evolu-
tions of the solutions from this equation by perturbing its time-independent symmet-
ric solitary-wave-like solutions. Our computation found four depression and one ele-
vation time-independent solutions as Grimshaw et al. did in [14] and the simulation
results show that the evolutions of the solution waves in time are dependent upon the
magnitude of the perturbation. Thus, we regard the perturbation as a random vari-
able in this study and we interpret the resultant governing equation as a stochastic
differential equation. In this paper, we try to answer following two questions. First, is
it possible to identify the stable solution, if it exists, among several time-independent
solutions? Secondly, is it possible to estimate the magnitudes of the fluctuations of
unstable solutions? Due to the random perturbation in the governing equation, the
solution is a function of the deterministic and random variables. Cameron and Mar-
tin [18] proved that such a solution can be separated into deterministic and random
variables by a Fourier series with respect to a certain polynomial chaos. Mikulevi-
cius and Rozovskii considered problems with a random variable following a Brown-
ian motion and performed theoretical analysis with respect to the polynomial chaos
based on the Hermite polynomials in [19,20]. Ghanem and Spanos extended the study
of the Gaussian stochastic process and the Hermite polynomial chaos to uncertainty
problems in solid mechanics in [21, 22]. Xiu and Karniadakis [23] showed that opti-
mal polynomial chaos is different when the distributions of the random variable is
changed. For instance, the Hermite polynomial is optimal for the Gaussian random
variable while the Laguerre polynomials is optimal for the Gamma random variable.
Askey and Wilson classified the hypergeometric orthogonal polynomials for various
types of random distributions and presented their properties in [24].

We derive a numerical algorithm for the forced Korteweg-de Vries equation. This
research extends those of Grimshaw et al. [14] and Kim et al. [16], and the random
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variable is assumed to be a uniform random variable for simplicity. In Section 2,
steady waves are considered. The numerical scheme for the stochastic differential
equation based on the polynomial chaos is introduced in Section 3. Simulation results
are shown in Section 4.

2 Steady state solutions

Two-dimensional gravity-capillary waves having a speed U in water of depth h can
be described by the forced Korteweg-de Vries equation

2ηt + (F2 − 1)ηx −
3

2
(η2)x +

(

τ −
1

3

)

ηxxx = F2px(x), (2.1)

when the Froude number F = U/
√

gh < 1 and the Bond number τ = T/ρgh2 domi-
nates, τ > 1/3 as Maleewong et al. showed in [17]. F = 0.9 and τ = 0.4, respectively,
in this study. T is the coefficient of surface tension, g is the gravity acceleration and ρ

represents the water density. p(x) = ǫ sech2(x) describes the localized pressure distri-
bution, where ǫ is the magnitude of the pressure. We investigate the evolutions of the
time-independent symmetric solitary-wave-like solutions of (2.1). A shooting method
with a matching process has been used to find steady symmetric solitaty-wave-like
solutions as Choi et al. did in [8]. As in [14], we found five symmetric steady solitary-
wave-like solutions for F = 0.9 and τ = 0.4 : two depression waves I and II in Fig. 1
(Left) with ǫ = −0.01, two more depression waves III and IV with ǫ = 0.01, and
one elevation wave V in Fig. 1 (Right) with ǫ = −0.01. Eq. (2.1) is solved with the
perturbed steady solution

η0(x) = (1 + ξ)ηs(x), (2.2)

as the initial condition. ηs(x) represents steady solutions I-V in Fig. 1 and ξ is a per-
turbation. Eq. (2.1) is solved with a small ξ, −0.1 ≤ ξ ≤ 0.1 in Section 4.1, and with a
moderate ξ, −0.5 ≤ ξ ≤ 0.5 in Section 4.2.
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Figure 1: Time-independent symmetric solitary-wave-like solutions of (2.1) when F = 0.9 and τ = 0.4.
(Left) Four depression waves with ǫ = −0.01 for I and II and ǫ = 0.01 for III and IV and (Right) one
elevation wave V with ǫ = −0.01.
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Figure 2: Time evolutions of 5 waves in Fig. 1 from the forced KdV equation (2.1) and the initial condi-
tion (2.2) with perturbation ξ = 0.075. Top: Depression waves I and II from ǫ = −0.01, Middle: Depression
waves III and IV from ǫ = 0.01, Bottom: Elevation wave V from ǫ = −0.01.

Fig. 2 shows the time evolutions of the time-independent symmetric solitary-wave-
like solution waves of (2.1) and (2.2) when the perturbation ξ = 0.075. It manifests
that waves I, II, III are not stable in time and on the other hand the waves IV and V
are stable. Kim et al. considered the evolutions of the depression waves I-IV in time
in [16] for one value ξ = 0.1 only and concluded that the wave IV is the only sta-
ble solution among those 4 depression waves. Before we accept the claim by Kim et
al. [16] regarding the stability of the wave IV, we want to question if there is any effect
from the perturbation. Thus, we vary the values of the perturbation and observe the
corresponding evolutions.

Fig. 3 compares the evolutions of the depression wave I from (2.1) and (2.2) when
the perturbation ξ takes values of (from the top left)

ξ = −0.075, −0.05, −0.025, 0.025, 0.05, 0.075. (2.3)
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Figure 3: Time evolutions of the depression wave I from (2.1) and (2.2) with ǫ = −0.01 when the perturbation
ξ takes values in (2.3) (from the top left).
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Figure 4: Time evolutions of the depression wave II from (2.1) and (2.2) with ǫ = −0.01 when the pertur-
bation ξ takes values in (2.3) (from the top left).

Fig. 4 compares those for the depression wave II. Fig. 3 and Fig. 4 show that character-
istics of the evolutions are affected by the magnitudes of the perturbation ξ and that
we need more in-depth analysis upon the effect of the perturbation on the stability.

3 Stochastic differential equation

Numerical simulations in Section 2 show that the value of the perturbation changes
the properties of the evolutions of the waves of (2.1). Thus, let us assume that the per-
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turbation ξ is a random variable. Then the two-dimensional capillary-gravity equation
is governed by a stochastic differential equation, that is, the forced Korteweg-de Vries
equation (2.1) with a random initial condition (2.2). There are several numerical ap-
proaches for stochastic differential equations. One is the Monte Carlo method, which
generates realizations of the random variable and solves the given equation for each
realization. Since the number of realizations should be sufficiently large for the Monte
Carlo method, its computational cost is usually expensive. Polynomial chaos expan-
sion is another approach for the stochastic differential equation. This method expands
the stochastic solution as a Fourier series with respect to certain polynomials {Jn(x)}.
These polynomials are chosen so that they are orthonormal when the inner product is
defined by

〈Jm, Jn〉 ≡
∫

I
Jm(x)Jn(x)dµ = δmn,

where the measure µ is expressed by dµ(x) = w(x)dx for the probability density func-
tion w(x) for the random variable and I is the support of w(x). Kim performed a pre-
liminary analysis in [25] on the polynomial chaos based on the Hermite polynomials
when the random variable follows the Gaussian distribution. Since the perturbation ξ

follows the uniform distribution in this study, let us apply the Legendre polynomials
following the Askey’s classification [24].

Let J∗n(x) represent Legendre polynomials of degree n defined by

J∗n(x) =
(−1)n

2nn!

dn

dxn

(

(1 − x)n(1 + x)n
)

with J∗0 (x) = 1. For instance,

J∗1 (x) = x, J∗2 (x) =
3x2 − 1

2
, J∗3 (x) =

5x3 − 3x

2
.

The polynomials {J∗n (x)} satisfy a recurrence relation,

xJ∗n(x) =
n + 1

2n + 1
J∗n+1(x) +

n

2n + 1
J∗n−1(x), (3.1)

for n = 1, 2, 3, · · · . Legendre polynomials {J∗n(x)} are orthogonal when the inner
product is defined by

〈J∗m, J∗n〉 ≡
∫

I
J∗m(x)J∗n(x)dµ,

where the measure µ is expressed by dµ(x) = w(x)dx, using the probability density
function of the uniform distribution w(x) = 1/2 with the support I = [−1, 1]. The
normalized Legendre polynomials {Jn(x)},

Jn(x) =
1

√

〈J∗n , J∗n〉
J∗n(x)

are then orthonormal,
〈J∗m, J∗n〉 = δmn.
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See [26] for more information on orthogonal polynomials. Let I denote the set of
multi-indices with finitely many non-zero components,

I =
{

α = (α1, α2, · · · )
∣

∣

∣
αi ∈ {0, 1, 2, · · · }, |α| ≡

∞

∑
i=1

αi < ∞
}

.

We express the solution η of (2.1) as the Fourier series with respect to the normalized
Legendre polynomials

η(x, t, ξ) = ∑
α∈I

ηα(x, t)Jα(ξ),

where ηα represents the Fourier coefficients ηα = E[η(x, t, ξ)Jα ] with respect to Jα(ξ) =

∏
∞
i=1 Jαi

(ξi) for each multi-index α = (α1, α2, · · · ) and the normalized Legendre poly-
nomials Jαi

(ξi). This polynomial chaos separates the deterministic variables ηα and
random variables Jα(ξ) from the solution η(x, t, ξ). When the multi-index α is ex-
panded, η can be written as

η(x, t, ξ) = η̂0 J0 +
∞

∑
i=1

η̂i J1(ξi) +
∞

∑
i=1

i

∑
j=1

η̂ij J2(ξi, ξ j)

+
∞

∑
i=1

i

∑
j=1

j

∑
k=1

η̂ijk J3(ξi, ξ j, ξk) + · · · , (3.2)

where Jn(ξ1, ξ2, · · · , ξn) denotes the polynomial chaos of order n in the n indepen-
dent and identically distributed random variables ξ = (ξ1, ξ2, · · · , ξn). For notational
simplicity, we adopt the notation of Xiu and Karniadakis [23] to express (3.2) as

η(x, t, ξ) =
∞

∑
α=0

ηα Jα(ξ). (3.3)

Note that there is a one-to-one correspondence between the functions Jn(ξ1, ξ2, · · · , ξn)
in (3.2) and Jα(ξ) in (3.3) and also between η̂1,2,··· ,n and ηα. When this expansion (3.3)
replaces η in (2.1), the Eq. (2.1) can be written as

2
( ∞

∑
α=0

ηα Jα

)

t
+ (F2 − 1)

( ∞

∑
α=0

ηα Jα

)

x
− 3

( ∞

∑
β=0

ηβ Jβ

)( ∞

∑
γ=0

ηγ Jγ

)

x

+
(

τ −
1

3

)( ∞

∑
α=0

ηα Jα

)

xxx
= F2

( ∞

∑
α=0

pα Jα

)

x
, (3.4)

where pα is the Fourier coefficient of p with respect to Jα(ξ). Since Jα’s are an orthonor-
mal basis, we can derive a system of equations for ηα’s,

2(ηα)t + (F2 − 1)(ηα)x − 3
∞

∑
β,γ=0

eαβγηβ(ηγ)x +
(

τ −
1

3

)

(ηα)xxx − F2(pα)x = 0,
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where eαβγ =
∫

I Jα(x)Jβ(x)Jγ(x)w(x)dx. When this infinite system is truncated into a
finite P-dimension,

2(ηα)t + (F2 − 1)(ηα)x − 3
P

∑
β,γ=0

eαβγηβ(ηγ)x +
(

τ −
1

3

)

(ηα)xxx − F2(pα)x = 0, (3.5)

we obtain the system for the Pth order polynomial chaos,

η(x, t, ξ) =
P

∑
α=0

ηα Jα(ξ). (3.6)

Since the solution of the stochastic differential equation (2.1) is random, one is in-
terested in the statistical moments of the solution instead of the solution correspond-
ing to a specific realization of the random variable. Since the Legendre polynomials
are orthonormal, we can easily prove that the mean of η(x, t, ξ) is

E[η(x, t, ξ)] = η0(x, t) (3.7)

and that the second moment is

E[η2(x, t, ξ)] = ∑
α

η2
α(x, t).

Thus, the variance is obtained by

Var[η(x, t, ξ)] = ∑
α 6=0

η2
α(x, t). (3.8)

Note that those statistical moments can be derived from the numerical solutions of
the system of Eqs. (3.5) and since the system is deterministic, the system (3.5) needs
to be solved only once. Thus, it is anticipated that the computational cost will not be
expensive with the polynomial chaos expansion.

4 Numerical simulations

We consider the forced Korteweg-de Vries equation (2.1),

2ηt + (F2 − 1)ηx −
3

2
(η2)x +

(

τ −
1

3

)

ηxxx = F2px(x)

with the initial condition (2.2),

η0(x) = (1 + ξ)ηs(x),

where ξ is a uniform random variable. The steady solution ηs(x) is perturbed by
a small amount in Section 4.1 and by a moderate amount in Section 4.2. The Fourier
spectral method [27] is used for the spatial differentiation of the system of Eqs. (3.5) for
the polynomial chaos (3.6), and the resultant differential equations in time are solved
using the fourth order Runge Kutta method.
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4.1 FKdV equation with a small perturbation

In this section, the forced KdV equation (2.1) is solved when the steady solution is
initially perturbed by up to 10% and ξ follows a uniform distribution over the interval
[−0.1, 0.1].

Fig. 5 shows the mean E[η(x, t, ξ)] of η in time and space for five symmetric steady
state waves I-V. The depression waves I and II for ǫ = −0.01 are expected to be sep-
arated into several waves, while the depression wave III for ǫ = 0.01 generates trav-
eling solitary waves leaving behind the steady solitary wave. Grimshaw et al. pre-
sented similar results in [14]. Figures for the depression waves I, II, III illustrate that
those three solution waves are expected to fluctuate in time, implying that they are not
stable, while the figures for the depression wave IV and the elevation wave V show
that their means do not change in time.

Fig. 6 shows the variances Var[η(x, t, ξ)]. Figures for the depression waves I, II, III
show the variances of their random fluctuations and justify the expectation that these
waves are unstable in time. The figures for the depression wave IV and the elevation
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Figure 5: Means of η from (2.1) and (2.2) in time and space. Top: Depression waves I and II from ǫ = −0.01,
Middle: Depression waves III and IV from ǫ = 0.01, Bottom: Elevation wave V from ǫ = −0.01.
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Figure 6: Variances of η from (2.1) and (2.2) in time and space. Top: Depression waves I and II from
ǫ = −0.01, Middle: Depression waves III and IV from ǫ = 0.01, Bottom: Elevation wave V from ǫ = −0.01.

wave V show on the other hand that their variances are zero in time. This implies that
the wave IV at each time is identical to its mean and the wave V is identical to its mean,
respectively. Since Fig. 5 shows that the means for waves IV and V do not change in
time, we can conclude that the waves IV and V themselves do not change in time.
Combining the results in Fig. 5 and Fig. 6, the polynomial chaos allows us to identify
two stable symmetric solitary-wave-like solution of (2.1), that is, the depression wave
IV and the elevation wave V.

Those unstable waves I, II, III produce random fluctuations during their propaga-
tions and the polynomial chaos can be used to estimate these instabilities as shown
below. Since the variance is a measure of how far realizations of a random variable are
spread out about its mean, we may construct surfaces,

[mean − σ standard deviation, mean + σ standard deviation] (4.1)

with a parameter σ. At each time, these surfaces define two curves in space, which
may be used to estimate fluctuations of the unstable waves I, II, III. Fig. 7 (Top Left)
shows the fluctuations for the depression wave I from (2.1) and (2.2) with ǫ = −0.01
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Figure 7: (Top Left) Fluctuations of the depression wave I from (2.1) and (2.2) with ǫ = −0.01 for ξ values
in (2.3) at t = 100 and (Top Right) those with the curves (4.1) for σ = 1. (Bottom) Fluctuations with the
curves (4.1) for σ = 2 and σ = 3.
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Figure 8: (Top Left) Fluctuations of the depression wave II from (2.1) and (2.2) with ǫ = −0.01 for ξ values
in (2.3) at t = 100 and (Top Right) those with the curves (4.1) for σ = 3. (Bottom Left) Fluctuations of the
depression wave III from (2.1) and (2.2) with ǫ = 0.01 for ξ values in (2.3) at t = 100 and (Bottom Right)
those with the curves (4.1) for σ = 3.
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for ξ values in (2.3) at t = 100 and Fig. 7 (Top Right) shows those fluctuations together
with the proposed curves (4.1) for σ = 1. Two figures in Fig. 7 (Bottom) show the
curves for σ = 2 and σ = 3. The figure shows that the fluctuations are encompassed
sufficiently well by the given curves (4.1) when σ is 3. Fig. 8 shows the results for
the other unstable depression waves II and III, respectively. Simulation results show
that the proposed curves encompass random fluctuations of unstable waves and thus
the polynomial chaos framework can be used to measure the instabilities of unstable
solutions.

4.2 FKdV equation with a moderate perturbation

In this section the forced Korteweg-de Vries equation (2.1) is solved with the initial
condition (2.2), where a uniform random variable ξ ranges between -0.5 and 0.5. That
is, the steady solution is initially perturbed by up to 50%. Fig. 9 shows the means
E[η(x, t, ξ)] of η and Fig. 10 shows the variances Var[η(x, t, ξ)]. Based on the same
analysis as in Section 4.1, waves IV and V are stable while waves I, II, III are unstable.
As in Section 4.1 for a small ξ, Fig. 9 shows that the depression waves I and II for
ǫ = −0.01 are expected to be separated into several waves and the depression wave
III for ǫ = 0.01 is expected to be separated into traveling solitary waves and the stable
wave.
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Figure 9: Means of η from (2.1) and (2.2) in time and space. Top: Depression waves I and II from ǫ = −0.01,
Middle: Depression waves III and IV from ǫ = 0.01, Bottom: Elevation wave V from ǫ = −0.01.
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Figure 10: Variances of η from (2.1) and (2.2) in time and space. Top: Depression waves I and II from
ǫ = −0.01, Middle: Depression waves III and IV from ǫ = 0.01, Bottom: Elevation wave V from ǫ = −0.01.
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Figure 11: (Top Left) Fluctuations of the depression wave I from (2.1) and (2.2) with ǫ = −0.01 for several
ξ values at t = 50 and the curves (4.1) for σ = 3. (Top Right) Curves for the depression wave II with
ǫ = −0.01. (Bottom) Curves for the depression wave III with ǫ = 0.01.

Fig. 11 compares the instabilities of waves I, II, III at t = 50 with the curves (4.1)
for σ = 3 value. As in Section 4.1, the curves (4.1) seem to provide sufficient bounds
for the fluctuations of unstable waves, even though curves (4.1) for smaller ξ in Figs. 7
and 8 introduce more efficient bounds.

In Sections 4.1 and 4.2, computational results for 2 uniform distributions for ξ, 3
values of σ, and 2 values of ǫ have been considered. Even though these computations
are not sufficient, the results are showing that the curves (4.1) with smaller ξ and
larger σ seem to encompass more fluctuations of unstable waves. σ = 3 seems to be
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sufficient in the examples we considered in this study. We will study analytically and
numerically on the connections among these parameters and fluctuations bounds and
present the results in our future publications.

5 Conclusions

The stability of two-dimensional gravity-capillary waves has been investigated nu-
merically based on the forced Korteweg-de Vries equation framework. The polyno-
mial chaos method has been used to identify the stable depression and elevation wave
solutions and also to estimate the magnitudes of fluctuations of unstable depression
wave solutions.

More in-depth analysis of the measurements of instabilities is postponed to our
future study. We will also study the effects of the random perturbations in our future
research.
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